ATTACHMENT 2



Supporting document 1Safety assessment – Application A1073 Food derived from Herbicide-tolerant Soybean Line DAS-44406-6SUMMARY AND CONCLUSIONSBackgroundA genetically modified (GM) soybean line DAS-44406-6, hereafter referred to as 44406, has been developed that is tolerant to three herbicides 2,4-dichlorophenoxyacetic acid (2,4-D), glufosinate ammonium and glyphosate. Tolerance to 2,4-D is achieved through expression of the enzyme aryloxyalkanoatedioxygenase-12 (AAD-12) encoded by the aad-12 gene derived from the soil bacterium Delftia acidovorans. Tolerance to glufosinate ammonium is achieved through expression of the enzyme phosphinothricin acetyltransferase (PAT) encoded by the pat gene derived from another soil bacterium Streptomyces viridochromogenes. Tolerance to glyphosate is encoded through expression of a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoded by the 2mepsps gene from corn (Zea mays).In conducting a safety assessment of food derived from soybean line 44406, a number of criteria have been addressed including: a characterisation of the transferred gene, its origin, function and stability in the soybean genome; the changes at the level of DNA, protein and in the whole food; compositional analyses; evaluation of intended and unintended changes; and the potential for the newly expressed protein to be either allergenic or toxic in humans.This safety assessment report addresses only food safety and nutritional issues. It therefore does not address: environmental risks related to the environmental release of GM plants used in food productionthe safety of animal feed or animals fed with feed derived from GM plantsthe safety of food derived from the non-GM (conventional) plant.History of UseSoybean (Glycine max) is grown as a commercial crop in over 35 countries worldwide. Soybean-derived products have a range of food and feed as well as industrial uses and have a long history of safe use for both humans and livestock. Oil, in one form or another, accounts for the major food use of soybean and is incorporated in salad and cooking oil, bakery shortening, and frying fat as well as processed products such as margarine.Molecular CharacterisationComprehensive molecular analyses of soybean line DAS-44406-6 indicate that a single copy of T-DNA containing three expression cassettes for the genes 2m epsps, aad-12 and pat has been inserted at a single locus in Chromosome 6 of the soybean genome. No DNA sequences from the backbone of the transformation vector, including antibiotic resistance marker genes, were transferred to the plant. As a result of the integration of the three expression cassettes, there is a 3 bp insertion at the 5’ junction region and a deletion of 4,385 bp of host DNA. The introduced genetic elements are stably inherited from one generation to the next.Characterisation of Novel ProteinSoybean line DAS-44406-6 expresses three novel proteins, 2m EPSPS, AAD-12 and PAT. Expression analyses of the three proteins showed that all three were detected in the plant parts tested. The 2m EPSPS protein was lowest in the seed (approximately 22 ?g/g dry weight) and highest in V10–12 leaves (approximately 2323 ?g/g dry weight). AAD-12 was lowest in the roots (approximately 25 ?g/g dry weight) and highest in V10 – 12 leaves (approximately 116 ?g/g dry weight). PAT protein concentrations were much lower than those for AAD-12 but similarly, the V10 – 12 leaves contained the highest levels (approximately 10 ?g/g dry weight) and the roots contained the lowest levels (approximately 2 ?g/g dry weight). Several studies were submitted with this application, or were known from historical data, to confirm the identity and physicochemical properties of the plant-derived 2m EPSPS, AAD-12 and PAT proteins, and demonstrated they conform in size and amino acid sequence to that expected, and do not exhibit any post-translational modification including glycosylation.In relation to potential toxicity and allergenicity, the PAT protein has previously been demonstrated to be non-toxic to mammals and also does not exhibit any potential to be allergenic to humans. For the 2m EPSPS and AAD-12 proteins, bioinformatic studies confirmed the lack of any significant amino acid sequence similarity to known protein toxins or allergens; digestibility studies suggest the proteins would be rapidly degraded in the stomach following ingestion; and thermolability studies showed that both proteins are inactivated by heating. Taken together, the evidence indicates that neither 2m EPSPS nor AAD-12 are likely to be toxic or allergenic to humans.Herbicide MetabolitesThe metabolic profiles resulting from the novel protein x herbicide interactions in DAS-44406-6 have been assessed in previous applications or, in the case of PAT/glufosinate ammonium, have a significant history of use. There are no concerns that the spraying of soybean 44406 with glyphosate, 2,4-D or glufosinate ammonium would result in the production of metabolites that are not also produced in crops sprayed with the same herbicides and already used in the food positional AnalysesDetailed compositional analyses were done to establish the nutritional adequacy of seed from soybean line DAS-44406-6 sprayed with 2,4-D, glufosinate ammonium and glyphosate herbicides. Analyses were done of proximate (moisture, crude protein, fat, ash, fibre), amino acid, fatty acid, vitamin, mineral, phytic acid, trypsin inhibitor, lectin, isoflavone, stachyose and raffinose content. The levels were compared to levels in the seeds of a non-GM control line (‘Maverick’) grown alongside the GM line. These analyses did not indicate any differences of biological significance between the seed from soybean DAS-44406-6 and the non-GM control ‘Maverick’. Significant differences were noted in a number of constituents. However, the differences were typically small and all mean values were within both the tolerance range obtained for non-GM reference varieties grown at the same time and (where it exists) the literature range.Any observed differences are therefore considered to represent the natural variability that exists within soybean. The spraying of soybean line DAS-44406-6 with 2,4-D, glufosinate ammonium and glyphosate, either alone or in combination, did not have a significant effect on seed composition. ConclusionNo potential public health and safety concerns have been identified in the assessment of soybean line DAS-44406-6. On the basis of the data provided in the present Application, and other available information, food derived from soybean line DAS-44406-6 is considered to be as safe for human consumption as food derived from conventional soybean cultivars.TABLE OF CONTENTS TOC \o "1-2" \h \z \u SUMMARY AND CONCLUSIONS PAGEREF _Toc338690142 \h iLIST OF TABLES PAGEREF _Toc338690143 \h 2LIST OF FIGURES PAGEREF _Toc338690144 \h 2LIST OF ABBREVIATIONS PAGEREF _Toc338690145 \h 31.Introduction PAGEREF _Toc338690146 \h 42.History of use PAGEREF _Toc338690147 \h 42.1Host organism PAGEREF _Toc338690148 \h 42.2Donor organisms PAGEREF _Toc338690149 \h 53.Molecular characterisation PAGEREF _Toc338690150 \h 73.1Method used in the genetic modification PAGEREF _Toc338690151 \h 73.2Description of the introduced genes PAGEREF _Toc338690152 \h 83.3Breeding to obtain soybean line DAS-44406-6 PAGEREF _Toc338690153 \h 113.4Characterisation of the genes in the plant PAGEREF _Toc338690154 \h 123.5Stability of the genetic changes PAGEREF _Toc338690155 \h 143.6Antibiotic resistance marker genes PAGEREF _Toc338690156 \h 153.7 Conclusion PAGEREF _Toc338690157 \h 154.Characterisation of novel proteins PAGEREF _Toc338690158 \h 154.1Potential allergenicity/toxicity of ORFs created by the transformation procedure PAGEREF _Toc338690159 \h 164.2Function and phenotypic effects of the 2m EPSPS, AAD-12 and PAT proteins PAGEREF _Toc338690160 \h 174.3Novel protein expression in plant tissues PAGEREF _Toc338690161 \h 194.4Protein characterisation studies PAGEREF _Toc338690162 \h 204.5Potential toxicity PAGEREF _Toc338690163 \h 234.6Potential allergenicity PAGEREF _Toc338690164 \h 264.7Conclusion PAGEREF _Toc338690165 \h 285.Other novel substances PAGEREF _Toc338690166 \h positional analysis PAGEREF _Toc338690167 \h 296.1Key components of soybean PAGEREF _Toc338690168 \h 296.2Study design and conduct PAGEREF _Toc338690169 \h 306.3Seed composition PAGEREF _Toc338690170 \h 316.4Endogenous allergens PAGEREF _Toc338690171 \h 386.5Conclusion PAGEREF _Toc338690172 \h 387.Nutritional impact PAGEREF _Toc338690173 \h 38References PAGEREF _Toc338690174 \h 39LIST OF TABLES TOC \h \z \c "Table" Table 1: Description of the genetic elements contained in the T-DNA of pDAB8264 PAGEREF _Toc333919655 \h 9Table 2: Location and characterisation of novel ORFs in the flanking regions PAGEREF _Toc333919656 \h 14Table 3: Average concentration of 2m EPSPS, AAD-12 and PAT proteins in various plant parts from soybean 44406 PAGEREF _Toc333919657 \h 20Table 4: Mean percentage of proximates and fibre in seed from ‘Maverick’ and DAS-44406-6. PAGEREF _Toc333919658 \h 31Table 5: Mean percentage composition, relative to total fat, of major fatty acids in seed from 'Maverick' and DAS-44406-6 PAGEREF _Toc333919659 \h 32Table 6: Mean percentage dry weight (dw), relative to total dry weight, of amino acids in seed from ‘Maverick’ and DAS-44406-6 PAGEREF _Toc333919660 \h 33Table 7: Mean weight (?g/g dry weight expressed as aglycon equivalents) of isoflavones in DAS- 44406-6 and ‘Maverick’ seed PAGEREF _Toc333919661 \h 34Table 8: Mean levels of anti-nutrients in DAS-44406-6 and ‘Maverick’ seed. PAGEREF _Toc333919662 \h 35Table 9: Mean values for mineral levels in seed from ‘Maverick’ and DAS-44406-6. PAGEREF _Toc333919663 \h 35Table 10: Mean weight (?g/g dry weight) of vitamins in seed from ‘Maverick’ and DAS-44406-6 PAGEREF _Toc333919664 \h 36Table 11: Summary of analyte means found in seed of DAS-44406-6 treatments that are significantly (adj. P<0.05) different from those found in seed of the control line 'Maverick' PAGEREF _Toc333919665 \h 37LIST OF FIGURES TOC \h \z \c "Figure" Figure 1: Vector map of plasmid PDAB8264 PAGEREF _Toc331584453 \h 8Figure 2: Representation of the genetic elements in the T-DNA insert of plasmid pDAB8264 PAGEREF _Toc331584454 \h 8Figure 3: Breeding strategy for plants containing event DAS-44406-6 PAGEREF _Toc331584455 \h 12Figure 4: General representation of the conversion of pyridyloxyacetate and phenoxyacetate herbicides to an inactive phenol in the presence of AAD-12. PAGEREF _Toc331584456 \h 18LIST OF ABBREVIATIONSAAD-12Aryloxyalkanoate dioxygenase-12ADFacid detergent fibrea.e.Acid equivalenta.i.Active ingredientAOACAssociation of Analytical Communitiesbarbialaphos resistanceBLASTBasic Local Alignment Search Toolbpbase pairs2,4-D2,4-dichlorophenoxyacetic acidDCP2,4-dichlorophenolDNAdeoxyribonucleic acidT-DNAtransferred DNAdwdry weightELISAenzyme linked immunosorbent assayEPSPS5-enolpyruvylshikimate-3-phosphate-synthaseESI-LC/MSelectrospray ionization liquid chromatography mass spectrometryFAOFood and Agriculture Organization of the United NationsFARRPFood Allergy Research and Resource ProgramFASTAFast Alignment Search Tool - AllFSANZFood Standards Australia New Zealandfwfresh weightGMgenetically modifiedIgEImmunoglobulin EILSIInternational Life Sciences InstitutekDakilo DaltonLC/MSliquid chromatography mass spectrometryLOQlimit of quantitationLSMLeast squares meanMALDI-TOFmatrix-assisted laser desorption/ionization – time of flightMARMatrix attachment regionMetmethionineMS/MSTandem mass spectrometryMWMolecular weightNDFneutral detergent fibreOECDOrganisation for Economic Co-operation and DevelopmentOGTROffice of the Gene Technology RegulatorORFopen reading framePATPhosphinothricin acetyltransferasePCRpolymerase chain reactionPEPphosphoenolpyruvateSASStatistical analysis SoftwareSDS-PAGEsodium dodecyl sulfate polyacrylamide gel electrophoresisSGFsimulated gastric fluid Titumour inducingU.S.United States of AmericaUSDAUnited States Department of AgricultureUTRuntranslated regionIntroductionA genetically modified (GM) soybean line DAS-44406-6, hereafter referred to as soybean 44406, has been developed that is tolerant to herbicides of the aryloxyalkanoate family including the phenoxy auxins such as 2,4-dichlorophenoxyacetic acid (2,4-D), and to the herbicides glufosinate ammonium and glyphosate.Tolerance to 2,4-D is achieved through expression of the enzyme aryloxyalkanoatedioxygenase-12 (AAD-12) encoded by the aad-12 gene derived from Delftia acidovorans, a gram-negative soil bacterium. The AAD-12 protein has previously been assessed in soybean by FSANZ ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>FSANZ</Author><Year>2011</Year><RecNum>1292</RecNum><IDText>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>1292</Ref_ID><Title_Primary>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</Title_Primary><Authors_Primary>FSANZ</Authors_Primary><Date_Primary>2011</Date_Primary><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Publisher>Report prepared by Food Standards Australia New Zealand</Publisher><Web_URL><u>;(2011a).Tolerance to glufosinate ammonium is achieved through expression of the enzyme phosphinothricin acetyltransferase (PAT) encoded by the pat gene derived from another soil bacterium Streptomyces viridochromogenes. Tolerance to glyphosate is encoded through expression of a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoded by the 2mepsps gene from corn (Zea mays). Both the pat and epsps genes have been widely used for genetic modification of a number of crop species, including soybean.It is anticipated that soybean 44406 will be grown in at least the United States of America (U.S.), Canada, Argentina and Brazil, subject to approval. There is currently no intention to grow the plant line in Australia or New Zealand.History of useHost organismThe host organism is a conventional soybean (Glycine max (L.) Merr.), belonging to the family Leguminosae. The commercial soybean cultivar ‘Maverick’ was used as the parental variety for the genetic modification described in this application, and thus is regarded as the near-isogenic line for the purposes of comparative assessment with soybean 44406. It was developed by the Missouri and Illinois Agricultural Experiment Stations and released in 1996 ADDIN REFMGR.CITE <Refman><Cite><Author>Sleper</Author><Year>1998</Year><RecNum>745</RecNum><IDText>Registration of &apos;Maverick&apos; soybean</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>745</Ref_ID><Title_Primary>Registration of &apos;Maverick&apos; soybean</Title_Primary><Authors_Primary>Sleper,D.A.</Authors_Primary><Authors_Primary>Nickell,C.D.</Authors_Primary><Authors_Primary>Noel,G.R.</Authors_Primary><Authors_Primary>Cary,T.R.</Authors_Primary><Authors_Primary>Thomas,D.J.</Authors_Primary><Authors_Primary>Clark,K.M.</Authors_Primary><Authors_Primary>Rao Arelli,A.P.</Authors_Primary><Date_Primary>1998</Date_Primary><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Start_Page>549</Start_Page><Periodical>Crop Science</Periodical><Volume>38</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Sleper et al_1998_Maverick soybean.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Crop Science</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Sleper et al., 1998).Soybean is grown as a commercial food and feed crop in over 35 countries worldwide ADDIN REFMGR.CITE <Refman><Cite><Author>OECD</Author><Year>2001</Year><RecNum>124</RecNum><IDText>Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>124</Ref_ID><Title_Primary>Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients</Title_Primary><Authors_Primary>OECD</Authors_Primary><Date_Primary>2001</Date_Primary><Keywords>Safety</Keywords><Reprint>In File</Reprint><Volume>ENV/JM/MONO(2001)15</Volume><Pub_Place>Paris</Pub_Place><Publisher>Organisation for Economic Co-operation and Development</Publisher><Title_Series>Series on the Safety of Novel Foods and Feeds No. 2</Title_Series><Web_URL_Link1><u>file://F:\Standards Management\APPLICATIONS\A1001-A1050\A1018 High Oleic GM Soybean\A1018 Application\A1018 Literature References\Consensus_document_on_compositional_considerations_for_new_v.PDF</u></Web_URL_Link1><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\OECD_2001_consensus doc on compos of soybean.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OECD, 2001) and has a long history of safe use for both humans and livestock. The major producers of soybeans, accounting for 90% of world production, are the U.S., Argentina, Brazil and China. Australia, while a net importer of soybean, grows crops in latitudes extending from the tropics (16oS) to temperate regions (37oS), mainly in the eastern states and as a rotational crop ADDIN REFMGR.CITE <Refman><Cite><Author>James</Author><Year>2004</Year><RecNum>214</RecNum><IDText>Integrating crop physiology into the Australian soybean improvement program</IDText><MDL Ref_Type="Conference Proceeding"><Ref_Type>Conference Proceeding</Ref_Type><Ref_ID>214</Ref_ID><Title_Primary>Integrating crop physiology into the Australian soybean improvement program</Title_Primary><Authors_Primary>James,A.T.</Authors_Primary><Authors_Primary>Rose,I.A.</Authors_Primary><Date_Primary>2004</Date_Primary><Keywords>physiology</Keywords><Keywords>Breeding</Keywords><Reprint>In File</Reprint><Title_Series>4th International Crop Science Congress, Brisbane, Australia, September 2004</Title_Series><Web_URL><u>;(James and Rose, 2004). The seed is used mainly to produce meal for use in animal feed ADDIN REFMGR.CITE <Refman><Cite><Author>Grey</Author><Year>2006</Year><RecNum>275</RecNum><IDText>Growing Soybeans in Northern Victoria</IDText><MDL Ref_Type="Pamphlet"><Ref_Type>Pamphlet</Ref_Type><Ref_ID>275</Ref_ID><Title_Primary>Growing Soybeans in Northern Victoria</Title_Primary><Authors_Primary>Grey,D.</Authors_Primary><Date_Primary>2006</Date_Primary><Keywords>Soybeans</Keywords><Reprint>In File</Reprint><Publisher>State of Victoria, Department of Primary Industries</Publisher><Misc_1>AG1138</Misc_1><Web_URL><u>;(Grey, 2006).In many soybean producing countries, GM soybean (mainly with a herbicide tolerant trait) accounts for a significant proportion of the total soybean grown e.g. U.S. (91%); Argentina (99%); Brazil (63%); South Africa (87%); Uruguay (99%) ADDIN REFMGR.CITE <Refman><Cite><Author>Brookes</Author><Year>2009</Year><RecNum>322</RecNum><IDText>GM crops: global socio-economic and environmental impacts 1996-2007</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>322</Ref_ID><Title_Primary>GM crops: global socio-economic and environmental impacts 1996-2007</Title_Primary><Authors_Primary>Brookes,G.</Authors_Primary><Authors_Primary>Barfoot,P.</Authors_Primary><Date_Primary>2009</Date_Primary><Reprint>Not in File</Reprint><Publisher>PG Economics Ltd</Publisher><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Brookes &amp; Barfoot _2009_GM crops.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(Brookes and Barfoot, 2009). Australia does not currently grow any commercial GM soybean lines.Soybean food products are derived either from whole or cracked soybeans:Whole soybeans are used to produce soy sprouts, baked soybeans, roasted soybeans and traditional soy foods such as miso, tofu, soy milk and soy sauce.Cracked soybeans have the hull (seed coat) removed and are then rolled into flakes which undergo solvent extraction to remove the oil. Crude oil is further refined to produce cooking oil, shortening and lecithin as well as being incorporated into a variety of edible and technical/industrial products. The flakes are dried and undergo further processing to form products such as meal (for use in livestock, pet and poultry food), protein concentrate and isolate (for use in both edible and technical/industrial products), and textured flour (for edible uses). The hulls are used in mill feed.Unprocessed (raw) soybeans are not suitable for food use, and have only limited feed uses, as they contain toxicants and anti-nutritional factors, such as lectins and trypsin inhibitors ADDIN REFMGR.CITE <Refman><Cite><Author>OECD</Author><Year>2001</Year><RecNum>124</RecNum><IDText>Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>124</Ref_ID><Title_Primary>Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients</Title_Primary><Authors_Primary>OECD</Authors_Primary><Date_Primary>2001</Date_Primary><Keywords>Safety</Keywords><Reprint>In File</Reprint><Volume>ENV/JM/MONO(2001)15</Volume><Pub_Place>Paris</Pub_Place><Publisher>Organisation for Economic Co-operation and Development</Publisher><Title_Series>Series on the Safety of Novel Foods and Feeds No. 2</Title_Series><Web_URL_Link1><u>file://F:\Standards Management\APPLICATIONS\A1001-A1050\A1018 High Oleic GM Soybean\A1018 Application\A1018 Literature References\Consensus_document_on_compositional_considerations_for_new_v.PDF</u></Web_URL_Link1><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\OECD_2001_consensus doc on compos of soybean.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OECD, 2001). Appropriate heat processing inactivates these compounds. Soybean oil constitutes approximately 30% of global consumption of edible fats and oils ADDIN REFMGR.CITE <Refman><Cite><Author>The American Soybean Association</Author><Year>2011</Year><RecNum>221</RecNum><IDText>Soy Stats 2011</IDText><MDL Ref_Type="Pamphlet"><Ref_Type>Pamphlet</Ref_Type><Ref_ID>221</Ref_ID><Title_Primary>Soy Stats 2011</Title_Primary><Authors_Primary>The American Soybean Association</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>In File</Reprint><Web_URL><u>;(The American Soybean Association, 2011), and is currently the second largest source of vegetable oil worldwide ADDIN REFMGR.CITE <Refman><Cite><Author>USDA</Author><Year>2009</Year><RecNum>744</RecNum><IDText>Oilseeds: World markets and trade</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>744</Ref_ID><Title_Primary>Oilseeds: World markets and trade</Title_Primary><Authors_Primary>USDA</Authors_Primary><Date_Primary>2009</Date_Primary><Reprint>Not in File</Reprint><Publisher>Foreign Agricultural Service, United States Department of Agriculture</Publisher><Title_Series>Circular Series FOP1-09</Title_Series><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\USDA_2009_oilseed stats.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(USDA, 2009). Oil, in one form or another, accounts for the major food use of soybean ADDIN REFMGR.CITE <Refman><Cite><Author>Shurtleff</Author><Year>2007</Year><RecNum>1000</RecNum><IDText>History of soybean crushing: Soy oil and soybean meal.</IDText><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>1000</Ref_ID><Title_Primary>History of soybean crushing: Soy oil and soybean meal.</Title_Primary><Authors_Primary>Shurtleff,W.</Authors_Primary><Authors_Primary>Aoyagi,A.</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>soybean</Keywords><Keywords>Soybean Oil</Keywords><Keywords>Soybeans</Keywords><Reprint>Not in File</Reprint><Title_Secondary>History of soybeans and soyfoods: 1100 B.C. to the 1980s</Title_Secondary><Pub_Place>Lafayette, California</Pub_Place><Publisher>SoyInfo Center, available online at ;(Shurtleff and Aoyagi, 2007) and is incorporated in salad and cooking oil, bakery shortening, and frying fat as well as processed products such as margarine.Another possible food product that can be derived from the soybean plant is bee pollen. This substance is produced by bees during foraging and is taken back to the hive to be fed to larvae and young adult bees ADDIN REFMGR.CITE <Refman><Cite><Author>Krell</Author><Year>1996</Year><RecNum>534</RecNum><IDText>Value-Added Products from BeeKeeping</IDText><MDL Ref_Type="Book, Whole"><Ref_Type>Book, Whole</Ref_Type><Ref_ID>534</Ref_ID><Title_Primary>Value-Added Products from BeeKeeping</Title_Primary><Authors_Primary>Krell,R.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>bee pollen</Keywords><Reprint>In File</Reprint><Publisher>Chapter 3: Pollen, FAO Agricultural Services Bulletin No. 124, Food and Agriculture Organization of the United Nations, available online at <u>;(Krell, 1996). It comprises pollen grains that are pelleted by the bee in the corbiculae (‘pollen baskets’) located on the posterior pair of legs. Beekeepers can collect the pellets by placing a screen at the entrance to a hive; as the bees pass through the screen, the pellets are dislodged and fall into a collection tray. The pellets are frozen or dried for storage and are then packaged for sale as bee pollen, which is generally consumed as the raw product without any further processing. It is highly unlikely that this product would be imported to Australia or New Zealand as domestic supply would satisfy market requirements.Donor organismsDelftia acidovoransThe aad-12 gene was sourced from the bacterial species Delftia acidovorans strain MC1, a strain isolated from herbicide-contaminated building rubble ADDIN REFMGR.CITE <Refman><Cite><Author>Müller</Author><Year>1999</Year><RecNum>750</RecNum><IDText>Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>750</Ref_ID><Title_Primary>Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA</Title_Primary><Authors_Primary>M&#xFC;ller,R.H.</Authors_Primary><Authors_Primary>Jorks,S.</Authors_Primary><Authors_Primary>Kleinsteuber,S.</Authors_Primary><Authors_Primary>Babel,W.</Authors_Primary><Date_Primary>1999/12</Date_Primary><Keywords>2,4-Dichlorophenoxyacetic Acid</Keywords><Keywords>2-Methyl-4-chlorophenoxyacetic Acid</Keywords><Keywords>analogs &amp; derivatives</Keywords><Keywords>analysis</Keywords><Keywords>Base Composition</Keywords><Keywords>Biodegradation,Environmental</Keywords><Keywords>Chlorophenols</Keywords><Keywords>classification</Keywords><Keywords>Delftia acidovorans</Keywords><Keywords>Dna</Keywords><Keywords>DNA,Bacterial</Keywords><Keywords>Environmental Microbiology</Keywords><Keywords>Genes</Keywords><Keywords>genetics</Keywords><Keywords>Herbicides</Keywords><Keywords>Hydrogen-Ion Concentration</Keywords><Keywords>isolation &amp; purification</Keywords><Keywords>metabolism</Keywords><Keywords>microbiology</Keywords><Keywords>Phylogeny</Keywords><Keywords>Rna</Keywords><Keywords>RNA,Ribosomal,16S</Keywords><Keywords>Soil Microbiology</Keywords><Reprint>Not in File</Reprint><Start_Page>241</Start_Page><End_Page>246</End_Page><Periodical>Microbiological Research</Periodical><Volume>154</Volume><Issue>3</Issue><Address>UFZ Centre for Environmental Research, Dept. of Environmental Microbiology, Leipzig, Germany. rmueller@umb.ufz.de</Address><Web_URL>PM:10652787</Web_URL><ZZ_JournalFull><f name="System">Microbiological Research</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Müller et al., 1999). This bacterium is a member of the Pseudomonads, a ubiquitous group of environmental gram negative bacteria. It was originally classified in the genus Pseudomonas, then renamed in the genus Comamonas ADDIN REFMGR.CITE <Refman><Cite><Author>Tamaoka</Author><Year>1987</Year><RecNum>746</RecNum><IDText>Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>746</Ref_ID><Title_Primary>Reclassification of <i>Pseudomonas acidovorans</i> den Dooren de Jong 1926 and <i>Pseudomonas testosteroni</i> Marcus and Talalay 1956 as <i>Comamonas acidovorans</i> comb. nov. and <i>Comamonas testosteroni</i> comb. nov., with an emended description of the genus <i>Comamonas</i></Title_Primary><Authors_Primary>Tamaoka,J.</Authors_Primary><Authors_Primary>Ha,D.-M.</Authors_Primary><Authors_Primary>Komagata,K.</Authors_Primary><Date_Primary>1987</Date_Primary><Keywords>Dna</Keywords><Reprint>In File</Reprint><Start_Page>52</Start_Page><End_Page>59</End_Page><Periodical>International Journal of Systematic Bacteriology</Periodical><Volume>37</Volume><Issue>1</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Tamaoka et al_1987_classif of P. acidovorans.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">International Journal of Systematic Bacteriology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Tamaoka et al., 1987) and finally renamed again to Delftia ADDIN REFMGR.CITE <Refman><Cite><Author>Wen</Author><Year>1999</Year><RecNum>747</RecNum><IDText>Phylogenetic relationships among members of the Comamonadaceae, and the description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen.nov., comb. nov.</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>747</Ref_ID><Title_Primary>Phylogenetic relationships among members of the <i>Comamonadaceae</i>, and the description of <i>Delftia acidovorans</i> (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen.nov., comb. nov.</Title_Primary><Authors_Primary>Wen,A.</Authors_Primary><Authors_Primary>Fegan,M.</Authors_Primary><Authors_Primary>Hayward,C.</Authors_Primary><Authors_Primary>Chakraborty,S.</Authors_Primary><Authors_Primary>Sly,L.I.</Authors_Primary><Date_Primary>1999</Date_Primary><Keywords>Genes</Keywords><Keywords>analysis</Keywords><Reprint>In File</Reprint><Start_Page>567</Start_Page><End_Page>576</End_Page><Periodical>International Journal of Systematic Bacteriology</Periodical><Volume>49</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Wen et al_1999_delftia acidovorans.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">International Journal of Systematic Bacteriology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Wen et al., 1999). Delftia spp. are aggressive colonisers of the rhizosphere of various crop plants and have a broad spectrum of antagonistic activity against plant pathogens PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkVsLUJhbm5hPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48

UmVjTnVtPjc0OTwvUmVjTnVtPjxJRFRleHQ+QW50aWZ1bmdhbCBhY3Rpdml0eSBvZiBDb21hbW9u

YXMgYWNpZG92b3JhbnMgaXNvbGF0ZWQgZnJvbSB3YXRlciBwb25kIGluIHNvdXRoIEpvcmRhbjwv

SURUZXh0PjxQcmVmaXg+c2VlIGUuZy4gPC9QcmVmaXg+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+

PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NzQ5PC9SZWZfSUQ+PFRpdGxlX1By

aW1hcnk+QW50aWZ1bmdhbCBhY3Rpdml0eSBvZiA8aT5Db21hbW9uYXMgYWNpZG92b3JhbnM8L2k+

IGlzb2xhdGVkIGZyb20gd2F0ZXIgcG9uZCBpbiBzb3V0aCBKb3JkYW48L1RpdGxlX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5FbC1CYW5uYSxOLk0uPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJp

bWFyeT4yMDA3PC9EYXRlX1ByaW1hcnk+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRf

UGFnZT4yMjE2PC9TdGFydF9QYWdlPjxFbmRfUGFnZT4yMjE5PC9FbmRfUGFnZT48UGVyaW9kaWNh

bD5BZnJpY2FuIEpvdXJuYWwgb2YgQmlvdGVjaG5vbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjY8

L1ZvbHVtZT48SXNzdWU+MTk8L0lzc3VlPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cuYWNhZGVtaWNq

b3VybmFscy5vcmcvQUpCL1BERi9wZGYyMDA3LzRPY3QvRWwtQmFubmEucGRmPC91PjwvV2ViX1VS

TD48V2ViX1VSTF9MaW5rMz48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0gQ2hlbWljYWwg

U2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcRWwtQmFubmEuXzIw

MDdfRGVsZnRpYSBhY2lkb3ZvcmFucy5wZGY8L3U+PC9XZWJfVVJMX0xpbmszPjxaWl9Kb3VybmFs

RnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkFmcmljYW4gSm91cm5hbCBvZiBCaW90ZWNobm9sb2d5PC9m

PjwvWlpfSm91cm5hbEZ1bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48

L0NpdGU+PENpdGU+PEF1dGhvcj5IYW48L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxSZWNOdW0+

NzUyPC9SZWNOdW0+PElEVGV4dD5DaGFyYWN0ZXJpemF0aW9uIG9mIGEgbm92ZWwgcGxhbnQgZ3Jv

d3RoLXByb21vdGluZyBiYWN0ZXJpYSBzdHJhaW4gRGVsZnRpYSB0c3VydWhhdGVuc2lzIEhSNCBi

b3RoIGFzIGEgZGlhem90cm9waCBhbmQgYSBwb3RlbnRpYWwgYmlvY29udHJvbCBhZ2VudCBhZ2Fp

bnN0IHZhcmlvdXMgcGxhbnQgcGF0aG9nZW5zPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5h

bCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NzUyPC9SZWZfSUQ+PFRpdGxl

X1ByaW1hcnk+Q2hhcmFjdGVyaXphdGlvbiBvZiBhIG5vdmVsIHBsYW50IGdyb3d0aC1wcm9tb3Rp

bmcgYmFjdGVyaWEgc3RyYWluIDxpPkRlbGZ0aWEgdHN1cnVoYXRlbnNpczwvaT4gSFI0IGJvdGgg

YXMgYSBkaWF6b3Ryb3BoIGFuZCBhIHBvdGVudGlhbCBiaW9jb250cm9sIGFnZW50IGFnYWluc3Qg

dmFyaW91cyBwbGFudCBwYXRob2dlbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5I

YW4sSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlN1bixMLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RG9uZyxYLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+Q2FpLFouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TdW4sWC48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllhbmcsSC48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PldhbmcsWS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PlNvbmcsVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDU8L0RhdGVfUHJp

bWFyeT48S2V5d29yZHM+QmFjdGVyaWE8L0tleXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJp

bnQ+PFN0YXJ0X1BhZ2U+NjY8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjc2PC9FbmRfUGFnZT48UGVy

aW9kaWNhbD5TeXN0ZW1hdGljIGFuZCBBcHBsaWVkIE1pY3JvYmlvbG9neTwvUGVyaW9kaWNhbD48

Vm9sdW1lPjI4PC9Wb2x1bWU+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNz

bWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVu

Y2VzXEhhbiBldCBhbF8yMDA1X0RlbGZ0aWEgc3BwLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpa

X0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+U3lzdGVtYXRpYyBhbmQgQXBwbGllZCBNaWNy

b2Jpb2xvZ3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9y

bUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkVsLUJhbm5hPC9BdXRob3I+PFllYXI+MjAw

NzwvWWVhcj48UmVjTnVtPjc0OTwvUmVjTnVtPjxJRFRleHQ+QW50aWZ1bmdhbCBhY3Rpdml0eSBv

ZiBDb21hbW9uYXMgYWNpZG92b3JhbnMgaXNvbGF0ZWQgZnJvbSB3YXRlciBwb25kIGluIHNvdXRo

IEpvcmRhbjwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFs

PC9SZWZfVHlwZT48UmVmX0lEPjc0OTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkFudGlmdW5nYWwg

YWN0aXZpdHkgb2YgPGk+Q29tYW1vbmFzIGFjaWRvdm9yYW5zPC9pPiBpc29sYXRlZCBmcm9tIHdh

dGVyIHBvbmQgaW4gc291dGggSm9yZGFuPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

RWwtQmFubmEsTi5NLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwNzwvRGF0ZV9Q

cmltYXJ5PjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MjIxNjwvU3RhcnRf

UGFnZT48RW5kX1BhZ2U+MjIxOTwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+QWZyaWNhbiBKb3VybmFs

IG9mIEJpb3RlY2hub2xvZ3k8L1BlcmlvZGljYWw+PFZvbHVtZT42PC9Wb2x1bWU+PElzc3VlPjE5

PC9Jc3N1ZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LmFjYWRlbWljam91cm5hbHMub3JnL0FKQi9Q

REYvcGRmMjAwNy80T2N0L0VsLUJhbm5hLnBkZjwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazM+

PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFy

ZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEVsLUJhbm5hLl8yMDA3X0RlbGZ0aWEgYWNpZG92

b3JhbnMucGRmPC91PjwvV2ViX1VSTF9MaW5rMz48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lz

dGVtIj5BZnJpY2FuIEpvdXJuYWwgb2YgQmlvdGVjaG5vbG9neTwvZj48L1paX0pvdXJuYWxGdWxs

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkVsLUJhbm5hPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48

UmVjTnVtPjc0OTwvUmVjTnVtPjxJRFRleHQ+QW50aWZ1bmdhbCBhY3Rpdml0eSBvZiBDb21hbW9u

YXMgYWNpZG92b3JhbnMgaXNvbGF0ZWQgZnJvbSB3YXRlciBwb25kIGluIHNvdXRoIEpvcmRhbjwv

SURUZXh0PjxQcmVmaXg+c2VlIGUuZy4gPC9QcmVmaXg+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+

PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NzQ5PC9SZWZfSUQ+PFRpdGxlX1By

aW1hcnk+QW50aWZ1bmdhbCBhY3Rpdml0eSBvZiA8aT5Db21hbW9uYXMgYWNpZG92b3JhbnM8L2k+

IGlzb2xhdGVkIGZyb20gd2F0ZXIgcG9uZCBpbiBzb3V0aCBKb3JkYW48L1RpdGxlX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5FbC1CYW5uYSxOLk0uPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJp

bWFyeT4yMDA3PC9EYXRlX1ByaW1hcnk+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRf

UGFnZT4yMjE2PC9TdGFydF9QYWdlPjxFbmRfUGFnZT4yMjE5PC9FbmRfUGFnZT48UGVyaW9kaWNh

bD5BZnJpY2FuIEpvdXJuYWwgb2YgQmlvdGVjaG5vbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjY8

L1ZvbHVtZT48SXNzdWU+MTk8L0lzc3VlPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cuYWNhZGVtaWNq

b3VybmFscy5vcmcvQUpCL1BERi9wZGYyMDA3LzRPY3QvRWwtQmFubmEucGRmPC91PjwvV2ViX1VS

TD48V2ViX1VSTF9MaW5rMz48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0gQ2hlbWljYWwg

U2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcRWwtQmFubmEuXzIw

MDdfRGVsZnRpYSBhY2lkb3ZvcmFucy5wZGY8L3U+PC9XZWJfVVJMX0xpbmszPjxaWl9Kb3VybmFs

RnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkFmcmljYW4gSm91cm5hbCBvZiBCaW90ZWNobm9sb2d5PC9m

PjwvWlpfSm91cm5hbEZ1bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48

L0NpdGU+PENpdGU+PEF1dGhvcj5IYW48L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxSZWNOdW0+

NzUyPC9SZWNOdW0+PElEVGV4dD5DaGFyYWN0ZXJpemF0aW9uIG9mIGEgbm92ZWwgcGxhbnQgZ3Jv

d3RoLXByb21vdGluZyBiYWN0ZXJpYSBzdHJhaW4gRGVsZnRpYSB0c3VydWhhdGVuc2lzIEhSNCBi

b3RoIGFzIGEgZGlhem90cm9waCBhbmQgYSBwb3RlbnRpYWwgYmlvY29udHJvbCBhZ2VudCBhZ2Fp

bnN0IHZhcmlvdXMgcGxhbnQgcGF0aG9nZW5zPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5h

bCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NzUyPC9SZWZfSUQ+PFRpdGxl

X1ByaW1hcnk+Q2hhcmFjdGVyaXphdGlvbiBvZiBhIG5vdmVsIHBsYW50IGdyb3d0aC1wcm9tb3Rp

bmcgYmFjdGVyaWEgc3RyYWluIDxpPkRlbGZ0aWEgdHN1cnVoYXRlbnNpczwvaT4gSFI0IGJvdGgg

YXMgYSBkaWF6b3Ryb3BoIGFuZCBhIHBvdGVudGlhbCBiaW9jb250cm9sIGFnZW50IGFnYWluc3Qg

dmFyaW91cyBwbGFudCBwYXRob2dlbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5I

YW4sSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlN1bixMLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RG9uZyxYLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+Q2FpLFouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TdW4sWC48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllhbmcsSC48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PldhbmcsWS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PlNvbmcsVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDU8L0RhdGVfUHJp

bWFyeT48S2V5d29yZHM+QmFjdGVyaWE8L0tleXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJp

bnQ+PFN0YXJ0X1BhZ2U+NjY8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjc2PC9FbmRfUGFnZT48UGVy

aW9kaWNhbD5TeXN0ZW1hdGljIGFuZCBBcHBsaWVkIE1pY3JvYmlvbG9neTwvUGVyaW9kaWNhbD48

Vm9sdW1lPjI4PC9Wb2x1bWU+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNz

bWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVu

Y2VzXEhhbiBldCBhbF8yMDA1X0RlbGZ0aWEgc3BwLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpa

X0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+U3lzdGVtYXRpYyBhbmQgQXBwbGllZCBNaWNy

b2Jpb2xvZ3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9y

bUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkVsLUJhbm5hPC9BdXRob3I+PFllYXI+MjAw

NzwvWWVhcj48UmVjTnVtPjc0OTwvUmVjTnVtPjxJRFRleHQ+QW50aWZ1bmdhbCBhY3Rpdml0eSBv

ZiBDb21hbW9uYXMgYWNpZG92b3JhbnMgaXNvbGF0ZWQgZnJvbSB3YXRlciBwb25kIGluIHNvdXRo

IEpvcmRhbjwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFs

PC9SZWZfVHlwZT48UmVmX0lEPjc0OTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkFudGlmdW5nYWwg

YWN0aXZpdHkgb2YgPGk+Q29tYW1vbmFzIGFjaWRvdm9yYW5zPC9pPiBpc29sYXRlZCBmcm9tIHdh

dGVyIHBvbmQgaW4gc291dGggSm9yZGFuPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

RWwtQmFubmEsTi5NLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwNzwvRGF0ZV9Q

cmltYXJ5PjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MjIxNjwvU3RhcnRf

UGFnZT48RW5kX1BhZ2U+MjIxOTwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+QWZyaWNhbiBKb3VybmFs

IG9mIEJpb3RlY2hub2xvZ3k8L1BlcmlvZGljYWw+PFZvbHVtZT42PC9Wb2x1bWU+PElzc3VlPjE5

PC9Jc3N1ZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LmFjYWRlbWljam91cm5hbHMub3JnL0FKQi9Q

REYvcGRmMjAwNy80T2N0L0VsLUJhbm5hLnBkZjwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazM+

PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFy

ZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEVsLUJhbm5hLl8yMDA3X0RlbGZ0aWEgYWNpZG92

b3JhbnMucGRmPC91PjwvV2ViX1VSTF9MaW5rMz48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lz

dGVtIj5BZnJpY2FuIEpvdXJuYWwgb2YgQmlvdGVjaG5vbG9neTwvZj48L1paX0pvdXJuYWxGdWxs

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA (Han et al., 2005; see e.g. El-Banna, 2007). They have also been found to possess a variety of biodegradation mechanisms that could be exploited in the development of systems for the removal of chemicals that may be released into the environment PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlVyYXRhPC9BdXRob3I+PFllYXI+MjAwNDwvWWVhcj48UmVj

TnVtPjc0ODwvUmVjTnVtPjxJRFRleHQ+R2VuZXMgaW52b2x2ZWQgaW4gYW5pbGluZSBkZWdyYWRh

dGlvbiBieSBEZWxmdGlhIGFjaWRvdm9yYW5zIFN0cmFpbiA3TiBhbmQgaXRzIGRpc3RyaWJ1dGlv

biBpbiB0aGUgbmF0dXJhbCBlbnZpcm9ubWVudDwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJu

YWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc0ODwvUmVmX0lEPjxUaXRs

ZV9QcmltYXJ5PkdlbmVzIGludm9sdmVkIGluIGFuaWxpbmUgZGVncmFkYXRpb24gYnkgPGk+RGVs

ZnRpYSBhY2lkb3ZvcmFuczwvaT4gU3RyYWluIDdOIGFuZCBpdHMgZGlzdHJpYnV0aW9uIGluIHRo

ZSBuYXR1cmFsIGVudmlyb25tZW50PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VXJh

dGEsTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlVjaGlkYSxFLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Tm9qaXJpLEguPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5PbW9yaSxULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

T2JvLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NaXlhdXJhLE4uPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5PdWNoaXlhbWEsTi48L0F1dGhvcnNfUHJpbWFy

eT48RGF0ZV9QcmltYXJ5PjIwMDQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QmFjdGVyaWE8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5HZW5lczwvS2V5d29yZHM+PEtleXdvcmRzPk9wZW4gUmVhZGluZyBG

cmFtZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5BbWlubyBBY2lkIFNlcXVlbmNlPC9LZXl3b3Jkcz48

S2V5d29yZHM+R2x1dGFtaW5lPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxT

dGFydF9QYWdlPjI0NTc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjI0NjU8L0VuZF9QYWdlPjxQZXJp

b2RpY2FsPkJpb3NjaWVuY2UsIEJpb3RlY2hub2xvZ3kgYW5kIEJpb2NoZW1pc3RyeTwvUGVyaW9k

aWNhbD48Vm9sdW1lPjY4PC9Wb2x1bWU+PElzc3VlPjEyPC9Jc3N1ZT48V2ViX1VSTD48dT5odHRw

Oi8vd3d3LmpzdGFnZS5qc3QuZ28uanAvYXJ0aWNsZS9iYmIvNjgvMTIvMjQ1Ny9fcGRmPC91Pjwv

V2ViX1VSTD48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5CaW9zY2llbmNlLCBCaW90

ZWNobm9sb2d5IGFuZCBCaW9jaGVtaXN0cnk8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zv

cm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk3DvGxsZXI8

L0F1dGhvcj48WWVhcj4xOTk5PC9ZZWFyPjxSZWNOdW0+NzUwPC9SZWNOdW0+PElEVGV4dD5Db21h

bW9uYXMgYWNpZG92b3JhbnMgc3RyYWluIE1DMTogYSBuZXcgaXNvbGF0ZSBjYXBhYmxlIG9mIGRl

Z3JhZGluZyB0aGUgY2hpcmFsIGhlcmJpY2lkZXMgZGljaGxvcnByb3AgYW5kIG1lY29wcm9wIGFu

ZCB0aGUgaGVyYmljaWRlcyAyLDQtRCBhbmQgTUNQQTwvSURUZXh0PjxNREwgUmVmX1R5cGU9Ikpv

dXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc1MDwvUmVmX0lEPjxU

aXRsZV9QcmltYXJ5PkNvbWFtb25hcyBhY2lkb3ZvcmFucyBzdHJhaW4gTUMxOiBhIG5ldyBpc29s

YXRlIGNhcGFibGUgb2YgZGVncmFkaW5nIHRoZSBjaGlyYWwgaGVyYmljaWRlcyBkaWNobG9ycHJv

cCBhbmQgbWVjb3Byb3AgYW5kIHRoZSBoZXJiaWNpZGVzIDIsNC1EIGFuZCBNQ1BBPC9UaXRsZV9Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TSYjeEZDO2xsZXIsUi5ILjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+Sm9ya3MsUy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PktsZWluc3RldWJlcixTLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFi

ZWwsVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjE5OTkvMTI8L0RhdGVfUHJpbWFy

eT48S2V5d29yZHM+Miw0LURpY2hsb3JvcGhlbm94eWFjZXRpYyBBY2lkPC9LZXl3b3Jkcz48S2V5

d29yZHM+Mi1NZXRoeWwtNC1jaGxvcm9waGVub3h5YWNldGljIEFjaWQ8L0tleXdvcmRzPjxLZXl3

b3Jkcz5hbmFsb2dzICZhbXA7IGRlcml2YXRpdmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+YW5hbHlz

aXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5CYXNlIENvbXBvc2l0aW9uPC9LZXl3b3Jkcz48S2V5d29y

ZHM+QmlvZGVncmFkYXRpb24sRW52aXJvbm1lbnRhbDwvS2V5d29yZHM+PEtleXdvcmRzPkNobG9y

b3BoZW5vbHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5jbGFzc2lmaWNhdGlvbjwvS2V5d29yZHM+PEtl

eXdvcmRzPkRlbGZ0aWEgYWNpZG92b3JhbnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5EbmE8L0tleXdv

cmRzPjxLZXl3b3Jkcz5ETkEsQmFjdGVyaWFsPC9LZXl3b3Jkcz48S2V5d29yZHM+RW52aXJvbm1l

bnRhbCBNaWNyb2Jpb2xvZ3k8L0tleXdvcmRzPjxLZXl3b3Jkcz5HZW5lczwvS2V5d29yZHM+PEtl

eXdvcmRzPmdlbmV0aWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+SGVyYmljaWRlczwvS2V5d29yZHM+

PEtleXdvcmRzPkh5ZHJvZ2VuLUlvbiBDb25jZW50cmF0aW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+

aXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwvS2V5d29yZHM+PEtleXdvcmRzPm1ldGFib2xp

c208L0tleXdvcmRzPjxLZXl3b3Jkcz5taWNyb2Jpb2xvZ3k8L0tleXdvcmRzPjxLZXl3b3Jkcz5Q

aHlsb2dlbnk8L0tleXdvcmRzPjxLZXl3b3Jkcz5SbmE8L0tleXdvcmRzPjxLZXl3b3Jkcz5STkEs

Umlib3NvbWFsLDE2UzwvS2V5d29yZHM+PEtleXdvcmRzPlNvaWwgTWljcm9iaW9sb2d5PC9LZXl3

b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT4yNDE8L1N0YXJ0

X1BhZ2U+PEVuZF9QYWdlPjI0NjwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+TWljcm9iaW9sb2dpY2Fs

IFJlc2VhcmNoPC9QZXJpb2RpY2FsPjxWb2x1bWU+MTU0PC9Wb2x1bWU+PElzc3VlPjM8L0lzc3Vl

PjxBZGRyZXNzPlVGWiBDZW50cmUgZm9yIEVudmlyb25tZW50YWwgUmVzZWFyY2gsIERlcHQuIG9m

IEVudmlyb25tZW50YWwgTWljcm9iaW9sb2d5LCBMZWlwemlnLCBHZXJtYW55LiBybXVlbGxlckB1

bWIudWZ6LmRlPC9BZGRyZXNzPjxXZWJfVVJMPlBNOjEwNjUyNzg3PC9XZWJfVVJMPjxaWl9Kb3Vy

bmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPk1pY3JvYmlvbG9naWNhbCBSZXNlYXJjaDwvZj48L1pa

X0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRl

PjxDaXRlPjxBdXRob3I+UGF0ZWw8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxSZWNOdW0+NzUx

PC9SZWNOdW0+PElEVGV4dD5CaW9kZWdyYWRhdGlvbiBvZiBkaW1ldGh5bHRlcmVwaHRoYWxhdGUg

YnkgQ29tYW1vbmFzIGFjaWRvdm9yYW5zIEQtNDwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJu

YWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc1MTwvUmVmX0lEPjxUaXRs

ZV9QcmltYXJ5PkJpb2RlZ3JhZGF0aW9uIG9mIGRpbWV0aHlsdGVyZXBodGhhbGF0ZSBieSA8aT5D

b21hbW9uYXMgYWNpZG92b3JhbnM8L2k+IEQtNDwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PlBhdGVsLEQuUy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlc2FpLEEu

Si48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlc2FpLEouRC48L0F1dGhvcnNf

UHJpbWFyeT48RGF0ZV9QcmltYXJ5PjE5OTgvMzwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5CaW9k

ZWdyYWRhdGlvbixFbnZpcm9ubWVudGFsPC9LZXl3b3Jkcz48S2V5d29yZHM+QmlvdGVjaG5vbG9n

eTwvS2V5d29yZHM+PEtleXdvcmRzPkdyYW0tTmVnYXRpdmUgQWVyb2JpYyBSb2RzIGFuZCBDb2Nj

aTwvS2V5d29yZHM+PEtleXdvcmRzPktpbmV0aWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+bWV0YWJv

bGlzbTwvS2V5d29yZHM+PEtleXdvcmRzPm1pY3JvYmlvbG9neTwvS2V5d29yZHM+PEtleXdvcmRz

PlBodGhhbGljIEFjaWRzPC9LZXl3b3Jkcz48S2V5d29yZHM+U29pbDwvS2V5d29yZHM+PEtleXdv

cmRzPlNvaWwgUG9sbHV0YW50czwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJp

bnQ+PFN0YXJ0X1BhZ2U+MzIxPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4zMjQ8L0VuZF9QYWdlPjxQ

ZXJpb2RpY2FsPkluZGlhbiBKb3VybmFsIG9mIEV4cGVyaW1lbnRhbCBCaW9sb2d5PC9QZXJpb2Rp

Y2FsPjxWb2x1bWU+MzY8L1ZvbHVtZT48SXNzdWU+MzwvSXNzdWU+PEFkZHJlc3M+RGVwYXJ0bWVu

dCBvZiBNaWNyb2Jpb2xvZ3kgYW5kIEJpb3RlY2hub2xvZ3kgQ2VudHJlLCBGYWN1bHR5IG9mIFNj

aWVuY2UsIE0uIFMuIFVuaXZlcnNpdHkgb2YgQmFyb2RhLCBJbmRpYTwvQWRkcmVzcz48V2ViX1VS

TD5QTTo5NzU0MDY4PC9XZWJfVVJMPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPklu

ZGlhbiBKb3VybmFsIG9mIEV4cGVyaW1lbnRhbCBCaW9sb2d5PC9mPjwvWlpfSm91cm5hbEZ1bGw+

PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PC9SZWZtYW4+AG==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlVyYXRhPC9BdXRob3I+PFllYXI+MjAwNDwvWWVhcj48UmVj

TnVtPjc0ODwvUmVjTnVtPjxJRFRleHQ+R2VuZXMgaW52b2x2ZWQgaW4gYW5pbGluZSBkZWdyYWRh

dGlvbiBieSBEZWxmdGlhIGFjaWRvdm9yYW5zIFN0cmFpbiA3TiBhbmQgaXRzIGRpc3RyaWJ1dGlv

biBpbiB0aGUgbmF0dXJhbCBlbnZpcm9ubWVudDwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJu

YWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc0ODwvUmVmX0lEPjxUaXRs

ZV9QcmltYXJ5PkdlbmVzIGludm9sdmVkIGluIGFuaWxpbmUgZGVncmFkYXRpb24gYnkgPGk+RGVs

ZnRpYSBhY2lkb3ZvcmFuczwvaT4gU3RyYWluIDdOIGFuZCBpdHMgZGlzdHJpYnV0aW9uIGluIHRo

ZSBuYXR1cmFsIGVudmlyb25tZW50PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VXJh

dGEsTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlVjaGlkYSxFLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Tm9qaXJpLEguPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5PbW9yaSxULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

T2JvLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NaXlhdXJhLE4uPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5PdWNoaXlhbWEsTi48L0F1dGhvcnNfUHJpbWFy

eT48RGF0ZV9QcmltYXJ5PjIwMDQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QmFjdGVyaWE8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5HZW5lczwvS2V5d29yZHM+PEtleXdvcmRzPk9wZW4gUmVhZGluZyBG

cmFtZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5BbWlubyBBY2lkIFNlcXVlbmNlPC9LZXl3b3Jkcz48

S2V5d29yZHM+R2x1dGFtaW5lPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxT

dGFydF9QYWdlPjI0NTc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjI0NjU8L0VuZF9QYWdlPjxQZXJp

b2RpY2FsPkJpb3NjaWVuY2UsIEJpb3RlY2hub2xvZ3kgYW5kIEJpb2NoZW1pc3RyeTwvUGVyaW9k

aWNhbD48Vm9sdW1lPjY4PC9Wb2x1bWU+PElzc3VlPjEyPC9Jc3N1ZT48V2ViX1VSTD48dT5odHRw

Oi8vd3d3LmpzdGFnZS5qc3QuZ28uanAvYXJ0aWNsZS9iYmIvNjgvMTIvMjQ1Ny9fcGRmPC91Pjwv

V2ViX1VSTD48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5CaW9zY2llbmNlLCBCaW90

ZWNobm9sb2d5IGFuZCBCaW9jaGVtaXN0cnk8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zv

cm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk3DvGxsZXI8

L0F1dGhvcj48WWVhcj4xOTk5PC9ZZWFyPjxSZWNOdW0+NzUwPC9SZWNOdW0+PElEVGV4dD5Db21h

bW9uYXMgYWNpZG92b3JhbnMgc3RyYWluIE1DMTogYSBuZXcgaXNvbGF0ZSBjYXBhYmxlIG9mIGRl

Z3JhZGluZyB0aGUgY2hpcmFsIGhlcmJpY2lkZXMgZGljaGxvcnByb3AgYW5kIG1lY29wcm9wIGFu

ZCB0aGUgaGVyYmljaWRlcyAyLDQtRCBhbmQgTUNQQTwvSURUZXh0PjxNREwgUmVmX1R5cGU9Ikpv

dXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc1MDwvUmVmX0lEPjxU

aXRsZV9QcmltYXJ5PkNvbWFtb25hcyBhY2lkb3ZvcmFucyBzdHJhaW4gTUMxOiBhIG5ldyBpc29s

YXRlIGNhcGFibGUgb2YgZGVncmFkaW5nIHRoZSBjaGlyYWwgaGVyYmljaWRlcyBkaWNobG9ycHJv

cCBhbmQgbWVjb3Byb3AgYW5kIHRoZSBoZXJiaWNpZGVzIDIsNC1EIGFuZCBNQ1BBPC9UaXRsZV9Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TSYjeEZDO2xsZXIsUi5ILjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+Sm9ya3MsUy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PktsZWluc3RldWJlcixTLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFi

ZWwsVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjE5OTkvMTI8L0RhdGVfUHJpbWFy

eT48S2V5d29yZHM+Miw0LURpY2hsb3JvcGhlbm94eWFjZXRpYyBBY2lkPC9LZXl3b3Jkcz48S2V5

d29yZHM+Mi1NZXRoeWwtNC1jaGxvcm9waGVub3h5YWNldGljIEFjaWQ8L0tleXdvcmRzPjxLZXl3

b3Jkcz5hbmFsb2dzICZhbXA7IGRlcml2YXRpdmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+YW5hbHlz

aXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5CYXNlIENvbXBvc2l0aW9uPC9LZXl3b3Jkcz48S2V5d29y

ZHM+QmlvZGVncmFkYXRpb24sRW52aXJvbm1lbnRhbDwvS2V5d29yZHM+PEtleXdvcmRzPkNobG9y

b3BoZW5vbHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5jbGFzc2lmaWNhdGlvbjwvS2V5d29yZHM+PEtl

eXdvcmRzPkRlbGZ0aWEgYWNpZG92b3JhbnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5EbmE8L0tleXdv

cmRzPjxLZXl3b3Jkcz5ETkEsQmFjdGVyaWFsPC9LZXl3b3Jkcz48S2V5d29yZHM+RW52aXJvbm1l

bnRhbCBNaWNyb2Jpb2xvZ3k8L0tleXdvcmRzPjxLZXl3b3Jkcz5HZW5lczwvS2V5d29yZHM+PEtl

eXdvcmRzPmdlbmV0aWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+SGVyYmljaWRlczwvS2V5d29yZHM+

PEtleXdvcmRzPkh5ZHJvZ2VuLUlvbiBDb25jZW50cmF0aW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+

aXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwvS2V5d29yZHM+PEtleXdvcmRzPm1ldGFib2xp

c208L0tleXdvcmRzPjxLZXl3b3Jkcz5taWNyb2Jpb2xvZ3k8L0tleXdvcmRzPjxLZXl3b3Jkcz5Q

aHlsb2dlbnk8L0tleXdvcmRzPjxLZXl3b3Jkcz5SbmE8L0tleXdvcmRzPjxLZXl3b3Jkcz5STkEs

Umlib3NvbWFsLDE2UzwvS2V5d29yZHM+PEtleXdvcmRzPlNvaWwgTWljcm9iaW9sb2d5PC9LZXl3

b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT4yNDE8L1N0YXJ0

X1BhZ2U+PEVuZF9QYWdlPjI0NjwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+TWljcm9iaW9sb2dpY2Fs

IFJlc2VhcmNoPC9QZXJpb2RpY2FsPjxWb2x1bWU+MTU0PC9Wb2x1bWU+PElzc3VlPjM8L0lzc3Vl

PjxBZGRyZXNzPlVGWiBDZW50cmUgZm9yIEVudmlyb25tZW50YWwgUmVzZWFyY2gsIERlcHQuIG9m

IEVudmlyb25tZW50YWwgTWljcm9iaW9sb2d5LCBMZWlwemlnLCBHZXJtYW55LiBybXVlbGxlckB1

bWIudWZ6LmRlPC9BZGRyZXNzPjxXZWJfVVJMPlBNOjEwNjUyNzg3PC9XZWJfVVJMPjxaWl9Kb3Vy

bmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPk1pY3JvYmlvbG9naWNhbCBSZXNlYXJjaDwvZj48L1pa

X0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRl

PjxDaXRlPjxBdXRob3I+UGF0ZWw8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxSZWNOdW0+NzUx

PC9SZWNOdW0+PElEVGV4dD5CaW9kZWdyYWRhdGlvbiBvZiBkaW1ldGh5bHRlcmVwaHRoYWxhdGUg

YnkgQ29tYW1vbmFzIGFjaWRvdm9yYW5zIEQtNDwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJu

YWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc1MTwvUmVmX0lEPjxUaXRs

ZV9QcmltYXJ5PkJpb2RlZ3JhZGF0aW9uIG9mIGRpbWV0aHlsdGVyZXBodGhhbGF0ZSBieSA8aT5D

b21hbW9uYXMgYWNpZG92b3JhbnM8L2k+IEQtNDwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PlBhdGVsLEQuUy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlc2FpLEEu

Si48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlc2FpLEouRC48L0F1dGhvcnNf

UHJpbWFyeT48RGF0ZV9QcmltYXJ5PjE5OTgvMzwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5CaW9k

ZWdyYWRhdGlvbixFbnZpcm9ubWVudGFsPC9LZXl3b3Jkcz48S2V5d29yZHM+QmlvdGVjaG5vbG9n

eTwvS2V5d29yZHM+PEtleXdvcmRzPkdyYW0tTmVnYXRpdmUgQWVyb2JpYyBSb2RzIGFuZCBDb2Nj

aTwvS2V5d29yZHM+PEtleXdvcmRzPktpbmV0aWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+bWV0YWJv

bGlzbTwvS2V5d29yZHM+PEtleXdvcmRzPm1pY3JvYmlvbG9neTwvS2V5d29yZHM+PEtleXdvcmRz

PlBodGhhbGljIEFjaWRzPC9LZXl3b3Jkcz48S2V5d29yZHM+U29pbDwvS2V5d29yZHM+PEtleXdv

cmRzPlNvaWwgUG9sbHV0YW50czwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJp

bnQ+PFN0YXJ0X1BhZ2U+MzIxPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4zMjQ8L0VuZF9QYWdlPjxQ

ZXJpb2RpY2FsPkluZGlhbiBKb3VybmFsIG9mIEV4cGVyaW1lbnRhbCBCaW9sb2d5PC9QZXJpb2Rp

Y2FsPjxWb2x1bWU+MzY8L1ZvbHVtZT48SXNzdWU+MzwvSXNzdWU+PEFkZHJlc3M+RGVwYXJ0bWVu

dCBvZiBNaWNyb2Jpb2xvZ3kgYW5kIEJpb3RlY2hub2xvZ3kgQ2VudHJlLCBGYWN1bHR5IG9mIFNj

aWVuY2UsIE0uIFMuIFVuaXZlcnNpdHkgb2YgQmFyb2RhLCBJbmRpYTwvQWRkcmVzcz48V2ViX1VS

TD5QTTo5NzU0MDY4PC9XZWJfVVJMPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPklu

ZGlhbiBKb3VybmFsIG9mIEV4cGVyaW1lbnRhbCBCaW9sb2d5PC9mPjwvWlpfSm91cm5hbEZ1bGw+

PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PC9SZWZtYW4+AG==

ADDIN EN.CITE.DATA (Patel et al., 1998; Müller et al., 1999; Urata et al., 2004). On rare occasions, Delftia spp. have been implicated in human infections ADDIN REFMGR.CITE <Refman><Cite><Author>Chun</Author><Year>2009</Year><RecNum>753</RecNum><IDText>Delftia acidovorans from the drainage in an immunocompetent patient with empyema</IDText><Prefix>see e.g. </Prefix><Suffix> and references therein</Suffix><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>753</Ref_ID><Title_Primary>Delftia acidovorans from the drainage in an immunocompetent patient with empyema</Title_Primary><Authors_Primary>Chun,J.</Authors_Primary><Authors_Primary>Lee,J.</Authors_Primary><Authors_Primary>Bae,J.</Authors_Primary><Authors_Primary>Kim,M.</Authors_Primary><Authors_Primary>Lee,J.-G.</Authors_Primary><Authors_Primary>Shin,S.-Y.</Authors_Primary><Authors_Primary>Kim,Y.R.</Authors_Primary><Authors_Primary>Lee,K.-H.</Authors_Primary><Date_Primary>2009</Date_Primary><Keywords>Delftia acidovorans</Keywords><Keywords>Soil</Keywords><Keywords>Lung</Keywords><Keywords>Rna</Keywords><Keywords>analysis</Keywords><Reprint>In File</Reprint><Start_Page>239</Start_Page><End_Page>243</End_Page><Periodical>Tuberculosis and Respiratory Diseases</Periodical><Volume>67</Volume><Issue>3</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Chun et al_2009_delftia acidovorans.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Tuberculosis and Respiratory Diseases</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(see e.g. Chun et al., 2009 and references therein).D. acidovorans is one of several microorganisms that has been proposed as a bioconverter for use in the food industry to transform ferulic acid into vanillin and related flavour metabolites ADDIN REFMGR.CITE <Refman><Cite><Author>Labuda</Author><Year>1992</Year><RecNum>754</RecNum><IDText>Bioconversion process for the production of vanillin</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>754</Ref_ID><Title_Primary>Bioconversion process for the production of vanillin</Title_Primary><Authors_Primary>Labuda,I.M.</Authors_Primary><Authors_Primary>Goers,S.K.</Authors_Primary><Authors_Primary>Keon,K.A.</Authors_Primary><Date_Primary>1992</Date_Primary><Reprint>Not in File</Reprint><Issue>US Patent 5,128,253</Issue><Web_URL><u>;(Labuda et al., 1992). However, commercial application has not been realised PFJlZm1hbj48Q2l0ZT48QXV0aG9yPllvb248L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxSZWNO

dW0+NzU1PC9SZWNOdW0+PElEVGV4dD5Qcm9kdWN0aW9uIG9mIHZhbmlsbGluIGZyb20gZmVydWxp

YyBhY2lkIHVzaW5nIHJlY29tYmluYW50IHN0cmFpbnMgb2YgRXNjaGVyaWNoaWEgY29saTwvSURU

ZXh0PjxQcmVmaXg+c2VlIGUuZy4gPC9QcmVmaXg+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJl

Zl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NzU1PC9SZWZfSUQ+PFRpdGxlX1ByaW1h

cnk+UHJvZHVjdGlvbiBvZiB2YW5pbGxpbiBmcm9tIGZlcnVsaWMgYWNpZCB1c2luZyByZWNvbWJp

bmFudCBzdHJhaW5zIG9mIDxpPkVzY2hlcmljaGlhIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+WW9vbixTLi1ILjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+TGksQy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkxlZSxZLi1NLjwvQXV0

aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGVlLFMuLUguPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5LaW0sUy4tSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkNob2ksTS4tUy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNlbyxXLi1U

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WWFuZyxKLi1LLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltLEouLVkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5LaW0sUy4tVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDU8

L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RXNjaGVyaWNoaWEgY29saTwvS2V5d29yZHM+PEtleXdv

cmRzPkZvb2QgSW5kdXN0cnk8L0tleXdvcmRzPjxLZXl3b3Jkcz5CYWN0ZXJpYTwvS2V5d29yZHM+

PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFy

dF9QYWdlPjM3ODwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+Mzg0PC9FbmRfUGFnZT48UGVyaW9kaWNh

bD5CaW90ZWNobm9sb2d5IGFuZCBCaW9wcm9jZXNzIEVuZ2luZWVyaW5nPC9QZXJpb2RpY2FsPjxW

b2x1bWU+MTA8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnNwcmluZ2VybGluay5jb20v

Y29udGVudC84bDJrODEyMDg3Mmc0MzMyL2Z1bGx0ZXh0LnBkZjwvdT48L1dlYl9VUkw+PFdlYl9V

UkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxH

TU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFlvb24gZXQgYWxfMjAwNV92YW5p

bGxpbiBiaW9wcm9jZXNzaW5nLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxs

PjxmIG5hbWU9IlN5c3RlbSI+QmlvdGVjaG5vbG9neSBhbmQgQmlvcHJvY2VzcyBFbmdpbmVlcmlu

ZzwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9N

REw+PC9DaXRlPjxDaXRlPjxBdXRob3I+WW9vbjwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJl

Y051bT43NTU8L1JlY051bT48SURUZXh0PlByb2R1Y3Rpb24gb2YgdmFuaWxsaW4gZnJvbSBmZXJ1

bGljIGFjaWQgdXNpbmcgcmVjb21iaW5hbnQgc3RyYWlucyBvZiBFc2NoZXJpY2hpYSBjb2xpPC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+NzU1PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+UHJvZHVjdGlvbiBvZiB2YW5pbGxp

biBmcm9tIGZlcnVsaWMgYWNpZCB1c2luZyByZWNvbWJpbmFudCBzdHJhaW5zIG9mIDxpPkVzY2hl

cmljaGlhIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WW9vbixTLi1I

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGksQy48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PkxlZSxZLi1NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+TGVlLFMuLUguPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaW0sUy4t

SC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNob2ksTS4tUy48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNlbyxXLi1ULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+WWFuZyxKLi1LLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

S2ltLEouLVkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaW0sUy4tVy48L0F1

dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDU8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+

RXNjaGVyaWNoaWEgY29saTwvS2V5d29yZHM+PEtleXdvcmRzPkZvb2QgSW5kdXN0cnk8L0tleXdv

cmRzPjxLZXl3b3Jkcz5CYWN0ZXJpYTwvS2V5d29yZHM+PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jk

cz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjM3ODwvU3RhcnRfUGFnZT48

RW5kX1BhZ2U+Mzg0PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5CaW90ZWNobm9sb2d5IGFuZCBCaW9w

cm9jZXNzIEVuZ2luZWVyaW5nPC9QZXJpb2RpY2FsPjxWb2x1bWU+MTA8L1ZvbHVtZT48V2ViX1VS

TD48dT5odHRwOi8vd3d3LnNwcmluZ2VybGluay5jb20vY29udGVudC84bDJrODEyMDg3Mmc0MzMy

L2Z1bGx0ZXh0LnBkZjwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJp

c2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xH

TSBSZWZlcmVuY2VzXFlvb24gZXQgYWxfMjAwNV92YW5pbGxpbiBiaW9wcm9jZXNzaW5nLnBkZjwv

dT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+QmlvdGVj

aG5vbG9neSBhbmQgQmlvcHJvY2VzcyBFbmdpbmVlcmluZzwvZj48L1paX0pvdXJuYWxGdWxsPjxa

Wl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPllvb248L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxSZWNO

dW0+NzU1PC9SZWNOdW0+PElEVGV4dD5Qcm9kdWN0aW9uIG9mIHZhbmlsbGluIGZyb20gZmVydWxp

YyBhY2lkIHVzaW5nIHJlY29tYmluYW50IHN0cmFpbnMgb2YgRXNjaGVyaWNoaWEgY29saTwvSURU

ZXh0PjxQcmVmaXg+c2VlIGUuZy4gPC9QcmVmaXg+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJl

Zl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NzU1PC9SZWZfSUQ+PFRpdGxlX1ByaW1h

cnk+UHJvZHVjdGlvbiBvZiB2YW5pbGxpbiBmcm9tIGZlcnVsaWMgYWNpZCB1c2luZyByZWNvbWJp

bmFudCBzdHJhaW5zIG9mIDxpPkVzY2hlcmljaGlhIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+WW9vbixTLi1ILjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+TGksQy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkxlZSxZLi1NLjwvQXV0

aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGVlLFMuLUguPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5LaW0sUy4tSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkNob2ksTS4tUy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNlbyxXLi1U

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WWFuZyxKLi1LLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltLEouLVkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5LaW0sUy4tVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDU8

L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RXNjaGVyaWNoaWEgY29saTwvS2V5d29yZHM+PEtleXdv

cmRzPkZvb2QgSW5kdXN0cnk8L0tleXdvcmRzPjxLZXl3b3Jkcz5CYWN0ZXJpYTwvS2V5d29yZHM+

PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFy

dF9QYWdlPjM3ODwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+Mzg0PC9FbmRfUGFnZT48UGVyaW9kaWNh

bD5CaW90ZWNobm9sb2d5IGFuZCBCaW9wcm9jZXNzIEVuZ2luZWVyaW5nPC9QZXJpb2RpY2FsPjxW

b2x1bWU+MTA8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnNwcmluZ2VybGluay5jb20v

Y29udGVudC84bDJrODEyMDg3Mmc0MzMyL2Z1bGx0ZXh0LnBkZjwvdT48L1dlYl9VUkw+PFdlYl9V

UkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxH

TU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFlvb24gZXQgYWxfMjAwNV92YW5p

bGxpbiBiaW9wcm9jZXNzaW5nLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxs

PjxmIG5hbWU9IlN5c3RlbSI+QmlvdGVjaG5vbG9neSBhbmQgQmlvcHJvY2VzcyBFbmdpbmVlcmlu

ZzwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9N

REw+PC9DaXRlPjxDaXRlPjxBdXRob3I+WW9vbjwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJl

Y051bT43NTU8L1JlY051bT48SURUZXh0PlByb2R1Y3Rpb24gb2YgdmFuaWxsaW4gZnJvbSBmZXJ1

bGljIGFjaWQgdXNpbmcgcmVjb21iaW5hbnQgc3RyYWlucyBvZiBFc2NoZXJpY2hpYSBjb2xpPC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+NzU1PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+UHJvZHVjdGlvbiBvZiB2YW5pbGxp

biBmcm9tIGZlcnVsaWMgYWNpZCB1c2luZyByZWNvbWJpbmFudCBzdHJhaW5zIG9mIDxpPkVzY2hl

cmljaGlhIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WW9vbixTLi1I

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGksQy48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PkxlZSxZLi1NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+TGVlLFMuLUguPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaW0sUy4t

SC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNob2ksTS4tUy48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNlbyxXLi1ULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+WWFuZyxKLi1LLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

S2ltLEouLVkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaW0sUy4tVy48L0F1

dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDU8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+

RXNjaGVyaWNoaWEgY29saTwvS2V5d29yZHM+PEtleXdvcmRzPkZvb2QgSW5kdXN0cnk8L0tleXdv

cmRzPjxLZXl3b3Jkcz5CYWN0ZXJpYTwvS2V5d29yZHM+PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jk

cz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjM3ODwvU3RhcnRfUGFnZT48

RW5kX1BhZ2U+Mzg0PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5CaW90ZWNobm9sb2d5IGFuZCBCaW9w

cm9jZXNzIEVuZ2luZWVyaW5nPC9QZXJpb2RpY2FsPjxWb2x1bWU+MTA8L1ZvbHVtZT48V2ViX1VS

TD48dT5odHRwOi8vd3d3LnNwcmluZ2VybGluay5jb20vY29udGVudC84bDJrODEyMDg3Mmc0MzMy

L2Z1bGx0ZXh0LnBkZjwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJp

c2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xH

TSBSZWZlcmVuY2VzXFlvb24gZXQgYWxfMjAwNV92YW5pbGxpbiBiaW9wcm9jZXNzaW5nLnBkZjwv

dT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+QmlvdGVj

aG5vbG9neSBhbmQgQmlvcHJvY2VzcyBFbmdpbmVlcmluZzwvZj48L1paX0pvdXJuYWxGdWxsPjxa

Wl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN EN.CITE.DATA (see e.g. Yoon et al., 2005). The polyhydroxyalkanoates produced by D. acidovorans and other bacteria have been proposed for use as biomaterial for use in tissue engineering and other medical applications ADDIN REFMGR.CITE <Refman><Cite><Author>Sudesh</Author><Year>2004</Year><RecNum>756</RecNum><IDText>Microbial polyhydroxyalkanoates (PHAs): an emerging biomaterial for tissue engineering and therapeutic applications</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>756</Ref_ID><Title_Primary>Microbial polyhydroxyalkanoates (PHAs): an emerging biomaterial for tissue engineering and therapeutic applications</Title_Primary><Authors_Primary>Sudesh,K.</Authors_Primary><Date_Primary>2004</Date_Primary><Keywords>Bacteria</Keywords><Reprint>Not in File</Reprint><Start_Page>55</Start_Page><End_Page>56</End_Page><Periodical>Medical Journal of Malaysia</Periodical><Volume>59 Suppl B</Volume><ZZ_JournalFull><f name="System">Medical Journal of Malaysia</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Sudesh, 2004).Streptomyces viridochromogenesThe source of the pat gene is the bacterial species Streptomyces viridochromogenes, strain Tü494 ADDIN REFMGR.CITE <Refman><Cite><Author>Wohlleben</Author><Year>1988</Year><RecNum>351</RecNum><IDText>Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>351</Ref_ID><Title_Primary>Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from <i>Streptomyces viridochromogenes</i> T&#xFC;494 and its expression in <i>Nicotiana tabacum</i></Title_Primary><Authors_Primary>Wohlleben,W.</Authors_Primary><Authors_Primary>Arnold,W.</Authors_Primary><Authors_Primary>Broer,I.</Authors_Primary><Authors_Primary>Hillemann,D.</Authors_Primary><Authors_Primary>Strauch,E.</Authors_Primary><Authors_Primary>Punier,A.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Amino Acids</Keywords><Keywords>Codon</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Genes</Keywords><Keywords>Plants</Keywords><Reprint>In File</Reprint><Start_Page>25</Start_Page><End_Page>37</End_Page><Periodical>Gene</Periodical><Volume>70</Volume><ZZ_JournalStdAbbrev><f name="System">Gene</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Wohlleben et al., 1988). The Streptomycetae bacteria were first described in the early 1900s. These organisms are generally soil-borne, although they may also be isolated from water. They are not typically pathogenic to animals including humans, and few species have been shown to be phytopathogenic ADDIN REFMGR.CITE <Refman><Cite><Author>Bradbury</Author><Year>1986</Year><RecNum>346</RecNum><IDText>Guide to Plant Pathogenic Bacteria</IDText><MDL Ref_Type="Book, Whole"><Ref_Type>Book, Whole</Ref_Type><Ref_ID>346</Ref_ID><Title_Primary>Guide to Plant Pathogenic Bacteria</Title_Primary><Authors_Primary>Bradbury,J.F.</Authors_Primary><Date_Primary>1986</Date_Primary><Keywords>Bacteria</Keywords><Reprint>Not in File</Reprint><Start_Page>190</Start_Page><End_Page>197</End_Page><Pub_Place>Aberystwyth</Pub_Place><Publisher>Cambridge News Ltd</Publisher><ZZ_WorkformID>2</ZZ_WorkformID></MDL></Cite><Cite><Author>Kützner</Author><Year>1981</Year><RecNum>347</RecNum><IDText>The Family Streptomycetaceae</IDText><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>347</Ref_ID><Title_Primary>The Family Streptomycetaceae</Title_Primary><Authors_Primary>K&#xFC;tzner,H.J.</Authors_Primary><Date_Primary>1981</Date_Primary><Keywords>Bacteria</Keywords><Reprint>Not in File</Reprint><Start_Page>2028</Start_Page><End_Page>2090</End_Page><Title_Secondary>The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria</Title_Secondary><Authors_Secondary>Starr,M.P.</Authors_Secondary><Authors_Secondary>Stolp,H.</Authors_Secondary><Authors_Secondary>Tr&#xFC;per,H.G.</Authors_Secondary><Authors_Secondary>Ballows,A.</Authors_Secondary><Authors_Secondary>Schlegel,H.G.</Authors_Secondary><Pub_Place>Berlin</Pub_Place><Publisher>Springer Verlag</Publisher><ZZ_WorkformID>3</ZZ_WorkformID></MDL></Cite></Refman>(Kützner, 1981; Bradbury, 1986). Although these organisms are not used in the food industry, the pat gene from S. viridochromogenes, has been used to confer glufosinate ammonium-tolerance in a range of food producing crops. The bar gene from the closely related S. hygroscopicus produces a protein that is structurally and functionally equivalent to the protein encoded by the pat gene ADDIN REFMGR.CITE <Refman><Cite><Author>Wehrmann</Author><Year>1996</Year><RecNum>317</RecNum><IDText>The similarities of bar and pat gene products make them equally applicable for plant engineers</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>317</Ref_ID><Title_Primary>The similarities of <i>bar</i> and <i>pat</i> gene products make them equally applicable for plant engineers</Title_Primary><Authors_Primary>Wehrmann,A.</Authors_Primary><Authors_Primary>Van Vliet,A.</Authors_Primary><Authors_Primary>Opsomer,C.</Authors_Primary><Authors_Primary>Botterman,J.</Authors_Primary><Authors_Primary>Schulz,A.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Soybeans</Keywords><Keywords>Genes</Keywords><Keywords>Genetic Engineering</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Proteins</Keywords><Keywords>Plants</Keywords><Keywords>Molecular Weight</Keywords><Keywords>Digestion</Keywords><Keywords>Human</Keywords><Reprint>In File</Reprint><Start_Page>1274</Start_Page><End_Page>1278</End_Page><Periodical>Nature Biotechnology</Periodical><Volume>14</Volume><ZZ_JournalFull><f name="System">Nature Biotechnology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Wehrmann et al., 1996) and has similarly been used widely for genetic modification of crop species. Zea maysCorn, Zea mays, is the source of the epsps gene that was modified to produce the 2mepsps gene in soybean 44406 and is also the source of some of the regulatory gene elements. Corn is the world’s third leading cereal crop, behind wheat and rice, and is grown in over 25 countries ADDIN REFMGR.CITE <Refman><Cite><Author>OECD</Author><Year>2002</Year><RecNum>79</RecNum><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>79</Ref_ID><Title_Primary>Consensus document on compositional considerations for new varieties of maize (<i>Zea mays</i>): Key food and feed nutrients, antinutrients and secondard plant metabolites</Title_Primary><Authors_Primary>OECD</Authors_Primary><Date_Primary>2002</Date_Primary><Keywords>Zea mays</Keywords><Reprint>Not in File</Reprint><Pub_Place>Paris</Pub_Place><Publisher>Organisation for Economic Co-operation and Development</Publisher><Title_Series>Series on the safety of novel foods and feeds, No. 6</Title_Series><Web_URL><u>(2002)25&amp;doclanguage=en</u></Web_URL><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OECD, 2002) and across a wide range of geographical conditions ADDIN REFMGR.CITE <Refman><Cite><Author>OGTR</Author><Year>2008</Year><RecNum>803</RecNum><IDText>The biology of Zea mays L. ssp mays (maize or corn)</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>803</Ref_ID><Title_Primary>The biology of <i>Zea mays</i> L. ssp <i>mays</i> (maize or corn)</Title_Primary><Authors_Primary>OGTR</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>Zea mays</Keywords><Reprint>Not in File</Reprint><Publisher>Prepared by the Office of the Gene Technology Regulator, Australia</Publisher><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\OGTR_2008_corn biology.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OGTR, 2008). Also known as maize, corn has been grown in Mexico and Central America for some 8000 years and in Europe for 500 years and can thus be said to have a long history of safe use as a human food. The majority of corn that is grown however is destined for use as animal feed. In 2009, worldwide production of corn was over 818 million tonnes, with the United States and China being the major producers (~333 and 164 million tonnes, respectively) ADDIN REFMGR.CITE <Refman><Cite><Author>FAOSTAT</Author><Year>2011</Year><RecNum>549</RecNum><IDText>Online database of the Food and Agriculture Organization of the United Nations</IDText><MDL Ref_Type="Online Source"><Ref_Type>Online Source</Ref_Type><Ref_ID>549</Ref_ID><Title_Primary>Online database of the Food and Agriculture Organization of the United Nations</Title_Primary><Authors_Primary>FAOSTAT</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Web_URL><u>;(FAOSTAT 2011).The epsps gene was isolated from a cell suspension of ‘Black Mexican’ sweet corn. ‘Black Mexican’ is an heirloom cultivar of New England (USA) sweet corn originally introduced to the food supply in 1864 ().Sweet corn is categorized as a vegetable and is mainly used for human consumption directly without processing. Other organismsGenetic elements from several other organisms have been used in the genetic modification of soybean 44406 (refer to Table 1). These non-coding sequences are used to drive, enhance or terminate expression of the two novel genes. None of the sources of these genetic elements is associated with toxic or allergenic responses in humans. The genetic elements derived from plant pathogens are not pathogenic in themselves and do not cause pathogenic symptoms in soybean 44406.Molecular characterisationMolecular characterisation is necessary to provide an understanding of the genetic material introduced into the host genome and helps to frame the subsequent parts of the safety assessment. The molecular characterisation addresses three main aspects:the transformation method together with a detailed description of the DNA sequences introduced to the host genome a characterisation of the inserted DNA including any rearrangements that may have occurred as a consequence of the transformation the genetic stability of the inserted DNA and any accompanying expressed traits. Studies submitted:Guttikonda, S.K. (2011). Cloning and characterization of the DNA sequence for the insert and its flanking border regions of DAS-44406-6 soybean. Study ID# 102117, Dow AgroSciences (unpublished).Guttikonda, S. (2012). Bioinformatics evaluation of the putative reading frames across the whole T-DNA insert and junctions in DAS-44406-6 soybean for potential protein allergenicity and toxicity. Study ID# 120481, Dow AgroSciences (unpublished).Han, L. Hoffman, T. (2011). Event sorting and selection process for the development of DAS-44406-6. Study ID# 110325, Dow AgroSciences (unpublished).Mo, J. (2011). Molecular characterization of DAS-44406-6 soybean within a single segregating generation. Study ID# 102097, Dow AgroSciences (unpublished).Poorbaugh, J. (2011). Molecular characterization of DAS-44406-6 soybean. Study ID# 101947, Dow AgroSciences (unpublished).Zhuang, M.; Pareddy, D. (2011). Transformation information for plasmid pDAB8264. Study ID# 101880, Dow AgroSciences (unpublished).Method used in the genetic modificationSoybean cultivar ‘Maverick’ was transformed via Agrobacterium-mediated transformation ADDIN REFMGR.CITE <Refman><Cite><Author>Deblaere</Author><Year>1987</Year><RecNum>411</RecNum><IDText>Vectors for cloning in plant cells</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>411</Ref_ID><Title_Primary>Vectors for cloning in plant cells</Title_Primary><Authors_Primary>Deblaere,R.</Authors_Primary><Authors_Primary>Reynaerts,A.</Authors_Primary><Authors_Primary>H&#xF6;fte,H.</Authors_Primary><Authors_Primary>Hernalsteens,J.-P.</Authors_Primary><Authors_Primary>Leemans,J.</Authors_Primary><Authors_Primary>van Montagu,M.</Authors_Primary><Date_Primary>1987</Date_Primary><Reprint>In File</Reprint><Start_Page>277</Start_Page><End_Page>292</End_Page><Periodical>Methods in Enzymology</Periodical><Volume>153</Volume><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Deblaere et al 1987_cloning vectors.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Methods in Enzymology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Deblaere et al., 1987) following the method of Zeng et al. ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zeng</Author><Year>2004</Year><RecNum>757</RecNum><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>757</Ref_ID><Title_Primary>Refined glufosinate selection in <i>Agrobacterium</i>-mediated transformation of soybean [<i>Glycine max</i> (L.) Merrill]</Title_Primary><Authors_Primary>Zeng,P.</Authors_Primary><Authors_Primary>Vadnais,D.A.</Authors_Primary><Authors_Primary>Zhang,Z.</Authors_Primary><Authors_Primary>Polacco,J.C.</Authors_Primary><Date_Primary>2004</Date_Primary><Keywords>agrobacterium</Keywords><Keywords>analysis</Keywords><Keywords>Glycine</Keywords><Keywords>methods</Keywords><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Start_Page>478</Start_Page><End_Page>482</End_Page><Periodical>Plant Cell Reports</Periodical><Volume>22</Volume><ZZ_JournalFull><f name="System">Plant Cell Reports</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(2004). The genes of interest were inserted into plasmid pDAB8264 (refer to Figure 1) between DNA sequences known as the Left and Right Borders (Border A and Border B in Figure 1). These border sequences were isolated from the tumour-inducing (Ti ) plasmid of Agrobacterium tumefaciens and normally delimit the DNA sequence (TDNA) transferred into the plant ADDIN REFMGR.CITE <Refman><Cite><Author>Zambryski</Author><Year>1988</Year><RecNum>337</RecNum><IDText>Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>337</Ref_ID><Title_Primary>Basic processes underlying <i>Agrobacterium</i>-mediated DNA transfer to plant cells</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Dna</Keywords><Reprint>Not in File</Reprint><Start_Page>1</Start_Page><End_Page>30</End_Page><Periodical>Annual Review of Genetics</Periodical><Volume>22</Volume><ZZ_JournalFull><f name="System">Annual Review of Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Zambryski, 1988).Basically, the cotyledonary nodes of in vitro germinated seedlings were co-cultivated with the Agrobacterium tumefaciens strain EHA101 ADDIN REFMGR.CITE <Refman><Cite><Author>Hood</Author><Year>1986</Year><RecNum>759</RecNum><IDText>The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>759</Ref_ID><Title_Primary>The hypervirulence of <i>Agrobacterium tumefaciens</i> A281 is encoded in a region of pTiBo542 outside of T-DNA</Title_Primary><Authors_Primary>Hood,E.E.</Authors_Primary><Authors_Primary>Helmer,G.L.</Authors_Primary><Authors_Primary>Fraley,R.T.</Authors_Primary><Authors_Primary>Chilton,M.-D.</Authors_Primary><Date_Primary>1986</Date_Primary><Keywords>soybean</Keywords><Keywords>agrobacterium</Keywords><Keywords>Plants</Keywords><Keywords>Plasmids</Keywords><Keywords>Dna</Keywords><Keywords>Tobacco</Keywords><Reprint>In File</Reprint><Start_Page>1291</Start_Page><End_Page>1301</End_Page><Periodical>Journal of Bacteriology</Periodical><Volume>168</Volume><Issue>3</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Hood et al_1986_Agro. tumefaciens A281.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Journal of Bacteriology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Hood et al., 1986) containing the binary vector pDAB8264. Following shoot development, putative transformed shoots were selected on a medium containing glufosinate ammonium as the selection agent. The selected shoots were then rooted and transferred to soil, and the terminal leaflets of the resulting plantlets were leaf painted with glufosinate ammonium as a further screen. Selected plantlets (T0) were sampled for molecular analysis that included verification of the absence of vector backbone and presence of the pat, aad-12 and 2mepsps genes.Figure SEQ Figure \* ARABIC 1: Vector map of plasmid PDAB8264Description of the introduced genesA diagram of the T-DNA insert in plasmid pDAB8264 is given in REF _Ref265070258 \h \* MERGEFORMAT Error! Reference source not found.. Information on the genetic elements in the T-DNA insert is summarised in REF _Ref265059500 \h \* MERGEFORMAT Error! Reference source not found..Figure SEQ Figure \* ARABIC 2: Representation of the genetic elements in the T-DNA insert of plasmid pDAB8264Table SEQ Table \* ARABIC 1: Description of the genetic elements contained in the T-DNA of pDAB8264Genetic elementbp location on pDAB8264Size (bp)SourceOrient.Description & FunctionReferencesBorder B1 - 2424Agrobacterium tumefaciensBorder repeatRequired for the transfer of the T-DNA into the plant cellZambryski ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zambryski</Author><Year>1988</Year><RecNum>337</RecNum><IDText>Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>337</Ref_ID><Title_Primary>Basic processes underlying <i>Agrobacterium</i>-mediated DNA transfer to plant cells</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Dna</Keywords><Reprint>Not in File</Reprint><Start_Page>1</Start_Page><End_Page>30</End_Page><Periodical>Annual Review of Genetics</Periodical><Volume>22</Volume><ZZ_JournalFull><f name="System">Annual Review of Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1988)Intervening sequence25 - 160136Agrobacterium tumefaciensSequence from Ti plasmid pTi15955Barker et al. ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Barker</Author><Year>1983</Year><RecNum>138</RecNum><IDText>Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>138</Ref_ID><Title_Primary>Nucleotide sequence of the T-DNA region from the <i>Agrobacterium tumefaciens</i> octopine Ti plasmid pTi15955</Title_Primary><Authors_Primary>Barker,R.F.</Authors_Primary><Authors_Primary>Idler,K.B.</Authors_Primary><Authors_Primary>Thompson D.V.</Authors_Primary><Authors_Primary>Kemp,J.D.</Authors_Primary><Date_Primary>1983</Date_Primary><Keywords>agrobacterium</Keywords><Reprint>Not in File</Reprint><Start_Page>335</Start_Page><End_Page>350</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>2</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1983)RB7-MAR161 - 13261166Nicotiana tabacumClockwiseMatrix attachment regionFacilitates expression of the aad-12 geneHall et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Hall</Author><Year>1991</Year><RecNum>561</RecNum><IDText>Nuclear scaffolds and scaffold-attachment regions in higher plants</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>561</Ref_ID><Title_Primary>Nuclear scaffolds and scaffold-attachment regions in higher plants</Title_Primary><Authors_Primary>Hall,G.,Jr.</Authors_Primary><Authors_Primary>Allen,G.C.</Authors_Primary><Authors_Primary>Loer,D.S.</Authors_Primary><Authors_Primary>Thompson,W.F.</Authors_Primary><Authors_Primary>Spiker,S.</Authors_Primary><Date_Primary>1991/10/15</Date_Primary><Keywords>Digestion</Keywords><Keywords>Dna</Keywords><Keywords>Genes</Keywords><Keywords>genetics</Keywords><Keywords>Plants</Keywords><Keywords>Tobacco</Keywords><Reprint>In File</Reprint><Start_Page>9320</Start_Page><End_Page>9324</End_Page><Periodical>Proceedings of the National Academy of Sciences</Periodical><Volume>88</Volume><Issue>20</Issue><User_Def_5>PMC52706</User_Def_5><Address>Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA</Address><Web_URL>PM:11607225</Web_URL><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Hall et al_1991_nuclear scaffold attachment.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Proceedings of the National Academy of Sciences</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1991)Intervening sequence1327 - 136539Plasmid pENTR/D-TOPOThe plasmid had been used as a cloning vectorInvitrogen Cat. # A10465Histone H4A7481366 - 2026661Arabidopsis thalianaTranscriptional terminator and polyadenylation site of histone H4A748Chaboute et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Chaboute</Author><Year>1987</Year><RecNum>814</RecNum><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>814</Ref_ID><Title_Primary>Genomic organization and nucleotide sequences of two histone H3 and two histone H4 genes of <i>Arabidopsis thaliana</i></Title_Primary><Authors_Primary>Chaboute,M.-E.</Authors_Primary><Authors_Primary>Chaubet,N.</Authors_Primary><Authors_Primary>Philipps,G.</Authors_Primary><Authors_Primary>Ehling,M.</Authors_Primary><Authors_Primary>Gigot,C.</Authors_Primary><Date_Primary>1987</Date_Primary><Keywords>Genes</Keywords><Keywords>Arabidopsis</Keywords><Keywords>Gene Library</Keywords><Keywords>Proteins</Keywords><Keywords>Amino Acid Sequence</Keywords><Keywords>Wheat</Keywords><Keywords>Alanine</Keywords><Reprint>Not in File</Reprint><Start_Page>179</Start_Page><End_Page>191</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>8</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1987)Intervening sequence2027 - 204923Cloning sequence2mepsps2050 - 33871338Zea maysAnti-clockwiseCoding sequence of the epsps gene with two mutations providing glyphosate toleranceLebrun et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Lebrun</Author><Year>1996</Year><RecNum>808</RecNum><IDText>Chimeric gene for the transformation of plants</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>808</Ref_ID><Title_Primary>Chimeric gene for the transformation of plants</Title_Primary><Authors_Primary>Lebrun,M.</Authors_Primary><Authors_Primary>Leroux,B.</Authors_Primary><Authors_Primary>Sailland,A.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Plants</Keywords><Reprint>In File</Reprint><Issue>US5510471</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Lebrun et al_1996_chloroplast transit peptide.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>( 1996); Lebrun et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Lebrun</Author><Year>1997</Year><RecNum>815</RecNum><IDText>Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>815</Ref_ID><Title_Primary>Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene</Title_Primary><Authors_Primary>Lebrun,M.</Authors_Primary><Authors_Primary>Sailland,A.</Authors_Primary><Authors_Primary>Freyssinet,G.</Authors_Primary><Date_Primary>1997</Date_Primary><Keywords>Plants</Keywords><Keywords>Threonine</Keywords><Keywords>Isoleucine</Keywords><Reprint>Not in File</Reprint><Issue>WO/9704103 A2</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Lebrun et al_1997_2mepsps patent.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>( 1997)TPotp C3388 - 3759372Zea mays& Helianthus annuusAnti-clockwiseOptimised chloroplast transit peptide derivative of the RuBisCo small unit genes from both speciesTargets the 2mEPSPS protein to the plastidsLebrun et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Lebrun</Author><Year>1996</Year><RecNum>808</RecNum><IDText>Chimeric gene for the transformation of plants</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>808</Ref_ID><Title_Primary>Chimeric gene for the transformation of plants</Title_Primary><Authors_Primary>Lebrun,M.</Authors_Primary><Authors_Primary>Leroux,B.</Authors_Primary><Authors_Primary>Sailland,A.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Plants</Keywords><Reprint>In File</Reprint><Issue>US5510471</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Lebrun et al_1996_chloroplast transit peptide.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>( 1996)Intervening sequence3760 - 37634Cloning sequenceHistone H4A7483764 - 51931430Arabidopsis thalianaAnti-clockwisePromoter and 5’ UTRDrives constituitive expression of the 2mepsps geneChaboute et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Chaboute</Author><Year>1987</Year><RecNum>814</RecNum><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>814</Ref_ID><Title_Primary>Genomic organization and nucleotide sequences of two histone H3 and two histone H4 genes of <i>Arabidopsis thaliana</i></Title_Primary><Authors_Primary>Chaboute,M.-E.</Authors_Primary><Authors_Primary>Chaubet,N.</Authors_Primary><Authors_Primary>Philipps,G.</Authors_Primary><Authors_Primary>Ehling,M.</Authors_Primary><Authors_Primary>Gigot,C.</Authors_Primary><Date_Primary>1987</Date_Primary><Keywords>Genes</Keywords><Keywords>Arabidopsis</Keywords><Keywords>Gene Library</Keywords><Keywords>Proteins</Keywords><Keywords>Amino Acid Sequence</Keywords><Keywords>Wheat</Keywords><Keywords>Alanine</Keywords><Reprint>Not in File</Reprint><Start_Page>179</Start_Page><End_Page>191</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>8</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1987)Intervening sequence5194 - 528592Cloning sequenceAtUbi105286 - 66071322Arabidopsis thalianaClockwisePolyubiquiton promoter, 5’UTR and intronDrives constitutive expression of the aad-12 geneNorris et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Norris</Author><Year>1993</Year><RecNum>26</RecNum><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>26</Ref_ID><Title_Primary>The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression</Title_Primary><Authors_Primary>Norris,S.R.</Authors_Primary><Authors_Primary>Meyer,S.E.</Authors_Primary><Authors_Primary>Callis,J.</Authors_Primary><Date_Primary>1993/3</Date_Primary><Keywords>Arabidopsis</Keywords><Keywords>Base Sequence</Keywords><Keywords>Biopolymers</Keywords><Keywords>Dna</Keywords><Keywords>Gene Expression</Keywords><Keywords>Gene Expression Regulation</Keywords><Keywords>genetics</Keywords><Keywords>Glucuronidase</Keywords><Keywords>Introns</Keywords><Keywords>Luciferase</Keywords><Keywords>Molecular Sequence Data</Keywords><Keywords>Multigene Family</Keywords><Keywords>Plant Proteins</Keywords><Keywords>Plants</Keywords><Keywords>Plants,Genetically Modified</Keywords><Keywords>Polyubiquitin</Keywords><Keywords>Promoter Regions (Genetics)</Keywords><Keywords>Recombinant Fusion Proteins</Keywords><Keywords>Support,Non-U.&apos;t</Keywords><Keywords>Support,U.&apos;t,Non-P.H.S.</Keywords><Keywords>Ubiquitins</Keywords><Reprint>Not in File</Reprint><Start_Page>895</Start_Page><End_Page>906</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>21</Volume><Issue>5</Issue><Address>Section of Biochemistry and Biophysics, University of California-Davis 95616</Address><Web_URL>PM:8385509</Web_URL><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1993)Intervening sequence6608 - 66158Cloning sequenceaad-126616 - 7497882Delftia acidovoransClockwiseCoding sequence of the aryloxyalkanoate dioxygenase gene (adapted to plant codon usage)Wright et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Wright</Author><Year>2007</Year><RecNum>568</RecNum><IDText>Novel herbicide resistance genes</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>568</Ref_ID><Title_Primary>Novel herbicide resistance genes</Title_Primary><Authors_Primary>Wright,T.R.</Authors_Primary><Authors_Primary>Lira,J.M.</Authors_Primary><Authors_Primary>Walsh,T.</Authors_Primary><Authors_Primary>Merlo,D.J.</Authors_Primary><Authors_Primary>Jayakumar,P.</Authors_Primary><Authors_Primary>Lin,G.</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>Genes</Keywords><Keywords>Plants</Keywords><Keywords>Herbicides</Keywords><Keywords>methods</Keywords><Reprint>In File</Reprint><Issue>World Patent 2007/053482 A2</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Wright et al_2007_herbicide resist patent.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>( 2007); Wright et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Wright</Author><Year>2010</Year><RecNum>863</RecNum><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>863</Ref_ID><Title_Primary>Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes</Title_Primary><Authors_Primary>Wright,T.R.</Authors_Primary><Authors_Primary>Shan,G.</Authors_Primary><Authors_Primary>Walsh,T.A.</Authors_Primary><Authors_Primary>Lira,J.M.</Authors_Primary><Authors_Primary>Cui,C.</Authors_Primary><Authors_Primary>Song,P.</Authors_Primary><Authors_Primary>Zhuang,M.</Authors_Primary><Authors_Primary>Arnold,N.L.</Authors_Primary><Authors_Primary>Lin,G.</Authors_Primary><Authors_Primary>Yau,K.</Authors_Primary><Authors_Primary>Russell,S.M.</Authors_Primary><Authors_Primary>Cicchillo,R.M.</Authors_Primary><Authors_Primary>Peterson,M.A.</Authors_Primary><Authors_Primary>Simpson,D.M.</Authors_Primary><Authors_Primary>Zhou,N.</Authors_Primary><Authors_Primary>Ponsamuel,J.</Authors_Primary><Authors_Primary>Zhang,Z.</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>Herbicides</Keywords><Keywords>2,4-Dichlorophenoxyacetic Acid</Keywords><Keywords>Enzymes</Keywords><Keywords>maize</Keywords><Keywords>Plants</Keywords><Keywords>Arabidopsis</Keywords><Keywords>soybean</Keywords><Reprint>In File</Reprint><Periodical>Proceedings of the National Academy of Sciences</Periodical><Volume>ePub, doi:101073/pnas.1013154107</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Wright et al_2010_aad-1 and aad-12.pdf</u></Web_URL_Link2><Web_URL_Link3><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Wright et al_2010_supplementary info.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Proceedings of the National Academy of Sciences</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(2010a)Intervening sequence7498 - 7599102Cloning sequenceAtuORF237600 - 8056457Agrobacterium tumefaciensTranscriptional terminator and polyadenylation site of ORF23 from Ti plasmid pTi15955Barker et al. ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Barker</Author><Year>1983</Year><RecNum>138</RecNum><IDText>Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>138</Ref_ID><Title_Primary>Nucleotide sequence of the T-DNA region from the <i>Agrobacterium tumefaciens</i> octopine Ti plasmid pTi15955</Title_Primary><Authors_Primary>Barker,R.F.</Authors_Primary><Authors_Primary>Idler,K.B.</Authors_Primary><Authors_Primary>Thompson D.V.</Authors_Primary><Authors_Primary>Kemp,J.D.</Authors_Primary><Date_Primary>1983</Date_Primary><Keywords>agrobacterium</Keywords><Reprint>Not in File</Reprint><Start_Page>335</Start_Page><End_Page>350</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>2</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1983)Intervening sequence8057 - 8170114The plasmid had been used as a cloning vectorInvitrogen Cat. # A10465CsVMV8171 - 8687517Cassava vein mosaic virusClockwisePromoter and 5’UTRDrives constitutive expression of the pat geneVerdaguer et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Verdaguer</Author><Year>1996</Year><RecNum>132</RecNum><IDText>Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosiac virus (CVMV) promoter</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>132</Ref_ID><Title_Primary>Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosiac virus (CVMV) promoter</Title_Primary><Authors_Primary>Verdaguer,B.</Authors_Primary><Authors_Primary>de Kochko,A.</Authors_Primary><Authors_Primary>Beachy,R.N.</Authors_Primary><Authors_Primary>Fauquet,C.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Tobacco</Keywords><Keywords>Plants</Keywords><Keywords>Dna</Keywords><Keywords>Rna</Keywords><Keywords>Gene Expression</Keywords><Keywords>Protoplasts</Keywords><Keywords>Suspensions</Keywords><Keywords>promoters</Keywords><Reprint>In File</Reprint><Start_Page>1129</Start_Page><End_Page>1139</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>31</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1996)pat8695 - 9246552S. treptomyces virido-chromogenesClockwiseCoding sequence of the phosphinothricin acetyl transferase gene (adapted to plant codon usage)Wohlleben et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Wohlleben</Author><Year>1988</Year><RecNum>351</RecNum><IDText>Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>351</Ref_ID><Title_Primary>Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from <i>Streptomyces viridochromogenes</i> T&#xFC;494 and its expression in <i>Nicotiana tabacum</i></Title_Primary><Authors_Primary>Wohlleben,W.</Authors_Primary><Authors_Primary>Arnold,W.</Authors_Primary><Authors_Primary>Broer,I.</Authors_Primary><Authors_Primary>Hillemann,D.</Authors_Primary><Authors_Primary>Strauch,E.</Authors_Primary><Authors_Primary>Punier,A.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Amino Acids</Keywords><Keywords>Codon</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Genes</Keywords><Keywords>Plants</Keywords><Reprint>In File</Reprint><Start_Page>25</Start_Page><End_Page>37</End_Page><Periodical>Gene</Periodical><Volume>70</Volume><ZZ_JournalStdAbbrev><f name="System">Gene</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1988)Intervening sequence9247 - 9348102Plasmid pCR2.1Cloning sequenceInvitrogen Cat. # K2050-01 cloning kitATuORF19349 - 10052704Agrobacterium tumefaciensTranscriptional terminator and polyadenylation site of ORF1 from Ti plasmid pTi15955Barker et al. ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Barker</Author><Year>1983</Year><RecNum>138</RecNum><IDText>Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>138</Ref_ID><Title_Primary>Nucleotide sequence of the T-DNA region from the <i>Agrobacterium tumefaciens</i> octopine Ti plasmid pTi15955</Title_Primary><Authors_Primary>Barker,R.F.</Authors_Primary><Authors_Primary>Idler,K.B.</Authors_Primary><Authors_Primary>Thompson D.V.</Authors_Primary><Authors_Primary>Kemp,J.D.</Authors_Primary><Date_Primary>1983</Date_Primary><Keywords>agrobacterium</Keywords><Reprint>Not in File</Reprint><Start_Page>335</Start_Page><End_Page>350</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>2</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1983)Intervening sequence10053 -10280228Agrobacterium tumefaciensSequence from Ti plasmid C58Zambryski et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zambryski</Author><Year>1982</Year><RecNum>164</RecNum><IDText>Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>164</Ref_ID><Title_Primary>Tumor induction by <i>Agrobacterium tumefaciens</i>: analysis of the boundaries of T-DNA</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Authors_Primary>Depicker,A.</Authors_Primary><Authors_Primary>Kruger,K.</Authors_Primary><Authors_Primary>Goodman,H.M.</Authors_Primary><Date_Primary>1982</Date_Primary><Keywords>agrobacterium</Keywords><Keywords>analysis</Keywords><Keywords>Base Sequence</Keywords><Keywords>Cell Line</Keywords><Keywords>Cloning,Molecular</Keywords><Keywords>Dna</Keywords><Keywords>DNA,Recombinant</Keywords><Keywords>genetics</Keywords><Keywords>microbiology</Keywords><Keywords>Nucleic Acid Hybridization</Keywords><Keywords>Plant Tumors</Keywords><Keywords>Plants</Keywords><Keywords>Plasmids</Keywords><Keywords>Recombination,Genetic</Keywords><Keywords>Rhizobium</Keywords><Keywords>Tobacco</Keywords><Reprint>In File</Reprint><Start_Page>361</Start_Page><End_Page>370</End_Page><Periodical>Journal of Molecular and Applied Genetics</Periodical><Volume>1</Volume><Issue>4</Issue><Web_URL>PM:7108407</Web_URL><ZZ_JournalFull><f name="System">Journal of Molecular and Applied Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1982); Wood et al PFJlZm1hbj48Q2l0ZSBFeGNsdWRlQXV0aD0iMSI+PEF1dGhvcj5Xb29kPC9BdXRob3I+PFllYXI+

MjAwMTwvWWVhcj48UmVjTnVtPjc1ODwvUmVjTnVtPjxJRFRleHQ+VGhlIGdlbm9tZSBvZiB0aGUg

bmF0dXJhbCBnZW5ldGljIGVuZ2luZWVyIEFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnMgQzU4PC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+NzU4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+VGhlIGdlbm9tZSBvZiB0aGUgbmF0

dXJhbCBnZW5ldGljIGVuZ2luZWVyIDxpPkFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnM8L2k+IEM1

ODwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pldvb2QsRC5XLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+U2V0dWJhbCxKLkMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5LYXVsLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Nb25r

cyxELkUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaXRhamltYSxKLlAuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Pa3VyYSxWLksuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5aaG91LFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5DaGVuLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Xb29kLEcuRS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFsbWVpZGEgSnIsTi5GLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29vLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5DaGVuLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QYXVs

c2VuLEkuVC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVpc2VuLEouQS48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkthcnAsUC5ELjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+Qm92ZWUgU3IsRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkNoYXBtYW4sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNsZW5k

ZW5uaW5nLEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EZWF0aGVyYWdlLEcu

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HaWxsZXQsVy48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PkdyYW50LEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5LdXR5YXZpbixULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGV2

eSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGksTS4tSi48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1jQ2xlbGxhbmQsRS48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBhbG1pZXJpLEEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5SYXltb25kLEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Sb3VzZSxH

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2FlbnBoaW1tYWNoYWssQy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pld1LFouPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Sb21lcm8sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkdvcmRvbixELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhhbmcsUy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllvbyxILjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+VGFvLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5C

aWRkbGUsUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pkp1bmcsTS48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktyZXNwYW4sVy48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBlcnJ5LE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5Hb3Jkb24tS2FtbSxCLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGlhbyxM

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltLFMuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5IZW5kcmljayxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+WmhhbyxaLlkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Eb2xh

bixNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2h1bWxleSxGLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGluZ2V5LFMuVi48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlRvbWIsSi5GLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+R29yZG9uLE0uUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pklzb24sTS5W

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RXN0ZXIsRS5XLjwvQXV0aG9yc19Q

cmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMTwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hZ3JvYmFj

dGVyaXVtPC9LZXl3b3Jkcz48S2V5d29yZHM+UGF0aG9nZW5lc2lzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+UGxhc21pZHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5WaXJ1bGVuY2U8L0tleXdvcmRzPjxSZXBy

aW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjIzMTc8L1N0YXJ0X1BhZ2U+PEVu

ZF9QYWdlPjIzMjM8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPlNjaWVuY2U8L1BlcmlvZGljYWw+PFZv

bHVtZT4yOTQ8L1ZvbHVtZT48SXNzdWU+NTU1MDwvSXNzdWU+PFdlYl9VUkw+aHR0cDovL3d3dy5z

Y2llbmNlbWFnLm9yZy9jZ2kvY29udGVudC9hYnN0cmFjdC8yOTQvNTU1MC8yMzE3PC9XZWJfVVJM

PjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+U2NpZW5jZTwvZj48L1paX0pv

dXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0Np

dGU+PC9SZWZtYW4+AG==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZSBFeGNsdWRlQXV0aD0iMSI+PEF1dGhvcj5Xb29kPC9BdXRob3I+PFllYXI+

MjAwMTwvWWVhcj48UmVjTnVtPjc1ODwvUmVjTnVtPjxJRFRleHQ+VGhlIGdlbm9tZSBvZiB0aGUg

bmF0dXJhbCBnZW5ldGljIGVuZ2luZWVyIEFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnMgQzU4PC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+NzU4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+VGhlIGdlbm9tZSBvZiB0aGUgbmF0

dXJhbCBnZW5ldGljIGVuZ2luZWVyIDxpPkFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnM8L2k+IEM1

ODwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pldvb2QsRC5XLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+U2V0dWJhbCxKLkMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5LYXVsLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Nb25r

cyxELkUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaXRhamltYSxKLlAuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Pa3VyYSxWLksuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5aaG91LFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5DaGVuLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Xb29kLEcuRS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFsbWVpZGEgSnIsTi5GLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29vLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5DaGVuLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QYXVs

c2VuLEkuVC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVpc2VuLEouQS48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkthcnAsUC5ELjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+Qm92ZWUgU3IsRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkNoYXBtYW4sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNsZW5k

ZW5uaW5nLEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EZWF0aGVyYWdlLEcu

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HaWxsZXQsVy48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PkdyYW50LEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5LdXR5YXZpbixULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGV2

eSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGksTS4tSi48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1jQ2xlbGxhbmQsRS48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBhbG1pZXJpLEEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5SYXltb25kLEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Sb3VzZSxH

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2FlbnBoaW1tYWNoYWssQy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pld1LFouPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Sb21lcm8sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkdvcmRvbixELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhhbmcsUy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllvbyxILjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+VGFvLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5C

aWRkbGUsUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pkp1bmcsTS48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktyZXNwYW4sVy48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBlcnJ5LE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5Hb3Jkb24tS2FtbSxCLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGlhbyxM

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltLFMuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5IZW5kcmljayxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+WmhhbyxaLlkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Eb2xh

bixNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2h1bWxleSxGLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGluZ2V5LFMuVi48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlRvbWIsSi5GLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+R29yZG9uLE0uUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pklzb24sTS5W

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RXN0ZXIsRS5XLjwvQXV0aG9yc19Q

cmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMTwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hZ3JvYmFj

dGVyaXVtPC9LZXl3b3Jkcz48S2V5d29yZHM+UGF0aG9nZW5lc2lzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+UGxhc21pZHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5WaXJ1bGVuY2U8L0tleXdvcmRzPjxSZXBy

aW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjIzMTc8L1N0YXJ0X1BhZ2U+PEVu

ZF9QYWdlPjIzMjM8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPlNjaWVuY2U8L1BlcmlvZGljYWw+PFZv

bHVtZT4yOTQ8L1ZvbHVtZT48SXNzdWU+NTU1MDwvSXNzdWU+PFdlYl9VUkw+aHR0cDovL3d3dy5z

Y2llbmNlbWFnLm9yZy9jZ2kvY29udGVudC9hYnN0cmFjdC8yOTQvNTU1MC8yMzE3PC9XZWJfVVJM

PjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+U2NpZW5jZTwvZj48L1paX0pv

dXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0Np

dGU+PC9SZWZtYW4+AG==

ADDIN EN.CITE.DATA (2001)Border A10281-1030424Agrobacterium tumefaciensBorder repeatRequired for the transfer of the T-DNA into the plant cellZambryski ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zambryski</Author><Year>1988</Year><RecNum>337</RecNum><IDText>Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>337</Ref_ID><Title_Primary>Basic processes underlying <i>Agrobacterium</i>-mediated DNA transfer to plant cells</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Dna</Keywords><Reprint>Not in File</Reprint><Start_Page>1</Start_Page><End_Page>30</End_Page><Periodical>Annual Review of Genetics</Periodical><Volume>22</Volume><ZZ_JournalFull><f name="System">Annual Review of Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1988)Intervening sequence10305-1032319Agrobacterium tumefaciensSequence from Ti plasmid C58Zambryski et al ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zambryski</Author><Year>1982</Year><RecNum>164</RecNum><IDText>Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>164</Ref_ID><Title_Primary>Tumor induction by <i>Agrobacterium tumefaciens</i>: analysis of the boundaries of T-DNA</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Authors_Primary>Depicker,A.</Authors_Primary><Authors_Primary>Kruger,K.</Authors_Primary><Authors_Primary>Goodman,H.M.</Authors_Primary><Date_Primary>1982</Date_Primary><Keywords>agrobacterium</Keywords><Keywords>analysis</Keywords><Keywords>Base Sequence</Keywords><Keywords>Cell Line</Keywords><Keywords>Cloning,Molecular</Keywords><Keywords>Dna</Keywords><Keywords>DNA,Recombinant</Keywords><Keywords>genetics</Keywords><Keywords>microbiology</Keywords><Keywords>Nucleic Acid Hybridization</Keywords><Keywords>Plant Tumors</Keywords><Keywords>Plants</Keywords><Keywords>Plasmids</Keywords><Keywords>Recombination,Genetic</Keywords><Keywords>Rhizobium</Keywords><Keywords>Tobacco</Keywords><Reprint>In File</Reprint><Start_Page>361</Start_Page><End_Page>370</End_Page><Periodical>Journal of Molecular and Applied Genetics</Periodical><Volume>1</Volume><Issue>4</Issue><Web_URL>PM:7108407</Web_URL><ZZ_JournalFull><f name="System">Journal of Molecular and Applied Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1982); Wood et al PFJlZm1hbj48Q2l0ZSBFeGNsdWRlQXV0aD0iMSI+PEF1dGhvcj5Xb29kPC9BdXRob3I+PFllYXI+

MjAwMTwvWWVhcj48UmVjTnVtPjc1ODwvUmVjTnVtPjxJRFRleHQ+VGhlIGdlbm9tZSBvZiB0aGUg

bmF0dXJhbCBnZW5ldGljIGVuZ2luZWVyIEFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnMgQzU4PC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+NzU4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+VGhlIGdlbm9tZSBvZiB0aGUgbmF0

dXJhbCBnZW5ldGljIGVuZ2luZWVyIDxpPkFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnM8L2k+IEM1

ODwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pldvb2QsRC5XLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+U2V0dWJhbCxKLkMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5LYXVsLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Nb25r

cyxELkUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaXRhamltYSxKLlAuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Pa3VyYSxWLksuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5aaG91LFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5DaGVuLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Xb29kLEcuRS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFsbWVpZGEgSnIsTi5GLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29vLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5DaGVuLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QYXVs

c2VuLEkuVC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVpc2VuLEouQS48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkthcnAsUC5ELjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+Qm92ZWUgU3IsRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkNoYXBtYW4sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNsZW5k

ZW5uaW5nLEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EZWF0aGVyYWdlLEcu

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HaWxsZXQsVy48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PkdyYW50LEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5LdXR5YXZpbixULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGV2

eSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGksTS4tSi48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1jQ2xlbGxhbmQsRS48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBhbG1pZXJpLEEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5SYXltb25kLEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Sb3VzZSxH

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2FlbnBoaW1tYWNoYWssQy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pld1LFouPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Sb21lcm8sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkdvcmRvbixELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhhbmcsUy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllvbyxILjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+VGFvLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5C

aWRkbGUsUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pkp1bmcsTS48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktyZXNwYW4sVy48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBlcnJ5LE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5Hb3Jkb24tS2FtbSxCLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGlhbyxM

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltLFMuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5IZW5kcmljayxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+WmhhbyxaLlkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Eb2xh

bixNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2h1bWxleSxGLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGluZ2V5LFMuVi48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlRvbWIsSi5GLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+R29yZG9uLE0uUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pklzb24sTS5W

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RXN0ZXIsRS5XLjwvQXV0aG9yc19Q

cmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMTwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hZ3JvYmFj

dGVyaXVtPC9LZXl3b3Jkcz48S2V5d29yZHM+UGF0aG9nZW5lc2lzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+UGxhc21pZHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5WaXJ1bGVuY2U8L0tleXdvcmRzPjxSZXBy

aW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjIzMTc8L1N0YXJ0X1BhZ2U+PEVu

ZF9QYWdlPjIzMjM8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPlNjaWVuY2U8L1BlcmlvZGljYWw+PFZv

bHVtZT4yOTQ8L1ZvbHVtZT48SXNzdWU+NTU1MDwvSXNzdWU+PFdlYl9VUkw+aHR0cDovL3d3dy5z

Y2llbmNlbWFnLm9yZy9jZ2kvY29udGVudC9hYnN0cmFjdC8yOTQvNTU1MC8yMzE3PC9XZWJfVVJM

PjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+U2NpZW5jZTwvZj48L1paX0pv

dXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0Np

dGU+PC9SZWZtYW4+AG==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZSBFeGNsdWRlQXV0aD0iMSI+PEF1dGhvcj5Xb29kPC9BdXRob3I+PFllYXI+

MjAwMTwvWWVhcj48UmVjTnVtPjc1ODwvUmVjTnVtPjxJRFRleHQ+VGhlIGdlbm9tZSBvZiB0aGUg

bmF0dXJhbCBnZW5ldGljIGVuZ2luZWVyIEFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnMgQzU4PC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+NzU4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+VGhlIGdlbm9tZSBvZiB0aGUgbmF0

dXJhbCBnZW5ldGljIGVuZ2luZWVyIDxpPkFncm9iYWN0ZXJpdW0gdHVtZWZhY2llbnM8L2k+IEM1

ODwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pldvb2QsRC5XLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+U2V0dWJhbCxKLkMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5LYXVsLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Nb25r

cyxELkUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5LaXRhamltYSxKLlAuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Pa3VyYSxWLksuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5aaG91LFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5DaGVuLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Xb29kLEcuRS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFsbWVpZGEgSnIsTi5GLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29vLEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5DaGVuLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QYXVs

c2VuLEkuVC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVpc2VuLEouQS48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkthcnAsUC5ELjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+Qm92ZWUgU3IsRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkNoYXBtYW4sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNsZW5k

ZW5uaW5nLEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EZWF0aGVyYWdlLEcu

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HaWxsZXQsVy48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PkdyYW50LEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5LdXR5YXZpbixULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGV2

eSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGksTS4tSi48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1jQ2xlbGxhbmQsRS48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBhbG1pZXJpLEEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5SYXltb25kLEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Sb3VzZSxH

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2FlbnBoaW1tYWNoYWssQy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pld1LFouPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Sb21lcm8sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkdvcmRvbixELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhhbmcsUy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllvbyxILjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+VGFvLFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5C

aWRkbGUsUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pkp1bmcsTS48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktyZXNwYW4sVy48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlBlcnJ5LE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5Hb3Jkb24tS2FtbSxCLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGlhbyxM

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltLFMuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5IZW5kcmljayxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+WmhhbyxaLlkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Eb2xh

bixNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2h1bWxleSxGLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGluZ2V5LFMuVi48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlRvbWIsSi5GLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+R29yZG9uLE0uUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pklzb24sTS5W

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RXN0ZXIsRS5XLjwvQXV0aG9yc19Q

cmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMTwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hZ3JvYmFj

dGVyaXVtPC9LZXl3b3Jkcz48S2V5d29yZHM+UGF0aG9nZW5lc2lzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+UGxhc21pZHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5WaXJ1bGVuY2U8L0tleXdvcmRzPjxSZXBy

aW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjIzMTc8L1N0YXJ0X1BhZ2U+PEVu

ZF9QYWdlPjIzMjM8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPlNjaWVuY2U8L1BlcmlvZGljYWw+PFZv

bHVtZT4yOTQ8L1ZvbHVtZT48SXNzdWU+NTU1MDwvSXNzdWU+PFdlYl9VUkw+aHR0cDovL3d3dy5z

Y2llbmNlbWFnLm9yZy9jZ2kvY29udGVudC9hYnN0cmFjdC8yOTQvNTU1MC8yMzE3PC9XZWJfVVJM

PjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+U2NpZW5jZTwvZj48L1paX0pv

dXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0Np

dGU+PC9SZWZtYW4+AG==

ADDIN EN.CITE.DATA (2001)Border A10324-1034724Agrobacterium tumefaciensBorder repeatRequired for the transfer of the T-DNA into the plant cellZambryski ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zambryski</Author><Year>1988</Year><RecNum>337</RecNum><IDText>Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>337</Ref_ID><Title_Primary>Basic processes underlying <i>Agrobacterium</i>-mediated DNA transfer to plant cells</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Dna</Keywords><Reprint>Not in File</Reprint><Start_Page>1</Start_Page><End_Page>30</End_Page><Periodical>Annual Review of Genetics</Periodical><Volume>22</Volume><ZZ_JournalFull><f name="System">Annual Review of Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1988)Intervening sequence10348-10634287Agrobacterium tumefaciensSequence from Ti plasmid pTi15955Barker et al. ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Barker</Author><Year>1983</Year><RecNum>138</RecNum><IDText>Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>138</Ref_ID><Title_Primary>Nucleotide sequence of the T-DNA region from the <i>Agrobacterium tumefaciens</i> octopine Ti plasmid pTi15955</Title_Primary><Authors_Primary>Barker,R.F.</Authors_Primary><Authors_Primary>Idler,K.B.</Authors_Primary><Authors_Primary>Thompson D.V.</Authors_Primary><Authors_Primary>Kemp,J.D.</Authors_Primary><Date_Primary>1983</Date_Primary><Keywords>agrobacterium</Keywords><Reprint>Not in File</Reprint><Start_Page>335</Start_Page><End_Page>350</End_Page><Periodical>Plant Molecular Biology</Periodical><Volume>2</Volume><ZZ_JournalFull><f name="System">Plant Molecular Biology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1983)Border A10635-1065824Agrobacterium tumefaciensBorder repeatRequired for the transfer of the T-DNA into the plant cellZambryski ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Zambryski</Author><Year>1988</Year><RecNum>337</RecNum><IDText>Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>337</Ref_ID><Title_Primary>Basic processes underlying <i>Agrobacterium</i>-mediated DNA transfer to plant cells</Title_Primary><Authors_Primary>Zambryski,P.</Authors_Primary><Date_Primary>1988</Date_Primary><Keywords>Dna</Keywords><Reprint>Not in File</Reprint><Start_Page>1</Start_Page><End_Page>30</End_Page><Periodical>Annual Review of Genetics</Periodical><Volume>22</Volume><ZZ_JournalFull><f name="System">Annual Review of Genetics</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(1988)2mepsps expression cassetteHomologues of the epsps gene are present in all plants, bacteria and fungi. The protein encoded by the gene is part of the shikamate pathway that is involved in aromatic amino acid synthesis.The sequence of the 2mepsps gene is derived from the wild type epsps gene from corn (Zea mays) with two single nucleotide mutations introduced by site directed mutagenesis. A methionine codon has been added to the N-terminal end of the 2mEPSPS protein sequence in order to restore the cleavage site of the optimized plastid transit peptide. The double mutant produces a 47.5 kDa protein with normal enzyme function and reduced affinity for the herbicide glyphosate. The H4A748 promoter and terminator used to control expression of the 2mepsps gene and are derived from the histone H4 gene of Arabidopsis thaliana. The use of the promoter directs high level constitutive expression, particularly in rapidly growing plant tissues.TPotp C, encodes the optimized transit peptide derived from genes of corn and sunflower and targets the mature protein to the plastids where it is normally located in the cell. aad-12 expression cassette The aad-12 gene of D. acidovorans, also referred to as sdpA PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNjaGxlaW5penQ8L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFy

PjxSZWNOdW0+NzY5PC9SZWNOdW0+PElEVGV4dD5Mb2NhbGl6YXRpb24gYW5kIGNoYXJhY3Rlcml6

YXRpb24gb2YgdHdvIG5vdmVsIGdlbmVzIGVuY29kaW5nIHN0ZXJlb3NwZWNpZmljIGRpb3h5Z2Vu

YXNlcyBjYXRhbHl6aW5nIDIoMiw0LWRpY2hsb3JvcGhlbm94eSkgcHJvcGlvbmF0ZSBjbGVhdmFn

ZSBpbiBEZWxmdGlhIGFjaWRvdm9yYW5zIE1DMTwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJu

YWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc2OTwvUmVmX0lEPjxUaXRs

ZV9QcmltYXJ5PkxvY2FsaXphdGlvbiBhbmQgY2hhcmFjdGVyaXphdGlvbiBvZiB0d28gbm92ZWwg

Z2VuZXMgZW5jb2Rpbmcgc3RlcmVvc3BlY2lmaWMgZGlveHlnZW5hc2VzIGNhdGFseXppbmcgMigy

LDQtZGljaGxvcm9waGVub3h5KSBwcm9waW9uYXRlIGNsZWF2YWdlIGluIDxpPkRlbGZ0aWEgYWNp

ZG92b3JhbnM8L2k+IE1DMTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNjaGxlaW5p

enQsSy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2xlaW5zdGV1YmVyLFMu

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5WYWxsYWV5cyxULjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFiZWwsVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Q

cmltYXJ5PjIwMDQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RGVsZnRpYSBhY2lkb3ZvcmFuczwv

S2V5d29yZHM+PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+QW1pbm8gQWNpZCBT

ZXF1ZW5jZTwvS2V5d29yZHM+PEtleXdvcmRzPkVuenltZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5N

dXRhZ2VuZXNpczwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFn

ZT41MzU3PC9TdGFydF9QYWdlPjxFbmRfUGFnZT41MzY1PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5B

cHBsaWVkIGFuZCBFbnZpcm9ubWVudGFsIE1pY3JvYmlvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1l

PjcwPC9Wb2x1bWU+PElzc3VlPjk8L0lzc3VlPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cubmNiaS5u

bG0ubmloLmdvdi9wbWMvYXJ0aWNsZXMvUE1DNTIwODg4L3BkZi8wNTQ4LTA0LnBkZjwvdT48L1dl

Yl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1p

Y2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFNjaGxlaW5p

dHogZXQgYWxfMjAwNF9zZHBBIGluIERlbGZ0aWEucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48Wlpf

Sm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5BcHBsaWVkIGFuZCBFbnZpcm9ubWVudGFsIE1p

Y3JvYmlvbG9neTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtm

b3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+V3JpZ2h0PC9BdXRob3I+PFllYXI+MjAx

MDwvWWVhcj48UmVjTnVtPjg2MzwvUmVjTnVtPjxJRFRleHQ+Um9idXN0IGNyb3AgcmVzaXN0YW5j

ZSB0byBicm9hZGxlYWYgYW5kIGdyYXNzIGhlcmJpY2lkZXMgcHJvdmlkZWQgYnkgYXJ5bG94eWFs

a2Fub2F0ZSBkaW94eWdlbmFzZSB0cmFuc2dlbmVzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91

cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+ODYzPC9SZWZfSUQ+PFRp

dGxlX1ByaW1hcnk+Um9idXN0IGNyb3AgcmVzaXN0YW5jZSB0byBicm9hZGxlYWYgYW5kIGdyYXNz

IGhlcmJpY2lkZXMgcHJvdmlkZWQgYnkgYXJ5bG94eWFsa2Fub2F0ZSBkaW94eWdlbmFzZSB0cmFu

c2dlbmVzPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3JpZ2h0LFQuUi48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNoYW4sRy48L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PldhbHNoLFQuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkxpcmEsSi5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q3VpLEMuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Tb25nLFAuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5aaHVhbmcsTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkFybm9sZCxOLkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaW4sRy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllhdSxLLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+UnVzc2VsbCxTLk0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5DaWNjaGlsbG8sUi5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGV0

ZXJzb24sTS5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2ltcHNvbixELk0u

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5aaG91LE4uPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5Qb25zYW11ZWwsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlpoYW5nLFouPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwPC9E

YXRlX1ByaW1hcnk+PEtleXdvcmRzPkhlcmJpY2lkZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz4yLDQt

RGljaGxvcm9waGVub3h5YWNldGljIEFjaWQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5Fbnp5bWVzPC9L

ZXl3b3Jkcz48S2V5d29yZHM+bWFpemU8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudHM8L0tleXdv

cmRzPjxLZXl3b3Jkcz5BcmFiaWRvcHNpczwvS2V5d29yZHM+PEtleXdvcmRzPnNveWJlYW48L0tl

eXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFBlcmlvZGljYWw+UHJvY2VlZGluZ3Mg

b2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXM8L1BlcmlvZGljYWw+PFZvbHVtZT5l

UHViLCBkb2k6MTAxMDczL3BuYXMuMTAxMzE1NDEwNzwvVm9sdW1lPjxXZWJfVVJMPjx1Pmh0dHA6

Ly93d3cucG5hcy5vcmcvY29udGVudC9lYXJseS8yMDEwLzExLzA1LzEwMTMxNTQxMDcuZnVsbC5w

ZGY8L3U+PC9XZWJfVVJMPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21l

bnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNl

c1xXcmlnaHQgZXQgYWxfMjAxMF9hYWQtMSBhbmQgYWFkLTEyLnBkZjwvdT48L1dlYl9VUkxfTGlu

azI+PFdlYl9VUkxfTGluazM+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2Fs

IFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFdyaWdodCBldCBh

bF8yMDEwX3N1cHBsZW1lbnRhcnkgaW5mby5wZGY8L3U+PC9XZWJfVVJMX0xpbmszPjxaWl9Kb3Vy

bmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPlByb2NlZWRpbmdzIG9mIHRoZSBOYXRpb25hbCBBY2Fk

ZW15IG9mIFNjaWVuY2VzPC9mPjwvWlpfSm91cm5hbEZ1bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpf

V29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5XcmlnaHQ8L0F1dGhvcj48WWVh

cj4yMDA3PC9ZZWFyPjxSZWNOdW0+NTY4PC9SZWNOdW0+PElEVGV4dD5Ob3ZlbCBoZXJiaWNpZGUg

cmVzaXN0YW5jZSBnZW5lczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IlBhdGVudCI+PFJlZl9UeXBl

PlBhdGVudDwvUmVmX1R5cGU+PFJlZl9JRD41Njg8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5Ob3Zl

bCBoZXJiaWNpZGUgcmVzaXN0YW5jZSBnZW5lczwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PldyaWdodCxULlIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaXJhLEou

TS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbHNoLFQuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NZXJsbyxELkouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5KYXlha3VtYXIsUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkxpbixHLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwNzwvRGF0ZV9QcmltYXJ5

PjxLZXl3b3Jkcz5HZW5lczwvS2V5d29yZHM+PEtleXdvcmRzPlBsYW50czwvS2V5d29yZHM+PEtl

eXdvcmRzPkhlcmJpY2lkZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5tZXRob2RzPC9LZXl3b3Jkcz48

UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxJc3N1ZT5Xb3JsZCBQYXRlbnQgMjAwNy8wNTM0ODIg

QTI8L0lzc3VlPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cucGF0ZW50bGVucy5uZXQvaW1hZ2VzZXJ2

ZXIvZ2V0aW1hZ2UvV09fMjAwN18wNTM0ODJfQTIucGRmP2lkPTE0ODgyNjE3JmFtcDtwYWdlPWFs

bDwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVu

dCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2Vz

XFdyaWdodCBldCBhbF8yMDA3X2hlcmJpY2lkZSByZXNpc3QgcGF0ZW50LnBkZjwvdT48L1dlYl9V

UkxfTGluazI+PFpaX1dvcmtmb3JtSUQ+MjI8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwv

UmVmbWFuPgB=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNjaGxlaW5penQ8L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFy

PjxSZWNOdW0+NzY5PC9SZWNOdW0+PElEVGV4dD5Mb2NhbGl6YXRpb24gYW5kIGNoYXJhY3Rlcml6

YXRpb24gb2YgdHdvIG5vdmVsIGdlbmVzIGVuY29kaW5nIHN0ZXJlb3NwZWNpZmljIGRpb3h5Z2Vu

YXNlcyBjYXRhbHl6aW5nIDIoMiw0LWRpY2hsb3JvcGhlbm94eSkgcHJvcGlvbmF0ZSBjbGVhdmFn

ZSBpbiBEZWxmdGlhIGFjaWRvdm9yYW5zIE1DMTwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJu

YWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc2OTwvUmVmX0lEPjxUaXRs

ZV9QcmltYXJ5PkxvY2FsaXphdGlvbiBhbmQgY2hhcmFjdGVyaXphdGlvbiBvZiB0d28gbm92ZWwg

Z2VuZXMgZW5jb2Rpbmcgc3RlcmVvc3BlY2lmaWMgZGlveHlnZW5hc2VzIGNhdGFseXppbmcgMigy

LDQtZGljaGxvcm9waGVub3h5KSBwcm9waW9uYXRlIGNsZWF2YWdlIGluIDxpPkRlbGZ0aWEgYWNp

ZG92b3JhbnM8L2k+IE1DMTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNjaGxlaW5p

enQsSy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2xlaW5zdGV1YmVyLFMu

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5WYWxsYWV5cyxULjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFiZWwsVy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Q

cmltYXJ5PjIwMDQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RGVsZnRpYSBhY2lkb3ZvcmFuczwv

S2V5d29yZHM+PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+QW1pbm8gQWNpZCBT

ZXF1ZW5jZTwvS2V5d29yZHM+PEtleXdvcmRzPkVuenltZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5N

dXRhZ2VuZXNpczwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFn

ZT41MzU3PC9TdGFydF9QYWdlPjxFbmRfUGFnZT41MzY1PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5B

cHBsaWVkIGFuZCBFbnZpcm9ubWVudGFsIE1pY3JvYmlvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1l

PjcwPC9Wb2x1bWU+PElzc3VlPjk8L0lzc3VlPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cubmNiaS5u

bG0ubmloLmdvdi9wbWMvYXJ0aWNsZXMvUE1DNTIwODg4L3BkZi8wNTQ4LTA0LnBkZjwvdT48L1dl

Yl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1p

Y2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFNjaGxlaW5p

dHogZXQgYWxfMjAwNF9zZHBBIGluIERlbGZ0aWEucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48Wlpf

Sm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5BcHBsaWVkIGFuZCBFbnZpcm9ubWVudGFsIE1p

Y3JvYmlvbG9neTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtm

b3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+V3JpZ2h0PC9BdXRob3I+PFllYXI+MjAx

MDwvWWVhcj48UmVjTnVtPjg2MzwvUmVjTnVtPjxJRFRleHQ+Um9idXN0IGNyb3AgcmVzaXN0YW5j

ZSB0byBicm9hZGxlYWYgYW5kIGdyYXNzIGhlcmJpY2lkZXMgcHJvdmlkZWQgYnkgYXJ5bG94eWFs

a2Fub2F0ZSBkaW94eWdlbmFzZSB0cmFuc2dlbmVzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91

cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+ODYzPC9SZWZfSUQ+PFRp

dGxlX1ByaW1hcnk+Um9idXN0IGNyb3AgcmVzaXN0YW5jZSB0byBicm9hZGxlYWYgYW5kIGdyYXNz

IGhlcmJpY2lkZXMgcHJvdmlkZWQgYnkgYXJ5bG94eWFsa2Fub2F0ZSBkaW94eWdlbmFzZSB0cmFu

c2dlbmVzPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3JpZ2h0LFQuUi48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNoYW4sRy48L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PldhbHNoLFQuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkxpcmEsSi5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q3VpLEMuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Tb25nLFAuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5aaHVhbmcsTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkFybm9sZCxOLkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaW4sRy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PllhdSxLLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+UnVzc2VsbCxTLk0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5DaWNjaGlsbG8sUi5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGV0

ZXJzb24sTS5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2ltcHNvbixELk0u

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5aaG91LE4uPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5Qb25zYW11ZWwsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlpoYW5nLFouPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwPC9E

YXRlX1ByaW1hcnk+PEtleXdvcmRzPkhlcmJpY2lkZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz4yLDQt

RGljaGxvcm9waGVub3h5YWNldGljIEFjaWQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5Fbnp5bWVzPC9L

ZXl3b3Jkcz48S2V5d29yZHM+bWFpemU8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudHM8L0tleXdv

cmRzPjxLZXl3b3Jkcz5BcmFiaWRvcHNpczwvS2V5d29yZHM+PEtleXdvcmRzPnNveWJlYW48L0tl

eXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFBlcmlvZGljYWw+UHJvY2VlZGluZ3Mg

b2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXM8L1BlcmlvZGljYWw+PFZvbHVtZT5l

UHViLCBkb2k6MTAxMDczL3BuYXMuMTAxMzE1NDEwNzwvVm9sdW1lPjxXZWJfVVJMPjx1Pmh0dHA6

Ly93d3cucG5hcy5vcmcvY29udGVudC9lYXJseS8yMDEwLzExLzA1LzEwMTMxNTQxMDcuZnVsbC5w

ZGY8L3U+PC9XZWJfVVJMPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21l

bnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNl

c1xXcmlnaHQgZXQgYWxfMjAxMF9hYWQtMSBhbmQgYWFkLTEyLnBkZjwvdT48L1dlYl9VUkxfTGlu

azI+PFdlYl9VUkxfTGluazM+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2Fs

IFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFdyaWdodCBldCBh

bF8yMDEwX3N1cHBsZW1lbnRhcnkgaW5mby5wZGY8L3U+PC9XZWJfVVJMX0xpbmszPjxaWl9Kb3Vy

bmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPlByb2NlZWRpbmdzIG9mIHRoZSBOYXRpb25hbCBBY2Fk

ZW15IG9mIFNjaWVuY2VzPC9mPjwvWlpfSm91cm5hbEZ1bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpf

V29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5XcmlnaHQ8L0F1dGhvcj48WWVh

cj4yMDA3PC9ZZWFyPjxSZWNOdW0+NTY4PC9SZWNOdW0+PElEVGV4dD5Ob3ZlbCBoZXJiaWNpZGUg

cmVzaXN0YW5jZSBnZW5lczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IlBhdGVudCI+PFJlZl9UeXBl

PlBhdGVudDwvUmVmX1R5cGU+PFJlZl9JRD41Njg8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5Ob3Zl

bCBoZXJiaWNpZGUgcmVzaXN0YW5jZSBnZW5lczwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PldyaWdodCxULlIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaXJhLEou

TS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbHNoLFQuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NZXJsbyxELkouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5KYXlha3VtYXIsUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkxpbixHLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwNzwvRGF0ZV9QcmltYXJ5

PjxLZXl3b3Jkcz5HZW5lczwvS2V5d29yZHM+PEtleXdvcmRzPlBsYW50czwvS2V5d29yZHM+PEtl

eXdvcmRzPkhlcmJpY2lkZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5tZXRob2RzPC9LZXl3b3Jkcz48

UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxJc3N1ZT5Xb3JsZCBQYXRlbnQgMjAwNy8wNTM0ODIg

QTI8L0lzc3VlPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cucGF0ZW50bGVucy5uZXQvaW1hZ2VzZXJ2

ZXIvZ2V0aW1hZ2UvV09fMjAwN18wNTM0ODJfQTIucGRmP2lkPTE0ODgyNjE3JmFtcDtwYWdlPWFs

bDwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVu

dCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2Vz

XFdyaWdodCBldCBhbF8yMDA3X2hlcmJpY2lkZSByZXNpc3QgcGF0ZW50LnBkZjwvdT48L1dlYl9V

UkxfTGluazI+PFpaX1dvcmtmb3JtSUQ+MjI8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwv

UmVmbWFuPgB=

ADDIN EN.CITE.DATA (Schleinizt et al., 2004; Wright et al., 2007; Wright et al., 2010b) has low homology (approximately 37% sequence identity) with the tfdA gene first isolated from Ralstonia eutropha ADDIN REFMGR.CITE <Refman><Cite><Author>Streber</Author><Year>1987</Year><RecNum>770</RecNum><IDText>Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>770</Ref_ID><Title_Primary>Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene <i>tfdA</i> of <i>Alcaligenes eutrophus</i> JMP134</Title_Primary><Authors_Primary>Streber,W.R.</Authors_Primary><Authors_Primary>Timmis,K.N.</Authors_Primary><Authors_Primary>Zenk,M.H.</Authors_Primary><Date_Primary>1987</Date_Primary><Keywords>Genes</Keywords><Keywords>Mutagenesis</Keywords><Keywords>analysis</Keywords><Reprint>In File</Reprint><Start_Page>2950</Start_Page><End_Page>2955</End_Page><Periodical>Journal of Bacteriology</Periodical><Volume>169</Volume><Issue>7</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Streber et al_1987_tfdA gene.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Journal of Bacteriology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Streber et al., 1987) but found in phylogenetically diverse bacteria ADDIN REFMGR.CITE <Refman><Cite><Author>Baelum</Author><Year>2008</Year><RecNum>768</RecNum><IDText>Direct analysis of tdfA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>768</Ref_ID><Title_Primary>Direct analysis of <i>tdfA</i> gene expression by indigenous bacteria in phenoxy acid amended agricultural soil</Title_Primary><Authors_Primary>Baelum,J.</Authors_Primary><Authors_Primary>Nicolaisen,M.H.</Authors_Primary><Authors_Primary>Holben,W.E.</Authors_Primary><Authors_Primary>Strobel,B.W.</Authors_Primary><Authors_Primary>Sorensen,J.</Authors_Primary><Authors_Primary>Jacobsen,S.</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>2,4-Dichlorophenoxyacetic Acid</Keywords><Keywords>Soil</Keywords><Keywords>Rna</Keywords><Keywords>analysis</Keywords><Keywords>Electrophoresis</Keywords><Keywords>Genes</Keywords><Keywords>Gene Expression</Keywords><Keywords>Bacteria</Keywords><Reprint>In File</Reprint><Start_Page>677</Start_Page><End_Page>687</End_Page><Periodical>The ISME Journal</Periodical><Volume>2</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Baelum et al_2008_tfdA genes.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">The ISME Journal</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Baelum et al., 2008). The tfdA gene codes for an α-ketoglutarate-dependent dioxygenase which converts chlorinated phenoxyalkanoate herbicides such as 2,4-D into a harmless phenol and glyoxylate (refer to Section 4.2.2). Expression of the aad-12 gene confers tolerance to both phenoxyalkanoate herbicides as well as to pyridyloxyacetic acids such as trichlopyr and fluroxypyr ADDIN REFMGR.CITE <Refman><Cite><Author>Wright</Author><Year>2007</Year><RecNum>568</RecNum><IDText>Novel herbicide resistance genes</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>568</Ref_ID><Title_Primary>Novel herbicide resistance genes</Title_Primary><Authors_Primary>Wright,T.R.</Authors_Primary><Authors_Primary>Lira,J.M.</Authors_Primary><Authors_Primary>Walsh,T.</Authors_Primary><Authors_Primary>Merlo,D.J.</Authors_Primary><Authors_Primary>Jayakumar,P.</Authors_Primary><Authors_Primary>Lin,G.</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>Genes</Keywords><Keywords>Plants</Keywords><Keywords>Herbicides</Keywords><Keywords>methods</Keywords><Reprint>In File</Reprint><Issue>World Patent 2007/053482 A2</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Wright et al_2007_herbicide resist patent.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>(Wright et al., 2007). As well as occurring in D. acidovorans, sdpa genes have also been reported to occur in Sphingomonas herbicidovorans and Rhodoferax sp. but show considerable sequence diversity ADDIN REFMGR.CITE <Refman><Cite><Author>Paulin</Author><Year>2010</Year><RecNum>777</RecNum><IDText>Abundance and expression of enantioselective rdpA and sdpA dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>777</Ref_ID><Title_Primary>Abundance and expression of enantioselective <i>rdpA</i> and <i>sdpA</i> dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil</Title_Primary><Authors_Primary>Paulin,M.M.</Authors_Primary><Authors_Primary>Nicolaisen,M.H.</Authors_Primary><Authors_Primary>Sorensen,J.</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>Soil</Keywords><Keywords>Genes</Keywords><Reprint>In File</Reprint><Start_Page>2873</Start_Page><End_Page>2883</End_Page><Periodical>Applied and Environmental Microbiology</Periodical><Volume>76</Volume><Issue>9</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Paulin et al_2010_sdpA.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Applied and Environmental Microbiology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Paulin et al., 2010).The DNA sequence of the aad-12 gene has been optimised for expression in plants and is approximately 80% identical to the DNA sequence of the native aad-12 gene. The aad-12 coding region in plasmid pDAB4468 is 882 bp in length and is driven by the constitutive polyubiquiton promoter from Arabidopsis thaliana. A matrix attachment region (MAR) from the root-specific Rb7 gene PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkhhbGw8L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNO

dW0+NTYxPC9SZWNOdW0+PElEVGV4dD5OdWNsZWFyIHNjYWZmb2xkcyBhbmQgc2NhZmZvbGQtYXR0

YWNobWVudCByZWdpb25zIGluIGhpZ2hlciBwbGFudHM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJK

b3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD41NjE8L1JlZl9JRD48

VGl0bGVfUHJpbWFyeT5OdWNsZWFyIHNjYWZmb2xkcyBhbmQgc2NhZmZvbGQtYXR0YWNobWVudCBy

ZWdpb25zIGluIGhpZ2hlciBwbGFudHM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5I

YWxsLEcuLEpyLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWxsZW4sRy5DLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TG9lcixELlMuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5UaG9tcHNvbixXLkYuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5TcGlrZXIsUy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjE5OTEv

MTAvMTU8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RGlnZXN0aW9uPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RG5hPC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5nZW5l

dGljczwvS2V5d29yZHM+PEtleXdvcmRzPlBsYW50czwvS2V5d29yZHM+PEtleXdvcmRzPlRvYmFj

Y288L0tleXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+OTMyMDwv

U3RhcnRfUGFnZT48RW5kX1BhZ2U+OTMyNDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+UHJvY2VlZGlu

Z3Mgb2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXM8L1BlcmlvZGljYWw+PFZvbHVt

ZT44ODwvVm9sdW1lPjxJc3N1ZT4yMDwvSXNzdWU+PFVzZXJfRGVmXzU+UE1DNTI3MDY8L1VzZXJf

RGVmXzU+PEFkZHJlc3M+RGVwYXJ0bWVudCBvZiBHZW5ldGljcywgTm9ydGggQ2Fyb2xpbmEgU3Rh

dGUgVW5pdmVyc2l0eSwgUmFsZWlnaCwgTkMgMjc2OTUsIFVTQTwvQWRkcmVzcz48V2ViX1VSTD5Q

TToxMTYwNzIyNTwvV2ViX1VSTD48V2ViX1VSTF9MaW5rMj48dT5maWxlOi8vRjpcUmlzayBBc3Nl

c3NtZW50IC0gQ2hlbWljYWwgU2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVy

ZW5jZXNcSGFsbCBldCBhbF8xOTkxX251Y2xlYXIgc2NhZmZvbGQgYXR0YWNobWVudC5wZGY8L3U+

PC9XZWJfVVJMX0xpbmsyPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPlByb2NlZWRp

bmdzIG9mIHRoZSBOYXRpb25hbCBBY2FkZW15IG9mIFNjaWVuY2VzPC9mPjwvWlpfSm91cm5hbEZ1

bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1

dGhvcj5WZXJtYTwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJlY051bT41Njc8L1JlY051bT48

SURUZXh0Pk1vbGVjdWxhciBkaXNzZWN0aW9uIG9mIHRoZSB0b2JhY2NvIFJiNyBtYXRyaXggYXR0

YWNobWVudCByZWdpb24gKE1BUik6IEVmZmVjdCBvZiA1JmFwb3M7IGhhbGYgb24gZ2VuZSBleHBy

ZXNzaW9uIGluIHJpY2U8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+

Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD41Njc8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5Nb2xl

Y3VsYXIgZGlzc2VjdGlvbiBvZiB0aGUgdG9iYWNjbyBSYjcgbWF0cml4IGF0dGFjaG1lbnQgcmVn

aW9uIChNQVIpOiBFZmZlY3Qgb2YgNSZhcG9zOyBoYWxmIG9uIGdlbmUgZXhwcmVzc2lvbiBpbiBy

aWNlPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VmVybWEsRC48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PlZlcm1hLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5EZXksTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkphaW4sUi5L

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3UsUi48L0F1dGhvcnNfUHJpbWFy

eT48RGF0ZV9QcmltYXJ5PjIwMDUvMTA8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+R2VuZSBFeHBy

ZXNzaW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+R1VTIGdlbmUgZXhwcmVzc2lvbjwvS2V5d29yZHM+

PEtleXdvcmRzPk1BUnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5NYXRyaXggYXR0YWNobWVudCByZWdp

b24gc2VxdWVuY2VzPC9LZXl3b3Jkcz48S2V5d29yZHM+VG9iYWNjbzwvS2V5d29yZHM+PEtleXdv

cmRzPlRyYW5zZ2VuaWMgcmljZSBwbGFudHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFzbWlkczwv

S2V5d29yZHM+PEtleXdvcmRzPmFuYWx5c2lzPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzPC9L

ZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjcwNDwvU3RhcnRf

UGFnZT48RW5kX1BhZ2U+NzExPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5QbGFudCBTY2llbmNlPC9Q

ZXJpb2RpY2FsPjxWb2x1bWU+MTY5PC9Wb2x1bWU+PElzc3VlPjQ8L0lzc3VlPjxJU1NOX0lTQk4+

MDE2OC05NDUyPC9JU1NOX0lTQk4+PFdlYl9VUkw+aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0LmNv

bS9zY2llbmNlL2FydGljbGUvQjZUQkgtNEdDWDBEVi0yLzIvMzQwNmYyYjVjNWUyNmFiZmJiN2Ni

MzYzMTA0ZjY5MmE8L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNz

ZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZl

cmVuY2VzXFZlcm1hIGV0IGFsXzIwMDVfUkI3IG1hdHJpeCBhdHRhY2ggcmVnaW9uLnBkZjwvdT48

L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5QbGFu

dCBTY2llbmNlPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9X

b3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkhhbGw8L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNO

dW0+NTYxPC9SZWNOdW0+PElEVGV4dD5OdWNsZWFyIHNjYWZmb2xkcyBhbmQgc2NhZmZvbGQtYXR0

YWNobWVudCByZWdpb25zIGluIGhpZ2hlciBwbGFudHM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJK

b3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD41NjE8L1JlZl9JRD48

VGl0bGVfUHJpbWFyeT5OdWNsZWFyIHNjYWZmb2xkcyBhbmQgc2NhZmZvbGQtYXR0YWNobWVudCBy

ZWdpb25zIGluIGhpZ2hlciBwbGFudHM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5I

YWxsLEcuLEpyLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWxsZW4sRy5DLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TG9lcixELlMuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5UaG9tcHNvbixXLkYuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5TcGlrZXIsUy48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjE5OTEv

MTAvMTU8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RGlnZXN0aW9uPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RG5hPC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5nZW5l

dGljczwvS2V5d29yZHM+PEtleXdvcmRzPlBsYW50czwvS2V5d29yZHM+PEtleXdvcmRzPlRvYmFj

Y288L0tleXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+OTMyMDwv

U3RhcnRfUGFnZT48RW5kX1BhZ2U+OTMyNDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+UHJvY2VlZGlu

Z3Mgb2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXM8L1BlcmlvZGljYWw+PFZvbHVt

ZT44ODwvVm9sdW1lPjxJc3N1ZT4yMDwvSXNzdWU+PFVzZXJfRGVmXzU+UE1DNTI3MDY8L1VzZXJf

RGVmXzU+PEFkZHJlc3M+RGVwYXJ0bWVudCBvZiBHZW5ldGljcywgTm9ydGggQ2Fyb2xpbmEgU3Rh

dGUgVW5pdmVyc2l0eSwgUmFsZWlnaCwgTkMgMjc2OTUsIFVTQTwvQWRkcmVzcz48V2ViX1VSTD5Q

TToxMTYwNzIyNTwvV2ViX1VSTD48V2ViX1VSTF9MaW5rMj48dT5maWxlOi8vRjpcUmlzayBBc3Nl

c3NtZW50IC0gQ2hlbWljYWwgU2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVy

ZW5jZXNcSGFsbCBldCBhbF8xOTkxX251Y2xlYXIgc2NhZmZvbGQgYXR0YWNobWVudC5wZGY8L3U+

PC9XZWJfVVJMX0xpbmsyPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPlByb2NlZWRp

bmdzIG9mIHRoZSBOYXRpb25hbCBBY2FkZW15IG9mIFNjaWVuY2VzPC9mPjwvWlpfSm91cm5hbEZ1

bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1

dGhvcj5WZXJtYTwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJlY051bT41Njc8L1JlY051bT48

SURUZXh0Pk1vbGVjdWxhciBkaXNzZWN0aW9uIG9mIHRoZSB0b2JhY2NvIFJiNyBtYXRyaXggYXR0

YWNobWVudCByZWdpb24gKE1BUik6IEVmZmVjdCBvZiA1JmFwb3M7IGhhbGYgb24gZ2VuZSBleHBy

ZXNzaW9uIGluIHJpY2U8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+

Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD41Njc8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5Nb2xl

Y3VsYXIgZGlzc2VjdGlvbiBvZiB0aGUgdG9iYWNjbyBSYjcgbWF0cml4IGF0dGFjaG1lbnQgcmVn

aW9uIChNQVIpOiBFZmZlY3Qgb2YgNSZhcG9zOyBoYWxmIG9uIGdlbmUgZXhwcmVzc2lvbiBpbiBy

aWNlPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VmVybWEsRC48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PlZlcm1hLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5EZXksTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkphaW4sUi5L

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3UsUi48L0F1dGhvcnNfUHJpbWFy

eT48RGF0ZV9QcmltYXJ5PjIwMDUvMTA8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+R2VuZSBFeHBy

ZXNzaW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+R1VTIGdlbmUgZXhwcmVzc2lvbjwvS2V5d29yZHM+

PEtleXdvcmRzPk1BUnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5NYXRyaXggYXR0YWNobWVudCByZWdp

b24gc2VxdWVuY2VzPC9LZXl3b3Jkcz48S2V5d29yZHM+VG9iYWNjbzwvS2V5d29yZHM+PEtleXdv

cmRzPlRyYW5zZ2VuaWMgcmljZSBwbGFudHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFzbWlkczwv

S2V5d29yZHM+PEtleXdvcmRzPmFuYWx5c2lzPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzPC9L

ZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjcwNDwvU3RhcnRf

UGFnZT48RW5kX1BhZ2U+NzExPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5QbGFudCBTY2llbmNlPC9Q

ZXJpb2RpY2FsPjxWb2x1bWU+MTY5PC9Wb2x1bWU+PElzc3VlPjQ8L0lzc3VlPjxJU1NOX0lTQk4+

MDE2OC05NDUyPC9JU1NOX0lTQk4+PFdlYl9VUkw+aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0LmNv

bS9zY2llbmNlL2FydGljbGUvQjZUQkgtNEdDWDBEVi0yLzIvMzQwNmYyYjVjNWUyNmFiZmJiN2Ni

MzYzMTA0ZjY5MmE8L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNz

ZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZl

cmVuY2VzXFZlcm1hIGV0IGFsXzIwMDVfUkI3IG1hdHJpeCBhdHRhY2ggcmVnaW9uLnBkZjwvdT48

L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5QbGFu

dCBTY2llbmNlPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9X

b3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN EN.CITE.DATA (Hall, Jr. et al., 1991; Verma et al., 2005) of Nicotiana tabacum (tobacco) was included at the 5’ end of cassette to potentially increase the consistency of aad-12 expression ADDIN REFMGR.CITE <Refman><Cite><Author>Abranches</Author><Year>2005</Year><RecNum>566</RecNum><IDText>Matrix attachment regions and regulated transcription increase and stabilize transgene expression</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>566</Ref_ID><Title_Primary>Matrix attachment regions and regulated transcription increase and stabilize transgene expression</Title_Primary><Authors_Primary>Abranches,R.</Authors_Primary><Authors_Primary>Shultz,R.W.</Authors_Primary><Authors_Primary>Thompson,W.F.</Authors_Primary><Authors_Primary>Allen,G.C.</Authors_Primary><Date_Primary>2005/9</Date_Primary><Keywords>Cell Line</Keywords><Keywords>Luciferase</Keywords><Keywords>promoters</Keywords><Keywords>Tobacco</Keywords><Reprint>In File</Reprint><Start_Page>535</Start_Page><End_Page>543</End_Page><Periodical>Plant Biotechnology Journal</Periodical><Volume>3</Volume><Issue>5</Issue><Misc_3>PBI144 [pii];10.1111/j.1467-7652.2005.00144.x [doi]</Misc_3><Address>North Carolina State University, Department of Crop Science, Box 7620, Raleigh, North Carolina 27695-7620, USA</Address><Web_URL>PM:17173639</Web_URL><Web_URL_Link2><u>file://F:\</u>Risk Assessment - Chemical Safety<u>\GMO - shared\References\GM References\Abranches et al_2005_matrix attach regions.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Plant Biotechnology Journal</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Abranches et al., 2005). When positioned on the flanking ends of gene cassettes, some MARs have been shown to increase expression of transgenes and to reduce the incidence of gene silencing. At the 3’ untranslated region of the coding region is a transcript termination and polyadenylation region from Agrobacterium tumefaciens.pat gene expression cassetteThe pat gene from Streptomyces viridochromogenes and the bar gene from S. hygroscopicus confer tolerance to herbicides containing glufosinate ammonium (phosphinothricin). Both genes code for polypeptides of 183 amino acids and share 87% homology at the nucleotide sequence level ADDIN REFMGR.CITE <Refman><Cite><Author>Wehrmann</Author><Year>1996</Year><RecNum>317</RecNum><IDText>The similarities of bar and pat gene products make them equally applicable for plant engineers</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>317</Ref_ID><Title_Primary>The similarities of <i>bar</i> and <i>pat</i> gene products make them equally applicable for plant engineers</Title_Primary><Authors_Primary>Wehrmann,A.</Authors_Primary><Authors_Primary>Van Vliet,A.</Authors_Primary><Authors_Primary>Opsomer,C.</Authors_Primary><Authors_Primary>Botterman,J.</Authors_Primary><Authors_Primary>Schulz,A.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Soybeans</Keywords><Keywords>Genes</Keywords><Keywords>Genetic Engineering</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Proteins</Keywords><Keywords>Plants</Keywords><Keywords>Molecular Weight</Keywords><Keywords>Digestion</Keywords><Keywords>Human</Keywords><Reprint>In File</Reprint><Start_Page>1274</Start_Page><End_Page>1278</End_Page><Periodical>Nature Biotechnology</Periodical><Volume>14</Volume><ZZ_JournalFull><f name="System">Nature Biotechnology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Wehrmann et al., 1996). Both genes have been widely used for genetic modification of food species.The pat gene coding region PFJlZm1hbj48Q2l0ZT48QXV0aG9yPldvaGxsZWJlbjwvQXV0aG9yPjxZZWFyPjE5ODg8L1llYXI+

PFJlY051bT4zNTE8L1JlY051bT48SURUZXh0Pk51Y2xlb3RpZGUgc2VxdWVuY2Ugb2YgdGhlIHBo

b3NwaGlub3RocmljaW4gTi1hY2V0eWx0cmFuc2ZlcmFzZSBnZW5lIGZyb20gU3RyZXB0b215Y2Vz

IHZpcmlkb2Nocm9tb2dlbmVzIFTDvDQ5NCBhbmQgaXRzIGV4cHJlc3Npb24gaW4gTmljb3RpYW5h

IHRhYmFjdW08L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5h

bDwvUmVmX1R5cGU+PFJlZl9JRD4zNTE8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5OdWNsZW90aWRl

IHNlcXVlbmNlIG9mIHRoZSBwaG9zcGhpbm90aHJpY2luIE4tYWNldHlsdHJhbnNmZXJhc2UgZ2Vu

ZSBmcm9tIDxpPlN0cmVwdG9teWNlcyB2aXJpZG9jaHJvbW9nZW5lczwvaT4gVCYjeEZDOzQ5NCBh

bmQgaXRzIGV4cHJlc3Npb24gaW4gPGk+Tmljb3RpYW5hIHRhYmFjdW08L2k+PC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+V29obGxlYmVuLFcuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5Bcm5vbGQsVy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJy

b2VyLEkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IaWxsZW1hbm4sRC48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlN0cmF1Y2gsRS48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PlB1bmllcixBLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1h

cnk+MTk4ODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5BbWlubyBBY2lkczwvS2V5d29yZHM+PEtl

eXdvcmRzPkNvZG9uPC9LZXl3b3Jkcz48S2V5d29yZHM+RXNjaGVyaWNoaWEgY29saTwvS2V5d29y

ZHM+PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzPC9LZXl3b3Jkcz48

UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI1PC9TdGFydF9QYWdlPjxFbmRf

UGFnZT4zNzwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+R2VuZTwvUGVyaW9kaWNhbD48Vm9sdW1lPjcw

PC9Wb2x1bWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5HZW5lPC9mPjwv

WlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURM

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlN0cmF1Y2g8L0F1dGhvcj48WWVhcj4xOTg4PC9ZZWFyPjxS

ZWNOdW0+NzcyPC9SZWNOdW0+PElEVGV4dD5DbG9uaW5nIG9mIGEgcGhvc3BoaW5vdGhyaWNpbiBO

LWFjZXR5bHRyYW5zZmVyYXNlIGdlbmUgZnJvbSBTdHJlcHRvbXljZXMgdmlyaWRvY2hyb21vZ2Vu

ZXMgVMO8NDk0IGFuZCBpdHMgZXhwcmVzc2lvbiBpbiBTdHJlcHRvbXljZXMgbGl2aWRhbnMgYW5k

IEVzY2hlcmljaGlhIGNvbGk8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5

cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD43NzI8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5D

bG9uaW5nIG9mIGEgcGhvc3BoaW5vdGhyaWNpbiBOLWFjZXR5bHRyYW5zZmVyYXNlIGdlbmUgZnJv

bSA8aT5TdHJlcHRvbXljZXMgdmlyaWRvY2hyb21vZ2VuZXM8L2k+IFQmI3hGQzs0OTQgYW5kIGl0

cyBleHByZXNzaW9uIGluIDxpPlN0cmVwdG9teWNlcyBsaXZpZGFuczwvaT4gYW5kIDxpPkVzY2hl

cmljaGlhIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U3RyYXVjaCxF

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29obGxlYmVuLFcuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QJiN4RkM7aGxlcixBLjwvQXV0aG9yc19QcmltYXJ5

PjxEYXRlX1ByaW1hcnk+MTk4ODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5Fc2NoZXJpY2hpYSBj

b2xpPC9LZXl3b3Jkcz48S2V5d29yZHM+R2x1dGFtaW5lPC9LZXl3b3Jkcz48UmVwcmludD5Ob3Qg

aW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT42NTwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+NzQ8

L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkdlbmU8L1BlcmlvZGljYWw+PFZvbHVtZT42MzwvVm9sdW1l

PjxJc3N1ZT4xPC9Jc3N1ZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPkdl

bmU8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3Jt

SUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPldvaGxsZWJlbjwvQXV0aG9yPjxZZWFyPjE5ODg8L1llYXI+

PFJlY051bT4zNTE8L1JlY051bT48SURUZXh0Pk51Y2xlb3RpZGUgc2VxdWVuY2Ugb2YgdGhlIHBo

b3NwaGlub3RocmljaW4gTi1hY2V0eWx0cmFuc2ZlcmFzZSBnZW5lIGZyb20gU3RyZXB0b215Y2Vz

IHZpcmlkb2Nocm9tb2dlbmVzIFTDvDQ5NCBhbmQgaXRzIGV4cHJlc3Npb24gaW4gTmljb3RpYW5h

IHRhYmFjdW08L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5h

bDwvUmVmX1R5cGU+PFJlZl9JRD4zNTE8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5OdWNsZW90aWRl

IHNlcXVlbmNlIG9mIHRoZSBwaG9zcGhpbm90aHJpY2luIE4tYWNldHlsdHJhbnNmZXJhc2UgZ2Vu

ZSBmcm9tIDxpPlN0cmVwdG9teWNlcyB2aXJpZG9jaHJvbW9nZW5lczwvaT4gVCYjeEZDOzQ5NCBh

bmQgaXRzIGV4cHJlc3Npb24gaW4gPGk+Tmljb3RpYW5hIHRhYmFjdW08L2k+PC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+V29obGxlYmVuLFcuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5Bcm5vbGQsVy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJy

b2VyLEkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IaWxsZW1hbm4sRC48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlN0cmF1Y2gsRS48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PlB1bmllcixBLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1h

cnk+MTk4ODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5BbWlubyBBY2lkczwvS2V5d29yZHM+PEtl

eXdvcmRzPkNvZG9uPC9LZXl3b3Jkcz48S2V5d29yZHM+RXNjaGVyaWNoaWEgY29saTwvS2V5d29y

ZHM+PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzPC9LZXl3b3Jkcz48

UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI1PC9TdGFydF9QYWdlPjxFbmRf

UGFnZT4zNzwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+R2VuZTwvUGVyaW9kaWNhbD48Vm9sdW1lPjcw

PC9Wb2x1bWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5HZW5lPC9mPjwv

WlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURM

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlN0cmF1Y2g8L0F1dGhvcj48WWVhcj4xOTg4PC9ZZWFyPjxS

ZWNOdW0+NzcyPC9SZWNOdW0+PElEVGV4dD5DbG9uaW5nIG9mIGEgcGhvc3BoaW5vdGhyaWNpbiBO

LWFjZXR5bHRyYW5zZmVyYXNlIGdlbmUgZnJvbSBTdHJlcHRvbXljZXMgdmlyaWRvY2hyb21vZ2Vu

ZXMgVMO8NDk0IGFuZCBpdHMgZXhwcmVzc2lvbiBpbiBTdHJlcHRvbXljZXMgbGl2aWRhbnMgYW5k

IEVzY2hlcmljaGlhIGNvbGk8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5

cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD43NzI8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5D

bG9uaW5nIG9mIGEgcGhvc3BoaW5vdGhyaWNpbiBOLWFjZXR5bHRyYW5zZmVyYXNlIGdlbmUgZnJv

bSA8aT5TdHJlcHRvbXljZXMgdmlyaWRvY2hyb21vZ2VuZXM8L2k+IFQmI3hGQzs0OTQgYW5kIGl0

cyBleHByZXNzaW9uIGluIDxpPlN0cmVwdG9teWNlcyBsaXZpZGFuczwvaT4gYW5kIDxpPkVzY2hl

cmljaGlhIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U3RyYXVjaCxF

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29obGxlYmVuLFcuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QJiN4RkM7aGxlcixBLjwvQXV0aG9yc19QcmltYXJ5

PjxEYXRlX1ByaW1hcnk+MTk4ODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5Fc2NoZXJpY2hpYSBj

b2xpPC9LZXl3b3Jkcz48S2V5d29yZHM+R2x1dGFtaW5lPC9LZXl3b3Jkcz48UmVwcmludD5Ob3Qg

aW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT42NTwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+NzQ8

L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkdlbmU8L1BlcmlvZGljYWw+PFZvbHVtZT42MzwvVm9sdW1l

PjxJc3N1ZT4xPC9Jc3N1ZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPkdl

bmU8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3Jt

SUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA (Wohlleben et al., 1988; Strauch et al., 1988) used in plasmid pDAB4468 is 552 bp in length and has been optimised for expression in plants. It is driven constitutively by a promoter region of the Cassava vein mosaic virus and terminated by a sequence of the 3'untranslated region of an open reading frame originating from plasmid pTi5955 of Agrobacterium tumefaciens. Breeding to obtain soybean line DAS-44406-6A breeding programme was undertaken for the purposes of:obtaining generations suitable for analysing the molecular and genetic characteristics of soybean 44406 ensuring that the DAS-44406-6 event is incorporated into elite proprietary breeding line(s) for commercialisation.. The breeding pedigree for the various generations is given in Figure 3.Following selection of T0 plants (see Section REF _Ref267918845 \r \h \* MERGEFORMAT 3.1) a series of self-fertilisation and seed bulking crosses proceeded up to generation T6. At the T2 generation, plants were crossed with a number of elite lines to produce an F1 generation which was either self-fertilised to produce an F2 generation, or backcrossed to the appropriate parental elite cultivar. Figure 3 also indicates the generations that were used in the various studies characterising soybean 44406-6.Figure SEQ Figure \* ARABIC 3: Breeding strategy for plants containing event DAS-44406-6Characterisation of the genes in the plantA range of analyses was undertaken to characterise the genetic modification in soybean line 44406. These included: determination of insert copy number and integrity; and DNA sequence and ORF analysis of inserted DNA as well as flanking and junction regions.Transgene copy number, insertion integrity and plasmid backbone analysisTotal genomic DNA from greenhouse-grown, leaf tissue of individual soybean 44406 seedlings (3 plants/generation) from each of five generations (T2, T3, T4, T6 and F2) and a negative control (non-GM cultivar ‘Maverick’) was used for Southern blot analyses. A positive control (DNA from ‘Maverick’ spiked with T-DNA from plasmid pDAB8264) was also included in the Southern blot analyses. Lateral Flow Strip testing was done of the soybean 44406 seedlings to confirm the presence of the PAT protein. The DNA from soybean 44406 seedlings, the negative control and the positive control was digested with one, or a combination, of restriction enzymes. The resulting DNA fragments were separated and transferred to a membrane for sequential hybridisation with 16 different digoxigenin (DIG)-labelled probes that represented various sections of the T-DNA and vector backbone. The Southern blot analyses indicated there is a single insert in event DAS-44406 and that the arrangement of the T-DNA genetic material is the same as that in the pDAB8264 plasmid (refer to Figure 2). No vector backbone sequences are present in soybean 44406.Additional to these data, the hybridization pattern was the same across the five generations, thus indicating there had been no rearrangements to the inserted DNA and therefore, that the insert was stably inherited across the generations.Insert characterisationGenomic DNA was obtained from leaf tissue of T6 generation soybean 44406 plants and a negative control (cultivar ‘Maverick’). These samples were used to characterise the DNA sequence in the transgene insertion and its flanking border regions. The sequence of the estimated parental locus in cultivar ‘Williams 82’ was used to design primers for cloning the parental locus in ‘Maverick’. ‘Williams 82’ is the elite US cultivar that was chosen for sequencing of the whole soybean genome PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNjaG11dHo8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxS

ZWNOdW0+MTI5MzwvUmVjTnVtPjxJRFRleHQ+R2Vub21lIHNlcXVlbmNlIG9mIHRoZSBwYWxhZW9w

b2x5cGxvaWQgc295YmVhbjwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlw

ZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjEyOTM8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5H

ZW5vbWUgc2VxdWVuY2Ugb2YgdGhlIHBhbGFlb3BvbHlwbG9pZCBzb3liZWFuPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+U2NobXV0eixKLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+Q2Fubm9uLFMuQi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNj

aGx1ZXRlcixKLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWEsSi48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1pdHJvcyxULjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+TmVsc29uLFcuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5IeXRlbixELkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Tb25nLFEuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UaGVsZW4sSi5KLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2hlbmcsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Plh1LEQuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZWxsc3RlbixV

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWF5LEcuRC48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5Pll1LFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5TYWt1cmFpLFQuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5VbWV6YXdh

LFQuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CaGF0dGFjaGFyeXlhLE0uSy48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNhbmRodSxELjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+VmFsbGl5b2RhbixCLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+TGluZHF1aXN0LEUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5QZXRvLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HcmFudCxELjwvQXV0

aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2h1LFMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Hb29kc3RlaW4sRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkJhcnJ5LEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5GdXRyZWxsLUdy

aWdncyxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWJlcm5hdGh5LEIuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EdSxKLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+VGlhbixaLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

Wmh1LEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HaWxsLE4uPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Kb3NoaSxULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+TGliYXVsdCxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

U2V0aHVyYW1hbixBLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhhbmcsWC5D

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2hpbm96YWtpLEsuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5OZ3V5ZW4sSC5ULjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+V2luZyxSLkEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5DcmVnYW4sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNwZWNodCxKLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3JpbXdvb2QsSi48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PlJva2hzYXIsRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlN0YWNleSxHLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2hv

ZW1ha2VyLFIuQy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkphY2tzb24sUy5B

LjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMC8xLzE0PXByaW50PC9EYXRlX1By

aW1hcnk+PEtleXdvcmRzPnNveWJlYW48L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9S

ZXByaW50PjxTdGFydF9QYWdlPjE3ODwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+MTgzPC9FbmRfUGFn

ZT48UGVyaW9kaWNhbD5OYXR1cmU8L1BlcmlvZGljYWw+PFZvbHVtZT40NjM8L1ZvbHVtZT48SXNz

dWU+NzI3ODwvSXNzdWU+PElTU05fSVNCTj4wMDI4LTA4MzY8L0lTU05fSVNCTj48V2ViX1VSTD5o

dHRwOi8vZHguZG9pLm9yZy8xMC4xMDM4L25hdHVyZTA4NjcwPC9XZWJfVVJMPjxXZWJfVVJMX0xp

bmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0g

c2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xTY2htdXR6IGV0IGFsXzIwMTBfc295YmVh

biBnZW5vbWUgc2VxdWVuY2UucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48WlpfSm91cm5hbFN0ZEFi

YnJldj48ZiBuYW1lPSJTeXN0ZW0iPk5hdHVyZTwvZj48L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpa

X1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PC9SZWZtYW4+AG==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNjaG11dHo8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxS

ZWNOdW0+MTI5MzwvUmVjTnVtPjxJRFRleHQ+R2Vub21lIHNlcXVlbmNlIG9mIHRoZSBwYWxhZW9w

b2x5cGxvaWQgc295YmVhbjwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlw

ZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjEyOTM8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5H

ZW5vbWUgc2VxdWVuY2Ugb2YgdGhlIHBhbGFlb3BvbHlwbG9pZCBzb3liZWFuPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+U2NobXV0eixKLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+Q2Fubm9uLFMuQi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNj

aGx1ZXRlcixKLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWEsSi48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1pdHJvcyxULjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+TmVsc29uLFcuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5IeXRlbixELkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Tb25nLFEuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UaGVsZW4sSi5KLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2hlbmcsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Plh1LEQuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZWxsc3RlbixV

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWF5LEcuRC48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5Pll1LFkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5TYWt1cmFpLFQuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5VbWV6YXdh

LFQuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CaGF0dGFjaGFyeXlhLE0uSy48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNhbmRodSxELjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+VmFsbGl5b2RhbixCLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+TGluZHF1aXN0LEUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5QZXRvLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HcmFudCxELjwvQXV0

aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2h1LFMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Hb29kc3RlaW4sRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkJhcnJ5LEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5GdXRyZWxsLUdy

aWdncyxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWJlcm5hdGh5LEIuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EdSxKLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+VGlhbixaLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

Wmh1LEwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HaWxsLE4uPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Kb3NoaSxULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+TGliYXVsdCxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

U2V0aHVyYW1hbixBLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhhbmcsWC5D

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2hpbm96YWtpLEsuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5OZ3V5ZW4sSC5ULjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+V2luZyxSLkEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5DcmVnYW4sUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNwZWNodCxKLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3JpbXdvb2QsSi48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PlJva2hzYXIsRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlN0YWNleSxHLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2hv

ZW1ha2VyLFIuQy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkphY2tzb24sUy5B

LjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMC8xLzE0PXByaW50PC9EYXRlX1By

aW1hcnk+PEtleXdvcmRzPnNveWJlYW48L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9S

ZXByaW50PjxTdGFydF9QYWdlPjE3ODwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+MTgzPC9FbmRfUGFn

ZT48UGVyaW9kaWNhbD5OYXR1cmU8L1BlcmlvZGljYWw+PFZvbHVtZT40NjM8L1ZvbHVtZT48SXNz

dWU+NzI3ODwvSXNzdWU+PElTU05fSVNCTj4wMDI4LTA4MzY8L0lTU05fSVNCTj48V2ViX1VSTD5o

dHRwOi8vZHguZG9pLm9yZy8xMC4xMDM4L25hdHVyZTA4NjcwPC9XZWJfVVJMPjxXZWJfVVJMX0xp

bmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0g

c2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xTY2htdXR6IGV0IGFsXzIwMTBfc295YmVh

biBnZW5vbWUgc2VxdWVuY2UucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48WlpfSm91cm5hbFN0ZEFi

YnJldj48ZiBuYW1lPSJTeXN0ZW0iPk5hdHVyZTwvZj48L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpa

X1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PC9SZWZtYW4+AG==

ADDIN EN.CITE.DATA (Schmutz et al., 2010). Standard polymerase chain reaction (PCR) was used to clone the insert and border sequences of event DAS-44406-6 and then obtain the sequences by primer walking. In total, eight fragments were cloned and sequenced. DNA sequencing analysis was done using commercially available software (Sequencher?). The total cloned sequences of DAS-44406-6 comprised 13,659 bp, consisting of 1,495 bp of 5’ flanking sequences, 1885 bp of 3’ flanking sequences and 10,280 bp of the T-DNA insert from plasmid pDAB8264. The sequence analysis revealed a 3bp insertion at the 5’ integration junction and also confirmed that all inserted sequences originate from the T-DNA of the transforming pDAB8264 plasmid.Following the sequence analysis, a bioinformatic search was undertaken using the BLASTn algorithm to compare the 5’ and 3’ border sequences with sequences in the soybean genome from ‘Williams 82’ (for a general discussion of this type of analysis refer to Section 4.5.2). This indicated a 99% identity with a segment of Chromosome 6 of ‘Williams 82’ and therefore confirmed that the flanking sequences in event DAS-44406-6 are of Glycine max origin. Sequence alignment of the parental locus in ‘Maverick’ with the full sequence of the DAS-44406-6 insert and flanking regions, indicated that there has been a deletion of a 4,383 bp fragment from the parental locus during the T-DNA integration in DAS-44406-6. Within this deletion, an open reading frame (ORF) of 777 bp was identified; no analysis was done to ascertain whether this ORF was associated with a promoter and/or terminator. A BLASTp search of the ORF against sequences in GenBank (see Section 4.5.2) did not identify any similarity to known proteins i.e. it does not appear that there has been disruption to any known endogenous genes as a result of the deletion.Novel open reading frame analysisTwo separate in silico analyses of the whole insert and the flanking regions (5’ -1494?bp and 3’ - 1885?bp) were done to determine whether any novel ORFs had been created. Each analysis comprised a search of six-frame translations between stop codons regardless of the presence of a start codon or the number of amino acid residues coded by the nucleotide sequence.A total of 651 ORFs within the T-DNA insert were identified. Twelve ORFs were identified in the flanking regions (see REF _Ref283037475 \h \* MERGEFORMAT Table 2). Discussion of the analysis of the novel ORFs is given in Section 4.1.Table SEQ Table \* ARABIC 2: Location and characterisation of novel ORFs in the flanking regionsLocation of flanking regionNucleotide location of reading frameNumber of amino acids codedDeduced amino acid sequence5’ border1483 - 155424GHHGGPNSLKLESSQLRSTGQIRS1307 -150767RVGPDIVACYWGFLSVACVLHYCMGLAHPTIQCIFMCDNVMGFYCSCCFLFRNLHVNGKVIMEVRIV_1476 - 15029TVRSSWRSE11943 - 1177325FQTIRTSMMTLPFTCKFLKRKQQEQ1553 - 491 21ERIWPVDLNCELSNFKLFGPP1534 - 146922TSIASFLISNYSDLHDDLTVYM3’ border11737 - 1179018IYPAPASQQLDLQRTNVV11726 - 1201998FTIEYILPQPANSSIYRERMSCDMWNKATTTTYMNLTIESGSPSCDVIHGMDMVADRKRKKKCMYMCENESFFYPNNKKKLIIYPKNYLHDRYVHFFP_11682 - 1182548KRPQCVIKLSKRQFDLQLNISCPSQPTARFTENECRVICGTRQRQQHT_11943 - 1177357KKLSFSHIYMHFFFLFRSATMSMPWITSQLGDPDSIVRFMYVVVVALFHISHDIRSL_11831 - 1173034DSCMLLSLPCSTYHTTFVLCKSSCWLAGAGYIQL11965 - 1172082FFFIIWIKKTLIFTHIHAFLFSFSIGHHVHAMDYITTRRPRLYCEIHVCCCRCLVPHITRHSFSVNRAVGWLGQDIFNCKSN_Stability of the genetic changes The concept of stability encompasses both the genetic and phenotypic stability of the introduced trait over a number of generations. Genetic stability refers to maintenance of the modification over successive generations, as produced in the initial transformation event. It is best assessed by molecular techniques, such as Southern analysis or PCR, using probes and primers that cover the entire insert and flanking regions. Phenotypic stability refers to the expressed trait remaining unchanged over successive generations. It is often quantified by a trait inheritance analysis to determine Mendelian heritability via assay techniques (chemical, molecular, visual).Phenotypic stability was assessed using greenhouse-grown plants of a segregating F2 generation of soybean 44406 generated by crossing T2 plants with an elite non-GM line taken from the Applicant’s soybean germplasm development programme. The F1 plants were self-pollinated to obtain the F2 generation (refer to Figure 3). Leaves of 119 F2 soybean 44406 plants were analysed by Lateral Flow Strip testing for expression of the PAT protein. A Chi squared (Χ2) analysis of the results was done for the 3:1 segregation ratio of PAT positive versus negative plants. A total of 96 plants were positive for PAT while 23 were negative. The Χ2 value of 2.042 (P>0.05) indicated that the segregation ratio was consistent with the Mendelian inheritance pattern of a single dominant trait.All 119 plants were also tested by event-specific PCR for the presence/absence of the DAS-44406-6 insert. The results were entirely consistent with the PAT protein results i.e. all plants testing positive for PAT also tested positive for the insert, and all plants testing negative for PAT also tested negative for the insert.The genetic stability of event DAS-44406-6 in the soybean genome was established by the experimental work described in Section 3.4.1 in which the hybridisation pattern of the event was shown to be identical across the T2, T3,T4, T6 and F2 generations.Antibiotic resistance marker genesNo antibiotic marker genes are present in soybean 44406. Plasmid backbone analysis shows that no plasmid backbone has been integrated into the soybean genome during transformation, i.e. the Spec gene, which was used as a bacterial selectable marker gene, is not present in soybean 44406.3.7 ConclusionComprehensive molecular analyses of soybean line DAS-44406-6 indicate that a single copy of T-DNA containing three expression cassettes for the genes 2m epsps, aad-12 and pat has been inserted at a single locus in Chromosome 6 of the soybean genome. No DNA sequences from the backbone of the transformation vector, including antibiotic resistance marker genes, were transferred to the plant. As a result of the integration of the three expression cassettes, there is a 3 bp insertion at the 5’ junction region and a deletion of 4,385 bp of host DNA. The introduced genetic elements are stably inherited from one generation to the next.Characterisation of novel proteinsIn considering the safety of novel proteins it is important to consider that a large and diverse range of proteins are ingested as part of the normal human diet without any adverse effects, although a small number have the potential to impair health, e.g. because they are allergens or anti-nutrients ADDIN REFMGR.CITE <Refman><Cite><Author>Delaney</Author><Year>2008</Year><RecNum>288</RecNum><IDText>Evaluation of protein safety in the context of agricultural biotechnology</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>288</Ref_ID><Title_Primary>Evaluation of protein safety in the context of agricultural biotechnology</Title_Primary><Authors_Primary>Delaney,B.</Authors_Primary><Authors_Primary>Astwood,J.D.</Authors_Primary><Authors_Primary>Cunny,H.</Authors_Primary><Authors_Primary>Eichen Conn,R.</Authors_Primary><Authors_Primary>Herouet-Guicheney,C.</Authors_Primary><Authors_Primary>MacIntosh,S.</Authors_Primary><Authors_Primary>Meyer,L.S.</Authors_Primary><Authors_Primary>Privalle,L.S.</Authors_Primary><Authors_Primary>Gao,Y.</Authors_Primary><Authors_Primary>Mattsson,J.</Authors_Primary><Authors_Primary>Levine,M.</Authors_Primary><Authors_Primary>ILSI</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>Safety</Keywords><Keywords>Proteins</Keywords><Keywords>methods</Keywords><Keywords>Amino Acid Sequence</Keywords><Reprint>In File</Reprint><Start_Page>S71</Start_Page><End_Page>S97</End_Page><Periodical>Food and Chemical Toxicology</Periodical><Volume>46</Volume><Web_URL_Link3><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Delaney et al_2008_Protein Safety.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Food and Chemical Toxicology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Delaney et al., 2008). As proteins perform a wide variety of functions, different possible effects have to be considered during the safety assessment including potential toxic, anti-nutritional and allergenic effects. To effectively identify any potential hazards requires knowledge of the characteristics, concentration and localisation of all novel proteins expressed in the organism as well as a detailed understanding of their biochemical function and phenotypic effects. It is also important to determine if the novel protein is expressed as expected, including whether any post-translational modifications have occurred.Two types of novel proteins were considered:those that may be potentially generated as a result of the creation of novel open reading frames during the introduction of the T-DNA of plasmid pDAB8264 (see Section 3.4.3)those that were expected to be produced as a result of the expression of the introduced genes. Soybean 44406 expresses three novel proteins, 2m EPSPS, AAD-12, and PAT.Potential allergenicity/toxicity of ORFs created by the transformation procedureStudy submitted:Guttikonda, S. (2012). Bioinformatics evaluation of the putative reading frames across the whole T-DNA insert and junctions in DAS-44406-6 soybean for potential protein allergenicity and toxicity. Study ID# 120481, Dow AgroSciences (unpublished).Twelve novel ORFs were identified in the flanking regions and 651 in the T-DNA insert itself, in event DAS-44406-6 (refer to Section 3.4.3). The amino acid sequences corresponding to these ORFs were analysed for potential allergenicity and toxicity using an in silico approach. These analyses are entirely theoretical since there is no reason to expect that any of the identified ORFs would, in fact, be expressed.Allergenicity assessmentThe amino acid sequence of each identified ORF was compared with a peer-reviewed database containing 1,603 known and putative allergens, as well as celiac-induction sequences, residing in the FARRP (Food Allergy Research and Resource Program) dataset (Version 12) within AllergenOnline (University of Nebraska; http:). Of the 12 ORFs identified in the flanking regions (see Table 2), only six were longer than 29 amino acids (the number required to satisfy >35% identity over at least 80 amino acids). These six underwent a similarity search using the FASTA algorithm and the BLOSUM50 scoring matrix (for general information of this type of analysis see Section 4.6.2). No similarities with known allergens were found. All of the ORFs were screened for any matches of eight contiguous amino acids to known allergens. No matches of eight or more contiguous amino acids were found in any of the sequences.Similarly, for the T-DNA, no matches of eight or more contiguous amino acids were found for any of the sequences. A total of 441 of the ORFs were less than 29 amino acids; of the 210 remaining ORFs searched using the FASTA algorithm, no similarities with known allergens were found.Toxicity assessmentThe sequences corresponding to the 12 identified ORFs in the flanking regions were compared with protein sequences present in a number of large public reference databases including Uniprot_Swissprot, PIR (Protein Information Resource), PRF (Protein Research Foundation) and PDB (Protein Data Bank). The similarity searches used the BLASTP (Basic Local Alignment Search Tool Protein) algorithm (refer to Section 4.5.2 for an explanation). No significant similarities of the 12 ORFs to any sequences (including those of known toxins) in the databases were found. The BLASTP search of the T-DNA insert sequences returned 10 ORFs that showed alignments with an E-value <1.0 (for explanation see Section 4.5.2). As expected, three of the alignments were with 2m EPSPS, AAD-12 and PAT. None of the other significant alignments were related to any known protein toxins.ConclusionIt is concluded that, in the unlikely event that any of the identified ORFs were expressed, there is no significant similarity between the encoded sequences and any known protein toxins or allergens.Function and phenotypic effects of the 2m EPSPS, AAD-12 and PAT proteins2m EPSPS proteinGlyphosate acts as a herbicide by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This endogenous enzyme is involved in the shikimate pathway for aromatic amino acid biosynthesis which occurs exclusively in plants and microorganisms, including fungi. Inhibition of the wild type EPSPS enzyme by glyphosate leads to deficiencies in aromatic amino acids in plant cells and eventually to the death of the whole plant. The shikimate biochemical pathway is not present in animals. For this reason, enzymes of the shikimate pathway have been considered as potential targets for essentially non-toxic herbicides (such as glyphosate) and antimicrobial compounds.Naturally occurring EPSPS proteins are widespread in nature and have been extensively studied over a period of more than thirty years. The modified 2mEPSPS protein present in soybean 44406 differs from the wild type maize enzyme by two amino acid substitutions – threonine replaced by isoleucine at position 102, and proline replaced by serine at position 106 ADDIN REFMGR.CITE <Refman><Cite><Author>Lebrun</Author><Year>1997</Year><RecNum>815</RecNum><IDText>Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>815</Ref_ID><Title_Primary>Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene</Title_Primary><Authors_Primary>Lebrun,M.</Authors_Primary><Authors_Primary>Sailland,A.</Authors_Primary><Authors_Primary>Freyssinet,G.</Authors_Primary><Date_Primary>1997</Date_Primary><Keywords>Plants</Keywords><Keywords>Threonine</Keywords><Keywords>Isoleucine</Keywords><Reprint>Not in File</Reprint><Issue>WO/9704103 A2</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Lebrun et al_1997_2mepsps patent.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>(Lebrun et al., 1997). These two amino acid changes result in a protein with greater than 99.5% identity to the native maize EPSPS protein. However the modification confers a decreased binding affinity for glyphosate thus allowing the protein to maintain an adequate level of enzymatic activity in the presence of the herbicide. Plants expressing the modified maize enzyme therefore are able to continue to function in the presence of the herbicide. The commercial soybean cultivar ‘Maverick’, used as the parent for the genetic modification described in this application, contains a wild type EPSPS protein.AAD-12 proteinThe native AAD-12 (GenBank Accession AAP88277) is an α-ketoglutarate dependent dioxygenase that catalyses the breakdown of pyridyloxyacetate auxins and achiral phenoxy auxins to an intermediate that, itself, is then spontaneously broken down to a herbicidally inactive phenol and glyoxylate (refer to Figure 4). In the case of soybean 44406, the active herbicide that would be applied is 2,4-D and the inactive phenol produced would be 2,4-dichlorophenol (DCP). Such side-chain degradation of 2,4-D has been observed in many conventional plants ADDIN REFMGR.CITE <Refman><Cite><Author>IPCS</Author><Year>1984</Year><RecNum>902</RecNum><IDText>2,4-Dichlorophenoxyacetic acid (2,4-D)</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>902</Ref_ID><Title_Primary>2,4-Dichlorophenoxyacetic acid (2,4-D)</Title_Primary><Authors_Primary>IPCS</Authors_Primary><Date_Primary>1984</Date_Primary><Keywords>2,4-Dichlorophenoxyacetic Acid</Keywords><Reprint>Not in File</Reprint><Volume>Environmental Health Criteria 29</Volume><Publisher>International Programme on Chemical Safety INCHEM</Publisher><Web_URL><u>;(IPCS, 1984) albeit to a limited degree not necessarily associated with tolerance to 2,4-D.Native AAD-12 is also known as (S)-phenoxypropionate/α-ketoglutarate-dioxygenase (SdpA) and is one of two enantiospecific enzymes that occurs in Delftia acidovorans. While RdpA is highly specific to the R enantiomer of 2-phenoxypropionates and shows weak activity towards phenoxyacetates, SdpA is enantioselective to the S enantiomers but can also convert certain phenoxyacetates such as 2,4-D and 4-chloro-2-methylphenoxyacetate (MCPA) ADDIN REFMGR.CITE <Refman><Cite><Author>Paulin</Author><Year>2010</Year><RecNum>777</RecNum><IDText>Abundance and expression of enantioselective rdpA and sdpA dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>777</Ref_ID><Title_Primary>Abundance and expression of enantioselective <i>rdpA</i> and <i>sdpA</i> dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil</Title_Primary><Authors_Primary>Paulin,M.M.</Authors_Primary><Authors_Primary>Nicolaisen,M.H.</Authors_Primary><Authors_Primary>Sorensen,J.</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>Soil</Keywords><Keywords>Genes</Keywords><Reprint>In File</Reprint><Start_Page>2873</Start_Page><End_Page>2883</End_Page><Periodical>Applied and Environmental Microbiology</Periodical><Volume>76</Volume><Issue>9</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Paulin et al_2010_sdpA.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Applied and Environmental Microbiology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Paulin et al., 2010). The term AAD-12 to describe SdpA was first used by Wright et al. ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>Wright</Author><Year>2007</Year><RecNum>568</RecNum><IDText>Novel herbicide resistance genes</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>568</Ref_ID><Title_Primary>Novel herbicide resistance genes</Title_Primary><Authors_Primary>Wright,T.R.</Authors_Primary><Authors_Primary>Lira,J.M.</Authors_Primary><Authors_Primary>Walsh,T.</Authors_Primary><Authors_Primary>Merlo,D.J.</Authors_Primary><Authors_Primary>Jayakumar,P.</Authors_Primary><Authors_Primary>Lin,G.</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>Genes</Keywords><Keywords>Plants</Keywords><Keywords>Herbicides</Keywords><Keywords>methods</Keywords><Reprint>In File</Reprint><Issue>World Patent 2007/053482 A2</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Wright et al_2007_herbicide resist patent.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>( 2007). AAD-12 is closely related to AAD-1, a protein conferring tolerance to 2,4-D and quizalofop-P-ethyl, that was considered in Application A1042 ADDIN REFMGR.CITE <Refman><Cite><Author>FSANZ</Author><Year>2010</Year><RecNum>888</RecNum><IDText>Application A1042 - Food derived from herbicide-tolerant corn line DAS-40278-9</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>888</Ref_ID><Title_Primary>Application A1042 - Food derived from herbicide-tolerant corn line DAS-40278-9</Title_Primary><Authors_Primary>FSANZ</Authors_Primary><Date_Primary>2010</Date_Primary><Reprint>Not in File</Reprint><Publisher>Report prepared by Food Standards Australia New Zealand</Publisher><Web_URL><u>;(FSANZ, 2010). AAD-12 has significantly greater in vitro activity on 2,4-D than AAD-1 PFJlZm1hbj48Q2l0ZT48QXV0aG9yPldyaWdodDwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJl

Y051bT44NjM8L1JlY051bT48SURUZXh0PlJvYnVzdCBjcm9wIHJlc2lzdGFuY2UgdG8gYnJvYWRs

ZWFmIGFuZCBncmFzcyBoZXJiaWNpZGVzIHByb3ZpZGVkIGJ5IGFyeWxveHlhbGthbm9hdGUgZGlv

eHlnZW5hc2UgdHJhbnNnZW5lczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZf

VHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjg2MzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5

PlJvYnVzdCBjcm9wIHJlc2lzdGFuY2UgdG8gYnJvYWRsZWFmIGFuZCBncmFzcyBoZXJiaWNpZGVz

IHByb3ZpZGVkIGJ5IGFyeWxveHlhbGthbm9hdGUgZGlveHlnZW5hc2UgdHJhbnNnZW5lczwvVGl0

bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldyaWdodCxULlIuPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5TaGFuLEcuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5XYWxzaCxULkEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaXJhLEouTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkN1aSxDLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U29uZyxQLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+Wmh1YW5nLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Bcm5vbGQsTi5M

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGluLEcuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5ZYXUsSy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PlJ1c3NlbGwsUy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2ljY2hp

bGxvLFIuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBldGVyc29uLE0uQS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNpbXBzb24sRC5NLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhvdSxOLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+UG9uc2FtdWVsLEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5a

aGFuZyxaLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9QcmltYXJ5

PjxLZXl3b3Jkcz5IZXJiaWNpZGVzPC9LZXl3b3Jkcz48S2V5d29yZHM+Miw0LURpY2hsb3JvcGhl

bm94eWFjZXRpYyBBY2lkPC9LZXl3b3Jkcz48S2V5d29yZHM+RW56eW1lczwvS2V5d29yZHM+PEtl

eXdvcmRzPm1haXplPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+QXJhYmlkb3BzaXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5zb3liZWFuPC9LZXl3b3Jkcz48UmVw

cmludD5JbiBGaWxlPC9SZXByaW50PjxQZXJpb2RpY2FsPlByb2NlZWRpbmdzIG9mIHRoZSBOYXRp

b25hbCBBY2FkZW15IG9mIFNjaWVuY2VzPC9QZXJpb2RpY2FsPjxWb2x1bWU+ZVB1YiwgZG9pOjEw

MTA3My9wbmFzLjEwMTMxNTQxMDc8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnBuYXMu

b3JnL2NvbnRlbnQvZWFybHkvMjAxMC8xMS8wNS8xMDEzMTU0MTA3LmZ1bGwucGRmPC91PjwvV2Vi

X1VSTD48V2ViX1VSTF9MaW5rMj48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0gQ2hlbWlj

YWwgU2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcV3JpZ2h0IGV0

IGFsXzIwMTBfYWFkLTEgYW5kIGFhZC0xMi5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxXZWJfVVJM

X0xpbmszPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01P

IC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xXcmlnaHQgZXQgYWxfMjAxMF9zdXBw

bGVtZW50YXJ5IGluZm8ucGRmPC91PjwvV2ViX1VSTF9MaW5rMz48WlpfSm91cm5hbEZ1bGw+PGYg

bmFtZT0iU3lzdGVtIj5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9uYWwgQWNhZGVteSBvZiBTY2ll

bmNlczwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+

PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPldyaWdodDwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJl

Y051bT44NjM8L1JlY051bT48SURUZXh0PlJvYnVzdCBjcm9wIHJlc2lzdGFuY2UgdG8gYnJvYWRs

ZWFmIGFuZCBncmFzcyBoZXJiaWNpZGVzIHByb3ZpZGVkIGJ5IGFyeWxveHlhbGthbm9hdGUgZGlv

eHlnZW5hc2UgdHJhbnNnZW5lczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZf

VHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjg2MzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5

PlJvYnVzdCBjcm9wIHJlc2lzdGFuY2UgdG8gYnJvYWRsZWFmIGFuZCBncmFzcyBoZXJiaWNpZGVz

IHByb3ZpZGVkIGJ5IGFyeWxveHlhbGthbm9hdGUgZGlveHlnZW5hc2UgdHJhbnNnZW5lczwvVGl0

bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldyaWdodCxULlIuPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5TaGFuLEcuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5XYWxzaCxULkEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaXJhLEouTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkN1aSxDLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U29uZyxQLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+Wmh1YW5nLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Bcm5vbGQsTi5M

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGluLEcuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5ZYXUsSy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PlJ1c3NlbGwsUy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2ljY2hp

bGxvLFIuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBldGVyc29uLE0uQS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNpbXBzb24sRC5NLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WmhvdSxOLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+UG9uc2FtdWVsLEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5a

aGFuZyxaLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9QcmltYXJ5

PjxLZXl3b3Jkcz5IZXJiaWNpZGVzPC9LZXl3b3Jkcz48S2V5d29yZHM+Miw0LURpY2hsb3JvcGhl

bm94eWFjZXRpYyBBY2lkPC9LZXl3b3Jkcz48S2V5d29yZHM+RW56eW1lczwvS2V5d29yZHM+PEtl

eXdvcmRzPm1haXplPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+QXJhYmlkb3BzaXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5zb3liZWFuPC9LZXl3b3Jkcz48UmVw

cmludD5JbiBGaWxlPC9SZXByaW50PjxQZXJpb2RpY2FsPlByb2NlZWRpbmdzIG9mIHRoZSBOYXRp

b25hbCBBY2FkZW15IG9mIFNjaWVuY2VzPC9QZXJpb2RpY2FsPjxWb2x1bWU+ZVB1YiwgZG9pOjEw

MTA3My9wbmFzLjEwMTMxNTQxMDc8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnBuYXMu

b3JnL2NvbnRlbnQvZWFybHkvMjAxMC8xMS8wNS8xMDEzMTU0MTA3LmZ1bGwucGRmPC91PjwvV2Vi

X1VSTD48V2ViX1VSTF9MaW5rMj48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0gQ2hlbWlj

YWwgU2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcV3JpZ2h0IGV0

IGFsXzIwMTBfYWFkLTEgYW5kIGFhZC0xMi5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxXZWJfVVJM

X0xpbmszPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01P

IC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xXcmlnaHQgZXQgYWxfMjAxMF9zdXBw

bGVtZW50YXJ5IGluZm8ucGRmPC91PjwvV2ViX1VSTF9MaW5rMz48WlpfSm91cm5hbEZ1bGw+PGYg

bmFtZT0iU3lzdGVtIj5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9uYWwgQWNhZGVteSBvZiBTY2ll

bmNlczwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+

PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN EN.CITE.DATA (Wright et al., 2010b).Figure SEQ Figure \* ARABIC 4: General representation of the conversion of pyridyloxyacetate and phenoxyacetate herbicides to an inactive phenol in the presence of AAD-12 (Diagram modified from Wright et al. (2007)). The structures of 2,4-D and its inactive phenol, DCP, are given in the rectangles.PAT proteinMembers of the genus Streptomyces produce antibiotics, one of which is bialaphos. These bacteria have evolved a mechanism to avoid the toxicity of their own products. Thus the pat gene from Streptomyces viridochromogenes and the bar gene from S. hygroscopicus both confer tolerance to bialaphos ADDIN REFMGR.CITE <Refman><Cite><Author>Wehrmann</Author><Year>1996</Year><RecNum>317</RecNum><IDText>The similarities of bar and pat gene products make them equally applicable for plant engineers</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>317</Ref_ID><Title_Primary>The similarities of <i>bar</i> and <i>pat</i> gene products make them equally applicable for plant engineers</Title_Primary><Authors_Primary>Wehrmann,A.</Authors_Primary><Authors_Primary>Van Vliet,A.</Authors_Primary><Authors_Primary>Opsomer,C.</Authors_Primary><Authors_Primary>Botterman,J.</Authors_Primary><Authors_Primary>Schulz,A.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Soybeans</Keywords><Keywords>Genes</Keywords><Keywords>Genetic Engineering</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Proteins</Keywords><Keywords>Plants</Keywords><Keywords>Molecular Weight</Keywords><Keywords>Digestion</Keywords><Keywords>Human</Keywords><Reprint>In File</Reprint><Start_Page>1274</Start_Page><End_Page>1278</End_Page><Periodical>Nature Biotechnology</Periodical><Volume>14</Volume><ZZ_JournalFull><f name="System">Nature Biotechnology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Wehrmann et al., 1996). Bialaphos, now also used as a non-selective herbicide, is a tripeptide composed of two L-alanine residues and an analogue of glutamate known as L-phosphinothricin (L-PPT) ADDIN REFMGR.CITE <Refman><Cite><Author>Thompson</Author><Year>1987</Year><RecNum>342</RecNum><IDText>Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus</IDText><Prefix>see </Prefix><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>342</Ref_ID><Title_Primary>Characterization of the herbicide-resistance gene <i>bar</i> from <i>Streptomyces hygroscopicus</i></Title_Primary><Authors_Primary>Thompson,C.J.</Authors_Primary><Authors_Primary>Movva,N.R.</Authors_Primary><Authors_Primary>Tizard,R.</Authors_Primary><Authors_Primary>Crameri,R.</Authors_Primary><Authors_Primary>Davies,J.E.</Authors_Primary><Authors_Primary>Lauwereys,M.</Authors_Primary><Authors_Primary>Botterman,J.</Authors_Primary><Date_Primary>1987</Date_Primary><Keywords>Glutamine</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Bacteria</Keywords><Keywords>Plants</Keywords><Reprint>In File</Reprint><Start_Page>2519</Start_Page><End_Page>2523</End_Page><Periodical>The EMBO Journal</Periodical><Volume>6</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Thompson et al_1987_bar gene.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">The EMBO Journal</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(see Thompson et al., 1987) more recently known also as glufosinate ammonium. Free L-PPT released from bialaphos by peptidases (or applied directly as a synthetic herbicide) inhibits glutamine synthetase which in turn leads to rapid accumulation of ammonia and subsequent cell death. The homologous polypeptide produced by the bar and pat genes (see Section 3.2.3) is known as phosphinothricin acetyltransferase (PAT); it is an acetyl transferase with enzyme specificity for both L-PPT and demethylphosphinothricin (DMPT) in the acetylation reaction (Thompson et al., 1987). In the presence of acetyl-CoA, PAT catalyses the acetylation of the free amino group of L-PPT to N-acetyl-L-PPT, a herbicidally-inactive compound. The kinetics and substrate specificity of the PAT enzyme are well characterised; it has a high specificity for L-PPT and has been shown to have a very low affinity to related compounds and amino acids; even excess glutamate is unable to block the L-PPT-acetyltransferase reaction ADDIN REFMGR.CITE <Refman><Cite><Author>Thompson</Author><Year>1987</Year><RecNum>342</RecNum><IDText>Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>342</Ref_ID><Title_Primary>Characterization of the herbicide-resistance gene <i>bar</i> from <i>Streptomyces hygroscopicus</i></Title_Primary><Authors_Primary>Thompson,C.J.</Authors_Primary><Authors_Primary>Movva,N.R.</Authors_Primary><Authors_Primary>Tizard,R.</Authors_Primary><Authors_Primary>Crameri,R.</Authors_Primary><Authors_Primary>Davies,J.E.</Authors_Primary><Authors_Primary>Lauwereys,M.</Authors_Primary><Authors_Primary>Botterman,J.</Authors_Primary><Date_Primary>1987</Date_Primary><Keywords>Glutamine</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Bacteria</Keywords><Keywords>Plants</Keywords><Reprint>In File</Reprint><Start_Page>2519</Start_Page><End_Page>2523</End_Page><Periodical>The EMBO Journal</Periodical><Volume>6</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Thompson et al_1987_bar gene.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">The EMBO Journal</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Thompson et al., 1987).The acetyltransferase activity is heat- and pH-dependent ADDIN REFMGR.CITE <Refman><Cite><Author>Wehrmann</Author><Year>1996</Year><RecNum>317</RecNum><IDText>The similarities of bar and pat gene products make them equally applicable for plant engineers</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>317</Ref_ID><Title_Primary>The similarities of <i>bar</i> and <i>pat</i> gene products make them equally applicable for plant engineers</Title_Primary><Authors_Primary>Wehrmann,A.</Authors_Primary><Authors_Primary>Van Vliet,A.</Authors_Primary><Authors_Primary>Opsomer,C.</Authors_Primary><Authors_Primary>Botterman,J.</Authors_Primary><Authors_Primary>Schulz,A.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>Soybeans</Keywords><Keywords>Genes</Keywords><Keywords>Genetic Engineering</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Proteins</Keywords><Keywords>Plants</Keywords><Keywords>Molecular Weight</Keywords><Keywords>Digestion</Keywords><Keywords>Human</Keywords><Reprint>In File</Reprint><Start_Page>1274</Start_Page><End_Page>1278</End_Page><Periodical>Nature Biotechnology</Periodical><Volume>14</Volume><ZZ_JournalFull><f name="System">Nature Biotechnology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Wehrmann et al., 1996). PAT is active between temperatures of 25-55oC, with maximum activity occurring between 40 and 45°C. Complete thermoinactivation occurs after 10 minutes at 60°C and above. The optimum pH for PAT activity is 8.5, but it is active over a broad pH range of 6 to 11. The protein is expressed in a wide range of GM crop plants and is regarded as safe ADDIN REFMGR.CITE <Refman><Cite><Author>Hérouet</Author><Year>2005</Year><RecNum>395</RecNum><IDText>Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants</IDText><Prefix>see e.g. </Prefix><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>395</Ref_ID><Title_Primary>Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the <i>pat</i> and <i>bar</i> sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants</Title_Primary><Authors_Primary>H&#xE9;rouet,C.</Authors_Primary><Authors_Primary>Esdaile,D.J.</Authors_Primary><Authors_Primary>Mallyon,B.A.</Authors_Primary><Authors_Primary>Debruyne,E.</Authors_Primary><Authors_Primary>Schulz,A.</Authors_Primary><Authors_Primary>Currier,T.</Authors_Primary><Authors_Primary>Hendrickx,K.</Authors_Primary><Authors_Primary>van der Klis,R.-J.</Authors_Primary><Authors_Primary>Rouan,D.</Authors_Primary><Date_Primary>2005</Date_Primary><Keywords>Safety</Keywords><Keywords>Proteins</Keywords><Keywords>glufosinate ammonium</Keywords><Keywords>Plants</Keywords><Reprint>In File</Reprint><Start_Page>134</Start_Page><End_Page>149</End_Page><Periodical>Regulatory Toxicology and Pharmacology</Periodical><Volume>41</Volume><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Herouet et al_2005_safety of PAT.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Regulatory Toxicology and Pharmacology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(see e.g. Hérouet et al., 2005).Novel protein expression in plant tissuesStudies submitted:Maldonado, P.M. (2011a). Field expression of a transformed soybean cultivar containing aryloxyalkanoate dioxygenase (AAD-12), double mutant maize EPSPS gene (2mEPSPS), and phosphinothricin acetyltransferase (PAT) - event DAS-44406-6. Study ID# 101104.02, Dow AgroSciences (unpublished).Maldonado, P.M. (2011b). Method validation for the determination of 5-enolpyruvylshikimate-3-phosphate synthase (2mEPSPS) protein in soybean tissues by enzyme-linked immunosorbent assay (ELISA). Study ID# 101768, Dow AgroSciences (unpublished).Smith-Drake, J.S.; Sosa, M.J.; Shan, G. (2009a). Method validation for the determination of aryloxyalkanoate dioxygenase-12 (AAD-12) in soybean tissues using and enzyme-linked immunosorbent assay (ELISA). Study ID# 081008, Dow AgroSciences (unpublished) Smith-Drake, J.S.; Sosa, M.J.; Shan, G. (2009b). Method validation for the determination of phosphinothricin acetyltransferase (PAT)) in soybean tissues using an enzyme-linked immunosorbent assay (ELISA). Study ID# 081022, Dow AgroSciences (unpublished) The 2m EPSPS, AAD-12 and PAT proteins are expected to be expressed in all plant tissues since the 2m epsps, aad-12 and pat genes are driven by constitutive promoters (refer to Table 1). Ten sites in the U.S, representing regions of diverse agronomic practices and environmental conditions for soybean, were planted with soybean 44406 (generation T4) and ‘Maverick’. Five herbicide spraying treatments were applied to soybean 44406 namely, unsprayed, sprayed with 2,4-D (1120 g a.e./ha), sprayed with glufosinate (454 g a.i./ha), sprayed with glyphosate (1260 g a.e./ha) and sprayed with 2,4-D + glufosinate + glyphosate (1120 a.e/ha + 374 g a.e./ha + 1260 g a.e./ha). Samples for analysis of expression of 2m EPSPS, AAD-12 and PAT were taken from a number of plant parts at specific growth stages (refer to Table 2).The 2m EPSPS, AAD-12 and PAT protein levels were determined by enzyme linked immunosorbent assay (ELISA) using commercial ELISA kits specific for each protein. A commercially available software programme was used to calculate the concentrations of immunoreactive 2m EPSPS, AAD-12 and PAT proteins from optical density values. No 2m EPSPS, AAD-12 or PAT proteins were detected in samples taken from ‘Maverick’ plants. For soybean 44406 plants, 2m EPSPS, AAD-12 and PAT proteins were detected in all plant parts (Table 3). 2m EPSPS was lowest in the seed (approximately 22 ?g/g dry weight) and highest in V10–12 leaves (approximately 2323 ?g/g dry weight). AAD-12 was lowest in the roots (approximately 25 ?g/g dry weight) and highest in V10 – 12 leaves (approximately 116 ?g/g dry weight). PAT protein concentrations were much lower than those for AAD-12 but similarly, the V10 – 12 leaves contained the highest levels (approximately 10 ?g/g dry weight) and the roots contained the lowest levels (approximately 2 ?g/g dry weight). Table SEQ Table \* ARABIC 3: Average concentration of 2m EPSPS, AAD-12 and PAT proteins in various plant parts from soybean 44406Sample sourceGrowth StageTreatmentAverage (rounded) protein content in ?g/g dry weight ±SD2m EPSPSAAD-12PATLeaf (8 trifoliate leaves)V5unsprayed2368±973112±348±4+ 2,4-D2261±1009111±279±3+ glufosinate2062±962107±298±4+ glyphosate1846±975101±298±33 herbicides2100±784103±348±3Leaf (8 trifoliate leaves)V10-12unsprayed2583±825118±3610±2+ 2,4-D2203±584121±369±3+ glufosinate2188±543109±2510±2+ glyphosate2512±1259114±279±33 herbicides2131±726119±4610±3Root (3 plants)R3unsprayed89±3223±101±0.6+ 2,4-D93±2024±101±0.6+ glufosinate103±4724±111±0.7+ glyphosate112±3029±71±0.43 herbicides104±4327±91±0.6Forage (3 plants)R3unsprayed357±14673±206±1+ 2,4-D330±10972±225±1+ glufosinate321±7473±206±1+ glyphosate400±14076±196±13 herbicides367±12570±216±1Seed (500 g)R8 - maturityunsprayed21±627±92±0.4+ 2,4-D22±627±102±0.3+ glufosinate22±727±102±0.4+ glyphosate22±625±62±0.33 herbicides21±625±62±0.3 For information on soybean growth stages see e.g. NDSU ADDIN REFMGR.CITE <Refman><Cite ExcludeAuth="1"><Author>NDSU</Author><Year>2004</Year><RecNum>234</RecNum><IDText>Soybean Growth and Management Quick Guide: Reproductive Stages</IDText><MDL Ref_Type="Pamphlet"><Ref_Type>Pamphlet</Ref_Type><Ref_ID>234</Ref_ID><Title_Primary>Soybean Growth and Management Quick Guide: Reproductive Stages</Title_Primary><Authors_Primary>NDSU</Authors_Primary><Date_Primary>2004</Date_Primary><Reprint>In File</Reprint><Publisher>Publication A-1174, North Dakota State University Agriculture and University Extension</Publisher><Web_URL><u>;(2004).Protein characterisation studiesStudies submitted:Embrey, S.K.; Schafer, B.W. (2009). Certificate of analysis of the test/reference/control substance: phosphinothricin acetyltransferase (PAT – TSN031116-0001). Study ID# BIOT09-203839, Dow AgroSciences (unpublished).Embrey, S.K. (2011). Certificate of analysis of the test/reference/control substance: aryloxyalkanoate dioxygenase (AAD-12) – TSN030732. Study ID# BIOT10-227507, Dow AgroSciences (unpublished).Karnoup, A.; Kuppannan, K. (2008). Characterization of AAD-12: Batch TSN030732-002. Study ID# ML-AL MD-2008-003833. The Dow Chemical Company (unpublished).Karnoup, A.; Kuppannan, K. (2010). Analytical characterization of 2m-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) containing TIPS mutation. The Dow Chemical Company (unpublished).Lin, G.; Allen, J.; Chew, L.; Shields, J.; Chiu, Y.; Greenwalt, S.; Xu, X.; Walsh, T. (2006). Production, purification, and characterization of recombinant AAD-12 expressed in Pseudomonas fluorescens for submission on supporting regulatory toxicology and eco-toxicology study. Study ID# DERBI 259733, Dow AgroSciences (unpublished).Lin, G.; Shan, G.; Xu, X.;Frey, M (2011). Production and characterization of 2mEPSPS (DMMG) protein for supporting regulatory toxicology study. Study ID# DAI 1006, Dow AgroSciences (unpublished).Schafer, B.W. (2010). Certificate of analysis of the test/reference/control substance 2mEPSPS protein (TSN033171-0001). Study ID# BIOT10-255698, Dow AgroSciences (unpublished).Schafer, B.W.; Juba, A.A. (2011). Characterization of the phosphinothricin acetyltransferase (PAT) protein derived from transgenic soybean event DAS-44406-6. Study ID# 102098, Dow AgroSciences (unpublished).Schafer, B.W.; Juba, A.N.; Harpham, N.J.; Mayes, M.R. (2011). Characterization of the aryloxyalkanoate dioxygenase-12 (AAD-12) and double mutant 5-enolpyruvylshikimate-3-phosphate synthase (2mEPSPS) proteins derived from transgenic soybean event DAS-44406-6. Study ID# 101707, Dow AgroSciences (unpublished).Site directed mutagenesis of the wild type epsps gene from maize produced the double mutant enzyme 2m EPSPS which carries two amino acid changes. When fused to a chimaeric optimised chloroplast transit peptide, the 2m EPSPS enzyme is reported to generate optimal glyphosate tolerance in crops ADDIN REFMGR.CITE <Refman><Cite><Author>Lebrun</Author><Year>1997</Year><RecNum>815</RecNum><IDText>Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene</IDText><MDL Ref_Type="Patent"><Ref_Type>Patent</Ref_Type><Ref_ID>815</Ref_ID><Title_Primary>Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene</Title_Primary><Authors_Primary>Lebrun,M.</Authors_Primary><Authors_Primary>Sailland,A.</Authors_Primary><Authors_Primary>Freyssinet,G.</Authors_Primary><Date_Primary>1997</Date_Primary><Keywords>Plants</Keywords><Keywords>Threonine</Keywords><Keywords>Isoleucine</Keywords><Reprint>Not in File</Reprint><Issue>WO/9704103 A2</Issue><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Lebrun et al_1997_2mepsps patent.pdf</u></Web_URL_Link2><ZZ_WorkformID>22</ZZ_WorkformID></MDL></Cite></Refman>(Lebrun et al., 1997). The N-terminal methionine (Met) is cleaved with the transit peptide. The mutations, known collectively as the TIPS mutation ADDIN REFMGR.CITE <Refman><Cite><Author>Funke</Author><Year>2009</Year><RecNum>1313</RecNum><IDText>Structural basis of glyphosate resistance resulting from the double mutation Thr973Ile and Pro1013Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1313</Ref_ID><Title_Primary>Structural basis of glyphosate resistance resulting from the double mutation Thr973Ile and Pro1013Ser in 5-enolpyruvylshikimate-3-phosphate synthase from <i>Escherichia coli</i></Title_Primary><Authors_Primary>Funke,T.</Authors_Primary><Authors_Primary>Yang,Y.</Authors_Primary><Authors_Primary>Healy-Fried,M.L</Authors_Primary><Authors_Primary>Olesen,S.</Authors_Primary><Authors_Primary>Becker,A.</Authors_Primary><Authors_Primary>Sch&#xF6;nbrunn,E.</Authors_Primary><Date_Primary>2009</Date_Primary><Keywords>Escherichia coli</Keywords><Keywords>glyphosate</Keywords><Keywords>Mutation</Keywords><Keywords>Genetic Engineering</Keywords><Keywords>Enzymes</Keywords><Keywords>soybean</Keywords><Keywords>canola</Keywords><Keywords>Bacteria</Keywords><Keywords>Phosphoenolpyruvate</Keywords><Reprint>Not in File</Reprint><Start_Page>9854</Start_Page><End_Page>9860</End_Page><Periodical>The Journal of Biological Chemistry</Periodical><Volume>284</Volume><Issue>15</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Funke et al_2009_EPSPS TIPS mutant.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">The Journal of Biological Chemistry</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Funke et al., 2009), are at positions 102 (Thr to Ile) and 106 (Pro to Ser) of the mature protein which comprises 444 amino acids (excluding the terminal Met) and has a calculated molecular weight of approximately 47 kDa.The AAD-12 protein produced by soybean 44406 has an amino acid sequence that is 99% homologous with the native AAD-12, differing only in that an alanine has been added at position 2. The Applicant claims that this addition serves the dual purpose of facilitating cloning operations and optimising translation initiation. The AAD-12 protein comprises 293 amino acids and has an approximate molecular weight of 32 kDa.The PAT protein produced by soybean 44406 is identical to the native protein (Uniprot Accession No. Q57146). It comprises 183 amino acids and has an approximate molecular weight of 21 kDa.None of the proteins are produced in sufficient quantity in soybean 44406 to isolate enough for the toxicological and biochemical studies required for a safety assessment. A standard procedure to overcome this type of problem is to produce the protein in a bacterial system and, if this protein shows equivalence to the in planta-produced protein, to then use the bacterially-produced protein for the toxicological and biochemical studies. The AAD-12 and 2m EPSPS proteins were therefore expressed in recombinant Pseudomonas fluorescens while the PAT protein was expressed in recombinant Escherichia coli. Characterisation tests were done to confirm the identity and equivalence of these bacterially-produced proteins to those produced in soybean 44406. For the PAT protein, only the identity of the protein as produced in soybean 44406 and compared with a bacterially-produced protein was considered, since other characteristics of this protein have already been extensively parison of plant and microbial proteinsTesting of the equivalence of the microbial- and plant-derived 2m EPSPS, AAD-12 and PAT was done as follows:For all three proteins, SDS-PAGE and Western blotting was done. For the PAT analysis on SDS-PAGE/Western blotting, a total plant protein extract was compared with a purified PAT microbial extract while for the AAD-12 and 2m EPSPS samples, purified protein from both sources was used. Proteins on SDS were detected by Coomassie staining; immunoreactivity was detected on Western blots usingfor 2m EPSPS, an anti-2m EPSPS monoclonal mouse primary antibody with a goat anti-mouse horseradish peroxidise-linked secondary antibody.for AAD-12, an anti-AAD-12 polyclonal rabbit primary antibody with a goat anti-rabbit horseradish peroxidise-linked secondary antibodyfor PAT, an anti-PAT polyclonal rabbit primary antibody with a goat anti-rabbit horseradish peroxidise-linked secondary antibody ANDa monoclonal mouse primary antibody with a goat anti-mouse horseradish peroxidise-linked secondary antibody.For the PAT protein, a commercially available ELISA plate assay (EnviroLogix) was also used for immunochemical detection. For the AAD-12 and 2m EPSPS proteins, peptide mass fingerprinting and sequence analysis was done using matrix-assisted laser desorption/ionization – time of flight (MALDI-TOF) and electrospray ionization LC/MS (ESI-LC/MS) mass spectrometry techniques in order to obtain information on the amino acid sequence of the proteins. N- and C-terminal peptides were then further analysed by tandem mass spectrometry to confirm their amino acid sequences.For AAD-12 and 2m EPSPS, a glycosylation analysis was undertaken. N-glycosylated proteins are glycosylated on an asparagine residue and commonly contain an asparagine-X-serine/threonine sequence (N-X-S/T), where X is any amino acid except proline ADDIN REFMGR.CITE <Refman><Cite><Author>Orlando</Author><Year>1998</Year><RecNum>390</RecNum><IDText>Analysis of Glycoproteins</IDText><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>390</Ref_ID><Title_Primary>Analysis of Glycoproteins</Title_Primary><Authors_Primary>Orlando,R.</Authors_Primary><Authors_Primary>Yang,Y.</Authors_Primary><Date_Primary>1998</Date_Primary><Keywords>analysis</Keywords><Reprint>Not in File</Reprint><Start_Page>216</Start_Page><End_Page>246</End_Page><Volume>2nd</Volume><Title_Secondary>Mass Spectrometry of Biological Materials</Title_Secondary><Authors_Secondary>Larsen,B.S.</Authors_Secondary><Authors_Secondary>McEwen,C.N.</Authors_Secondary><Issue>9</Issue><Publisher>Marcel Dekker</Publisher><Web_URL><u>;(Orlando and Yang, 1998). Although rare, the sequence asparagine-X-Cysteine (N-X-C) can also be an N-glycosylation site ADDIN REFMGR.CITE <Refman><Cite><Author>Miletich</Author><Year>1990</Year><RecNum>453</RecNum><IDText>b Protein C is not glycosylated at asparagine 329</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>453</Ref_ID><Title_Primary><f name="Symbol">b</f> Protein C is not glycosylated at asparagine 329</Title_Primary><Authors_Primary>Miletich,J.P.</Authors_Primary><Authors_Primary>Broze Jr.,G.J.</Authors_Primary><Date_Primary>1990</Date_Primary><Reprint>In File</Reprint><Start_Page>11397</Start_Page><End_Page>11404</End_Page><Periodical>The Journal of Biological Chemistry</Periodical><Volume>265</Volume><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Miletich &amp; Broze_1990_NXC glycosylation.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">The Journal of Biological Chemistry</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Miletich and Broze Jr., 1990). The occurrence of these motifs does not, however, indicate that the protein will necessarily be glycosylated and since P. fluorescens, like most prokaryotes, lacks the capacity for protein glycosylation PFJlZm1hbj48Q2l0ZT48QXV0aG9yPldhY2tlcjwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+PFJl

Y051bT4yMzM8L1JlY051bT48SURUZXh0Pk4tbGlua2VkIGdseWNvc3lsYXRpb24gaW4gQ2FtcHls

b2JhY3RlciBqZWp1bmkgYW5kIGl0cyBmdW5jdGlvbmFsIHRyYW5zZmVyIGludG8gRS4gY29saTwv

SURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlw

ZT48UmVmX0lEPjIzMzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5Pk4tbGlua2VkIGdseWNvc3lsYXRp

b24gaW4gPGk+Q2FtcHlsb2JhY3RlciBqZWp1bmk8L2k+IGFuZCBpdHMgZnVuY3Rpb25hbCB0cmFu

c2ZlciBpbnRvIDxpPkUuIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

V2Fja2VyLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaW50b24sRC48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhpdGNoZW4sUC5HLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+Tml0YS1MYXphcixNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+SGFzbGFtLFMuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

Pk5vcnRoLFMuSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBhbmljbyxNLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TW9ycmlzLEguUi48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PkRlbGwsQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PldyZW4sQi5XLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWViaSxN

LjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMjwvRGF0ZV9QcmltYXJ5PjxLZXl3

b3Jkcz5Qcm90ZWluczwvS2V5d29yZHM+PEtleXdvcmRzPkJhY3RlcmlhPC9LZXl3b3Jkcz48UmVw

cmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjE3OTA8L1N0YXJ0X1BhZ2U+PEVuZF9Q

YWdlPjE3OTM8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPlNjaWVuY2U8L1BlcmlvZGljYWw+PFZvbHVt

ZT4yOTg8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnNjaWVuY2VtYWcub3JnL2NnaS9y

ZXByaW50LzI5OC81NTk5LzE3OTAucGRmPC91PjwvV2ViX1VSTD48V2ViX1VSTF9MaW5rMT48dT5m

aWxlOi8vRjpcU3RhbmRhcmRzIE1hbmFnZW1lbnRcQVBQTElDQVRJT05TXEExMDAxLUExMDUwXEEx

MDE4IEhpZ2ggT2xlaWMgR00gU295YmVhblxBMTAxOCBBcHBsaWNhdGlvblxBMTAxOCBMaXRlcmF0

dXJlIFJlZmVyZW5jZXNcRXh0cmEgQTEwMTggUmVmZXJlbmNlc1xXYWNrZXIgZXQgYWxfMjAwMl9n

bHljb3N5bGF0aW9uLnBkZjwvdT48L1dlYl9VUkxfTGluazE+PFpaX0pvdXJuYWxTdGRBYmJyZXY+

PGYgbmFtZT0iU3lzdGVtIj5TY2llbmNlPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkFidS1R

YXJuPC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48UmVjTnVtPjUxODwvUmVjTnVtPjxJRFRleHQ+

Tm90IGp1c3QgZm9yIEV1a2FyeWEgYW55bW9yZTogcHJvdGVpbiBnbHljb3N5bGF0aW9uIGluIEJh

Y3RlcmlhIGFuZCBBcmNoYWVhPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9U

eXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NTE4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+

Tm90IGp1c3QgZm9yIEV1a2FyeWEgYW55bW9yZTogcHJvdGVpbiBnbHljb3N5bGF0aW9uIGluIEJh

Y3RlcmlhIGFuZCBBcmNoYWVhPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWJ1LVFh

cm4sTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVpY2hsZXIsSi48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNoYXJvbixOLjwvQXV0aG9yc19QcmltYXJ5PjxE

YXRlX1ByaW1hcnk+MjAwODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5CYWN0ZXJpYTwvS2V5d29y

ZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT41NDQ8L1N0YXJ0X1BhZ2U+

PEVuZF9QYWdlPjU1MDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Q3VycmVudCBPcGluaW9uIGluIFN0

cnVjdHVyYWwgQmlvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjE4PC9Wb2x1bWU+PFdlYl9VUkxf

TGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8g

LSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEFidS1RYXJuIGV0IGFsXzIwMDhfYmFj

dGVyaWFsIE4tZ2x5Y29zeWxhdGlvbi5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxaWl9Kb3VybmFs

RnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkN1cnJlbnQgT3BpbmlvbiBpbiBTdHJ1Y3R1cmFsIEJpb2xv

Z3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwv

TURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPldhY2tlcjwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+PFJl

Y051bT4yMzM8L1JlY051bT48SURUZXh0Pk4tbGlua2VkIGdseWNvc3lsYXRpb24gaW4gQ2FtcHls

b2JhY3RlciBqZWp1bmkgYW5kIGl0cyBmdW5jdGlvbmFsIHRyYW5zZmVyIGludG8gRS4gY29saTwv

SURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlw

ZT48UmVmX0lEPjIzMzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5Pk4tbGlua2VkIGdseWNvc3lsYXRp

b24gaW4gPGk+Q2FtcHlsb2JhY3RlciBqZWp1bmk8L2k+IGFuZCBpdHMgZnVuY3Rpb25hbCB0cmFu

c2ZlciBpbnRvIDxpPkUuIGNvbGk8L2k+PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

V2Fja2VyLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MaW50b24sRC48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhpdGNoZW4sUC5HLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+Tml0YS1MYXphcixNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+SGFzbGFtLFMuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

Pk5vcnRoLFMuSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBhbmljbyxNLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TW9ycmlzLEguUi48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PkRlbGwsQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PldyZW4sQi5XLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWViaSxN

LjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMjwvRGF0ZV9QcmltYXJ5PjxLZXl3

b3Jkcz5Qcm90ZWluczwvS2V5d29yZHM+PEtleXdvcmRzPkJhY3RlcmlhPC9LZXl3b3Jkcz48UmVw

cmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjE3OTA8L1N0YXJ0X1BhZ2U+PEVuZF9Q

YWdlPjE3OTM8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPlNjaWVuY2U8L1BlcmlvZGljYWw+PFZvbHVt

ZT4yOTg8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnNjaWVuY2VtYWcub3JnL2NnaS9y

ZXByaW50LzI5OC81NTk5LzE3OTAucGRmPC91PjwvV2ViX1VSTD48V2ViX1VSTF9MaW5rMT48dT5m

aWxlOi8vRjpcU3RhbmRhcmRzIE1hbmFnZW1lbnRcQVBQTElDQVRJT05TXEExMDAxLUExMDUwXEEx

MDE4IEhpZ2ggT2xlaWMgR00gU295YmVhblxBMTAxOCBBcHBsaWNhdGlvblxBMTAxOCBMaXRlcmF0

dXJlIFJlZmVyZW5jZXNcRXh0cmEgQTEwMTggUmVmZXJlbmNlc1xXYWNrZXIgZXQgYWxfMjAwMl9n

bHljb3N5bGF0aW9uLnBkZjwvdT48L1dlYl9VUkxfTGluazE+PFpaX0pvdXJuYWxTdGRBYmJyZXY+

PGYgbmFtZT0iU3lzdGVtIj5TY2llbmNlPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkFidS1R

YXJuPC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48UmVjTnVtPjUxODwvUmVjTnVtPjxJRFRleHQ+

Tm90IGp1c3QgZm9yIEV1a2FyeWEgYW55bW9yZTogcHJvdGVpbiBnbHljb3N5bGF0aW9uIGluIEJh

Y3RlcmlhIGFuZCBBcmNoYWVhPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9U

eXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NTE4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+

Tm90IGp1c3QgZm9yIEV1a2FyeWEgYW55bW9yZTogcHJvdGVpbiBnbHljb3N5bGF0aW9uIGluIEJh

Y3RlcmlhIGFuZCBBcmNoYWVhPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWJ1LVFh

cm4sTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVpY2hsZXIsSi48L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNoYXJvbixOLjwvQXV0aG9yc19QcmltYXJ5PjxE

YXRlX1ByaW1hcnk+MjAwODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5CYWN0ZXJpYTwvS2V5d29y

ZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT41NDQ8L1N0YXJ0X1BhZ2U+

PEVuZF9QYWdlPjU1MDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Q3VycmVudCBPcGluaW9uIGluIFN0

cnVjdHVyYWwgQmlvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjE4PC9Wb2x1bWU+PFdlYl9VUkxf

TGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8g

LSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEFidS1RYXJuIGV0IGFsXzIwMDhfYmFj

dGVyaWFsIE4tZ2x5Y29zeWxhdGlvbi5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxaWl9Kb3VybmFs

RnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkN1cnJlbnQgT3BpbmlvbiBpbiBTdHJ1Y3R1cmFsIEJpb2xv

Z3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwv

TURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN EN.CITE.DATA (Wacker et al., 2002; Abu-Qarn et al., 2008) it would be unusual to find that N-glycosylation had occurred in the bacterially-derived proteins. Detection of post-translational glycosylation in 2m EPSPS and AAD-12 was done using a GelCode Glycoprotein Staining Kit (Thermo-Pierce).For the 2m EPSPS proteins the enzyme activity was determined by a spectrophotometric method using malachite green ADDIN REFMGR.CITE <Refman><Cite><Author>Lanzetta</Author><Year>1979</Year><RecNum>1311</RecNum><IDText>An improved assay for nanomole amuonts of inorganic phosphate</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1311</Ref_ID><Title_Primary>An improved assay for nanomole amuonts of inorganic phosphate</Title_Primary><Authors_Primary>Lanzetta,P.A.</Authors_Primary><Authors_Primary>Alvarez,L.J.</Authors_Primary><Authors_Primary>Reinach,P.S.</Authors_Primary><Authors_Primary>Candia,O.A.</Authors_Primary><Date_Primary>1979</Date_Primary><Reprint>Not in File</Reprint><Start_Page>95</Start_Page><End_Page>97</End_Page><Periodical>Analytical Biochemistry</Periodical><Volume>100</Volume><Web_URL_Link3><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Lanzetta et al_1979_EPSPS activity.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Analytical Biochemistry</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Lanzetta et al., 1979). Studies supporting the biological equivalence of AAD-12 from microbial and plant sources were considered by FSANZ in Application A1046 ADDIN REFMGR.CITE <Refman><Cite><Author>FSANZ</Author><Year>2011</Year><RecNum>1292</RecNum><IDText>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>1292</Ref_ID><Title_Primary>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</Title_Primary><Authors_Primary>FSANZ</Authors_Primary><Date_Primary>2011</Date_Primary><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Publisher>Report prepared by Food Standards Australia New Zealand</Publisher><Web_URL><u>;(FSANZ, 2011a).Molecular weight and immunoreactivity of AAD-12, 2m EPSPS and PATMaterial for SDS-PAGE and Western blotting analysis of the plant-produced proteins was taken from tissue of the T4 generation of soybean 44406. The presence of the proteins was confirmed by either lateral flow strip assay (AAD-12 and 2m EPSPS) or ELISA assay (PAT). The SDS-PAGE analyses of the AAD-12 and 2m EPSPS purified proteins indicated that each protein from both sources produced a single major band that ran at the expected approximate molecular weight calculated from the known amino acid sequence of each protein i.e. the estimated MW of AAD-12 was approximately 32 kDa and that of 2m EPSPS was 47 kDa. Western blots using both polyclonal and monoclonal antibodies to PAT showed an immunoreactive band at approximately 20 kDa in both crude extract of soybean 44406 and bacterially-derived PAT which compared with the calculated molecular weight of 21 kDa.Western blots using antibodies to AAD-12 and 2m EPSPS showed an immunoreactive band at the expected approximate molecular weight for each protein derived from both sources.MALDI-TOF and ESI-LC mass spectrometry of AAD-12 and 2mE EPSPSPurified AAD-12 and 2m EPSPS proteins from both sources were run on SDS-PAGE and the corresponding protein bands were excised and subjected to in-gel digestion by trypsin and chymotrypsin followed by MALDI -TOF and ESI-LC mass spectrometry. The masses of the detected peptides were compared to those deduced from potential trypsin or chymotrypsin cleavage sites. For AAD-12, MALDI-TOF sequence coverage was approximately 84% of the theoretical peptide sequences and included both the N- and C-termini. The analysis confirmed that the sequence of the soybean 44406-derived protein matched that of the microbially-derived protein. ESI-LC/MS analysis showed that, as for the microbially-derived protein, the N-terminal Met of the soybean 44406-derived AAD-12 protein had been removed and the alanine at position 2 of the soybean 44406-derived protein had been acetylated. Cleavage of the N-terminal Met and amino-terminal acetylation is common in eukaryotes ADDIN REFMGR.CITE <Refman><Cite><Author>Polevoda</Author><Year>2002</Year><RecNum>198</RecNum><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>198</Ref_ID><Title_Primary>The diversity of acetylated proteins</Title_Primary><Authors_Primary>Polevoda,B.</Authors_Primary><Authors_Primary>Sherman,F.</Authors_Primary><Date_Primary>2002</Date_Primary><Keywords>Acetylation</Keywords><Keywords>Acetyltransferases</Keywords><Keywords>Animals</Keywords><Keywords>Bacterial Proteins</Keywords><Keywords>chemistry</Keywords><Keywords>Eukaryotic Cells</Keywords><Keywords>genetics</Keywords><Keywords>Humans</Keywords><Keywords>Lysine</Keywords><Keywords>metabolism</Keywords><Keywords>Peptides</Keywords><Keywords>Protein Processing,Post-Translational</Keywords><Keywords>Proteins</Keywords><Keywords>Transcription Factors</Keywords><Keywords>Variation (Genetics)</Keywords><Reprint>In File</Reprint><Start_Page>reviews0006</Start_Page><Periodical>Genome Biology</Periodical><Volume>3</Volume><Issue>5</Issue><Address>Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA</Address><Web_URL>PM:12049668</Web_URL><ZZ_JournalStdAbbrev><f name="System">Genome Biology</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Polevoda and Sherman, 2002). The C-terminal sequences of the soybean 44406- and microbially-derived AAD-12 were as expected and were indistinguishable.For 2m EPSPS, MALDI-TOF sequence coverage was approximately 86% of the theoretical sequences and included both N- and C- termini. The analysis confirmed the equivalence of the protein from both sources. For both the N- and C-termini, the sequence of the protein from both sources was indistinguishable and was identical to the expected.Glycosylation of AAD-12 and 2m EPSPSGlycosylation analysis of the purified AAD-12 and 2m EPSPS proteins from plant and microbial sources derived from soybean 44406 did not detect any covalently-linked carbohydrates. Further confirmation of the non-glycosylated status of both proteins from both sources can be deduced from the molecular weight analyses in which the proteins ran at the expected molecular weight in the SDS-PAGE/western blot analyses; glycosylation would add to the apparent overall protein molecular weight.Enzyme activity of 2m EPSPSBoth the bacterially-derived and 44406-derived 2m EPSPS were shown to have the expected catalytic activity in the presence of PEP substrate.ConclusionA range of characterisation methods submitted by the Applicant and in previous studies confirmed the identity and equivalence of the 2m EPSPS, AAD-12 and PAT proteins produced in both a bacterial expression system and in soybean 44406. Based on weight-of-evidence, it is concluded that microbially-derived 2m EPSPS, AAD-12 and PAT proteins are suitable surrogates for use in safety assessment studies.4.5Potential toxicity While the vast majority of proteins ingested as part of the diet are not typically associated with toxic effects, a small number may be harmful to health. Therefore, if a GM food differs from its conventional counterpart by the presence of one or more novel proteins, these proteins should be assessed for their potential toxicity. The main purpose of an assessment of potential toxicity is to establish, using a weight of evidence approach, that the novel protein will behave like any other dietary protein. An oral toxicity study is only deemed necessary if the results of biochemical, bioinformatic, digestibility or stability studies indicate further investigation of potential toxicity is warrantedThe PAT protein will not be addressed further in this assessment as it has been sufficiently characterised from a food safety perspective ADDIN REFMGR.CITE <Refman><Cite><Author>Delaney</Author><Year>2008</Year><RecNum>288</RecNum><IDText>Evaluation of protein safety in the context of agricultural biotechnology</IDText><Prefix>see e.g. </Prefix><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>288</Ref_ID><Title_Primary>Evaluation of protein safety in the context of agricultural biotechnology</Title_Primary><Authors_Primary>Delaney,B.</Authors_Primary><Authors_Primary>Astwood,J.D.</Authors_Primary><Authors_Primary>Cunny,H.</Authors_Primary><Authors_Primary>Eichen Conn,R.</Authors_Primary><Authors_Primary>Herouet-Guicheney,C.</Authors_Primary><Authors_Primary>MacIntosh,S.</Authors_Primary><Authors_Primary>Meyer,L.S.</Authors_Primary><Authors_Primary>Privalle,L.S.</Authors_Primary><Authors_Primary>Gao,Y.</Authors_Primary><Authors_Primary>Mattsson,J.</Authors_Primary><Authors_Primary>Levine,M.</Authors_Primary><Authors_Primary>ILSI</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>Safety</Keywords><Keywords>Proteins</Keywords><Keywords>methods</Keywords><Keywords>Amino Acid Sequence</Keywords><Reprint>In File</Reprint><Start_Page>S71</Start_Page><End_Page>S97</End_Page><Periodical>Food and Chemical Toxicology</Periodical><Volume>46</Volume><Web_URL_Link3><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Delaney et al_2008_Protein Safety.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Food and Chemical Toxicology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(see e.g. Delaney et al., 2008). A bioinformatics analysis was submitted comparing the PAT protein sequence with sequences in an updated (February 2011) protein database but none of the significant sequence alignments were associated with any known protein toxins. The focus is therefore on whether 2m EPSPS and AAD-12 have:a prior history of safe human consumption, or are sufficiently similar to proteins that have been safely consumed in foodamino acid sequence similarity with known protein toxins and anti-nutrientsstructural properties that may confer resistance to heat or processing and/or digestion. Studies submitted:Guttikonda, S. (2011). Similarity assessment of 2m EPSPS protein to known toxins by bioinformatics analysis (updated March, 2011). Study ID# 110329, Dow AgroSciences (unpublished).Song, P. (2011). Sequence similarity assessment of AAD-12 protein to known toxins by bioinformatics analysis (Updated February, 2011). Study ID# 110327, Dow AgroSciences (unpublished).Embrey, S.K. (2011). Heat lability of double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) protein. Study ID# 110461, Dow AgroSciences (unpublished).Schafer, B.W. (2008). Effect of heat treatment on a recombinant aryloxyalkanoate dioxygenase-12 (AAD-12). Study ID# 080140, Dow AgroSciences (unpublished).Song, P. (2011). Sequence similarity assessment of PAT protein to known toxins by bioinformatics analysis (updated February 2011). Study ID# 110331, Dow AgroSciences (unpublished).Jeong, Y.C.; Golden, R.M. (2011). 2mEPSPS: Acute oral toxicity study in Crl:CD1 (ICR) mice. Study ID# 101168, Dow AgroSciences (unpublished).Wiescinski, C.M.; Golden, R.M. (2008). AAD-12: Acute oral toxicity study in Crl:CD1 (ICR) mice. Study ID# 081037, Dow AgroSciences (unpublished).4.5.1History of human consumptionAs outlined in Section 4.2.1, homologues of the EPSPS protein are found in plants and a range of other organisms and would therefore be routinely consumed by humans as a normal part of the diet. In addition, the epsps gene, most usually sourced from Agrobacterium tumefaciens, has been widely used in the genetic modification of commercialised food crops over the last 10 years and there have been no safety concerns raised with the consumption of the protein ADDIN REFMGR.CITE <Refman><Cite><Author>Delaney</Author><Year>2008</Year><RecNum>288</RecNum><IDText>Evaluation of protein safety in the context of agricultural biotechnology</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>288</Ref_ID><Title_Primary>Evaluation of protein safety in the context of agricultural biotechnology</Title_Primary><Authors_Primary>Delaney,B.</Authors_Primary><Authors_Primary>Astwood,J.D.</Authors_Primary><Authors_Primary>Cunny,H.</Authors_Primary><Authors_Primary>Eichen Conn,R.</Authors_Primary><Authors_Primary>Herouet-Guicheney,C.</Authors_Primary><Authors_Primary>MacIntosh,S.</Authors_Primary><Authors_Primary>Meyer,L.S.</Authors_Primary><Authors_Primary>Privalle,L.S.</Authors_Primary><Authors_Primary>Gao,Y.</Authors_Primary><Authors_Primary>Mattsson,J.</Authors_Primary><Authors_Primary>Levine,M.</Authors_Primary><Authors_Primary>ILSI</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>Safety</Keywords><Keywords>Proteins</Keywords><Keywords>methods</Keywords><Keywords>Amino Acid Sequence</Keywords><Reprint>In File</Reprint><Start_Page>S71</Start_Page><End_Page>S97</End_Page><Periodical>Food and Chemical Toxicology</Periodical><Volume>46</Volume><Web_URL_Link3><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Delaney et al_2008_Protein Safety.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Food and Chemical Toxicology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Delaney et al., 2008).As stated in Section 4.2.2, the AAD-12 protein is also known as SdpA. While the TfdA enzyme, to which the SdpA and RdpA enantiospecific enzymes are related, is widespread in soil bacteria, few bacterial strains have been isolated that contain the sdpA and rdpA genes (refer to Section 3.2.2). There have also been few studies on the presence, natural abundance and activation of the rdpA and sdpA genes. However, it is known that the sdpA gene is present in bacteria in unsprayed agricultural soil ADDIN REFMGR.CITE <Refman><Cite><Author>Paulin</Author><Year>2010</Year><RecNum>777</RecNum><IDText>Abundance and expression of enantioselective rdpA and sdpA dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>777</Ref_ID><Title_Primary>Abundance and expression of enantioselective <i>rdpA</i> and <i>sdpA</i> dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil</Title_Primary><Authors_Primary>Paulin,M.M.</Authors_Primary><Authors_Primary>Nicolaisen,M.H.</Authors_Primary><Authors_Primary>Sorensen,J.</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>Soil</Keywords><Keywords>Genes</Keywords><Reprint>In File</Reprint><Start_Page>2873</Start_Page><End_Page>2883</End_Page><Periodical>Applied and Environmental Microbiology</Periodical><Volume>76</Volume><Issue>9</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Paulin et al_2010_sdpA.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Applied and Environmental Microbiology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Paulin et al., 2010). In crops that are sprayed with phenoxyalkanoic herbicides, a significant amount of spray reaches the ground and can lead to an increase in the abundance of phenoxyalkanoic herbicide degraders PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkdheml0w7phPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48

UmVjTnVtPjc3NTwvUmVjTnVtPjxJRFRleHQ+Tm92ZWwgYS1rZXRvZ2x1dGFyYXRlIGRpb3h5Z2Vu

YXNlIHRmZEEtcmVsYXRlZCBnZW5lcyBhcmUgZm91bmQgaW4gc29pbCBETkEgYWZ0ZXIgZXhwb3N1

cmUgdG8gcGhlbm94eWFsa2Fub2ljIGhlcmJpY2lkZXM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJK

b3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD43NzU8L1JlZl9JRD48

VGl0bGVfUHJpbWFyeT5Ob3ZlbCA8ZiBuYW1lPSJTeW1ib2wiPmE8L2Y+LWtldG9nbHV0YXJhdGUg

ZGlveHlnZW5hc2UgPGk+dGZkQTwvaT4tcmVsYXRlZCBnZW5lcyBhcmUgZm91bmQgaW4gc29pbCBE

TkEgYWZ0ZXIgZXhwb3N1cmUgdG8gcGhlbm94eWFsa2Fub2ljIGhlcmJpY2lkZXM8L1RpdGxlX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HYXppdCYjeEZBO2EsTS5DLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U2xhdGVyLEEuVy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Pk1lbG8sRi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkdvbnomI3hF

MTtsZXosQi48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTA8L0RhdGVfUHJpbWFy

eT48S2V5d29yZHM+R2VuZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5Tb2lsPC9LZXl3b3Jkcz48S2V5

d29yZHM+RG5hPC9LZXl3b3Jkcz48S2V5d29yZHM+SGVyYmljaWRlczwvS2V5d29yZHM+PEtleXdv

cmRzPkJhY3RlcmlhPC9LZXl3b3Jkcz48S2V5d29yZHM+YW5hbHlzaXM8L0tleXdvcmRzPjxSZXBy

aW50PkluIEZpbGU8L1JlcHJpbnQ+PFBlcmlvZGljYWw+RW52aXJvbm1lbnRhbCBNaWNyb2Jpb2xv

Z3k8L1BlcmlvZGljYWw+PFZvbHVtZT5lLXB1YiwgZG9pOiAxMC4xMTExL2ouMTQ2Mi0yOTIwLjIw

MTAuMDIyMTUueDwvVm9sdW1lPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cuYmlvLnB1Yy5jbC9jYXNl

Yi9wZGYvcHJvZzcvZ2F6aXR1YXByZWVtaV8yMjE1LnBkZjwvdT48L1dlYl9VUkw+PFdlYl9VUkxf

TGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8g

LSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEdheml0dWEgZXQgYWxfMjAxMF9hbHBo

YSBrZXRvZ2x1dGFyYXRlIGRpb3h5Z2VuYXNlLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pv

dXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+RW52aXJvbm1lbnRhbCBNaWNyb2Jpb2xvZ3k8L2Y+

PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPlBhdWxpbjwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJlY051

bT43Nzc8L1JlY051bT48SURUZXh0PkFidW5kYW5jZSBhbmQgZXhwcmVzc2lvbiBvZiBlbmFudGlv

c2VsZWN0aXZlIHJkcEEgYW5kIHNkcEEgZGlveHlnZW5hc2UgZ2VuZXMgZHVyaW5nIGRlZ3JhZGF0

aW9uIG9mIHRoZSByYWNlbWljIGhlcmJpY2lkZSAoUixTKS0yLSgyLDQtZGljaGxvcm9waGVub3h5

KXByb3Bpb25hdGUgaW4gc29pbDwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZf

VHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc3NzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5

PkFidW5kYW5jZSBhbmQgZXhwcmVzc2lvbiBvZiBlbmFudGlvc2VsZWN0aXZlIDxpPnJkcEE8L2k+

IGFuZCA8aT5zZHBBPC9pPiBkaW94eWdlbmFzZSBnZW5lcyBkdXJpbmcgZGVncmFkYXRpb24gb2Yg

dGhlIHJhY2VtaWMgaGVyYmljaWRlIChSLFMpLTItKDIsNC1kaWNobG9yb3BoZW5veHkpcHJvcGlv

bmF0ZSBpbiBzb2lsPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGF1bGluLE0uTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk5pY29sYWlzZW4sTS5ILjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U29yZW5zZW4sSi48L0F1dGhvcnNfUHJpbWFyeT48

RGF0ZV9QcmltYXJ5PjIwMTA8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+U29pbDwvS2V5d29yZHM+

PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFy

dF9QYWdlPjI4NzM8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjI4ODM8L0VuZF9QYWdlPjxQZXJpb2Rp

Y2FsPkFwcGxpZWQgYW5kIEVudmlyb25tZW50YWwgTWljcm9iaW9sb2d5PC9QZXJpb2RpY2FsPjxW

b2x1bWU+NzY8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTov

L0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJl

bmNlc1xHTSBSZWZlcmVuY2VzXFBhdWxpbiBldCBhbF8yMDEwX3NkcEEucGRmPC91PjwvV2ViX1VS

TF9MaW5rMj48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5BcHBsaWVkIGFuZCBFbnZp

cm9ubWVudGFsIE1pY3JvYmlvbG9neTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlE

PjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkdheml0w7phPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48

UmVjTnVtPjc3NTwvUmVjTnVtPjxJRFRleHQ+Tm92ZWwgYS1rZXRvZ2x1dGFyYXRlIGRpb3h5Z2Vu

YXNlIHRmZEEtcmVsYXRlZCBnZW5lcyBhcmUgZm91bmQgaW4gc29pbCBETkEgYWZ0ZXIgZXhwb3N1

cmUgdG8gcGhlbm94eWFsa2Fub2ljIGhlcmJpY2lkZXM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJK

b3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD43NzU8L1JlZl9JRD48

VGl0bGVfUHJpbWFyeT5Ob3ZlbCA8ZiBuYW1lPSJTeW1ib2wiPmE8L2Y+LWtldG9nbHV0YXJhdGUg

ZGlveHlnZW5hc2UgPGk+dGZkQTwvaT4tcmVsYXRlZCBnZW5lcyBhcmUgZm91bmQgaW4gc29pbCBE

TkEgYWZ0ZXIgZXhwb3N1cmUgdG8gcGhlbm94eWFsa2Fub2ljIGhlcmJpY2lkZXM8L1RpdGxlX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HYXppdCYjeEZBO2EsTS5DLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U2xhdGVyLEEuVy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Pk1lbG8sRi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkdvbnomI3hF

MTtsZXosQi48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTA8L0RhdGVfUHJpbWFy

eT48S2V5d29yZHM+R2VuZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5Tb2lsPC9LZXl3b3Jkcz48S2V5

d29yZHM+RG5hPC9LZXl3b3Jkcz48S2V5d29yZHM+SGVyYmljaWRlczwvS2V5d29yZHM+PEtleXdv

cmRzPkJhY3RlcmlhPC9LZXl3b3Jkcz48S2V5d29yZHM+YW5hbHlzaXM8L0tleXdvcmRzPjxSZXBy

aW50PkluIEZpbGU8L1JlcHJpbnQ+PFBlcmlvZGljYWw+RW52aXJvbm1lbnRhbCBNaWNyb2Jpb2xv

Z3k8L1BlcmlvZGljYWw+PFZvbHVtZT5lLXB1YiwgZG9pOiAxMC4xMTExL2ouMTQ2Mi0yOTIwLjIw

MTAuMDIyMTUueDwvVm9sdW1lPjxXZWJfVVJMPjx1Pmh0dHA6Ly93d3cuYmlvLnB1Yy5jbC9jYXNl

Yi9wZGYvcHJvZzcvZ2F6aXR1YXByZWVtaV8yMjE1LnBkZjwvdT48L1dlYl9VUkw+PFdlYl9VUkxf

TGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8g

LSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEdheml0dWEgZXQgYWxfMjAxMF9hbHBo

YSBrZXRvZ2x1dGFyYXRlIGRpb3h5Z2VuYXNlLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pv

dXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+RW52aXJvbm1lbnRhbCBNaWNyb2Jpb2xvZ3k8L2Y+

PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPlBhdWxpbjwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJlY051

bT43Nzc8L1JlY051bT48SURUZXh0PkFidW5kYW5jZSBhbmQgZXhwcmVzc2lvbiBvZiBlbmFudGlv

c2VsZWN0aXZlIHJkcEEgYW5kIHNkcEEgZGlveHlnZW5hc2UgZ2VuZXMgZHVyaW5nIGRlZ3JhZGF0

aW9uIG9mIHRoZSByYWNlbWljIGhlcmJpY2lkZSAoUixTKS0yLSgyLDQtZGljaGxvcm9waGVub3h5

KXByb3Bpb25hdGUgaW4gc29pbDwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZf

VHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjc3NzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5

PkFidW5kYW5jZSBhbmQgZXhwcmVzc2lvbiBvZiBlbmFudGlvc2VsZWN0aXZlIDxpPnJkcEE8L2k+

IGFuZCA8aT5zZHBBPC9pPiBkaW94eWdlbmFzZSBnZW5lcyBkdXJpbmcgZGVncmFkYXRpb24gb2Yg

dGhlIHJhY2VtaWMgaGVyYmljaWRlIChSLFMpLTItKDIsNC1kaWNobG9yb3BoZW5veHkpcHJvcGlv

bmF0ZSBpbiBzb2lsPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGF1bGluLE0uTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk5pY29sYWlzZW4sTS5ILjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U29yZW5zZW4sSi48L0F1dGhvcnNfUHJpbWFyeT48

RGF0ZV9QcmltYXJ5PjIwMTA8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+U29pbDwvS2V5d29yZHM+

PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFy

dF9QYWdlPjI4NzM8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjI4ODM8L0VuZF9QYWdlPjxQZXJpb2Rp

Y2FsPkFwcGxpZWQgYW5kIEVudmlyb25tZW50YWwgTWljcm9iaW9sb2d5PC9QZXJpb2RpY2FsPjxW

b2x1bWU+NzY8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTov

L0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJl

bmNlc1xHTSBSZWZlcmVuY2VzXFBhdWxpbiBldCBhbF8yMDEwX3NkcEEucGRmPC91PjwvV2ViX1VS

TF9MaW5rMj48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5BcHBsaWVkIGFuZCBFbnZp

cm9ubWVudGFsIE1pY3JvYmlvbG9neTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlE

PjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN EN.CITE.DATA (Gazitúa et al., 2010; Paulin et al., 2010). Therefore, humans would be exposed to the AAD-12 (SdpA) protein, particularly in those areas where phenoxyalkanoic herbicides are sprayed.4.5.2Amino acid sequence similarity to known protein toxinsSimilarity searches were done for the 2m EPSPS and AAD-12 proteins, using the BLASTP (Basic Local Alignment Search Tool Protein) algorithm ADDIN REFMGR.CITE <Refman><Cite><Author>Altschul</Author><Year>1997</Year><RecNum>174</RecNum><IDText>Gapped BLAST and PSI-BLAST: a new generation of protein database search programs</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>174</Ref_ID><Title_Primary>Gapped BLAST and PSI-BLAST: a new generation of protein database search programs</Title_Primary><Authors_Primary>Altschul,S.F.</Authors_Primary><Authors_Primary>Madden,T.L.</Authors_Primary><Authors_Primary>Schaffer,A.A.</Authors_Primary><Authors_Primary>Zhang,J.</Authors_Primary><Authors_Primary>Zhang,Z.</Authors_Primary><Authors_Primary>Miller,W.</Authors_Primary><Authors_Primary>Lipman,D.J.</Authors_Primary><Date_Primary>1997/9/1</Date_Primary><Keywords>Algorithms</Keywords><Keywords>Amino Acid Sequence</Keywords><Keywords>Animals</Keywords><Keywords>chemistry</Keywords><Keywords>Databases,Factual</Keywords><Keywords>Dna</Keywords><Keywords>Humans</Keywords><Keywords>Molecular Sequence Data</Keywords><Keywords>Proteins</Keywords><Keywords>Sequence Alignment</Keywords><Keywords>Software</Keywords><Reprint>In File</Reprint><Start_Page>3389</Start_Page><End_Page>3402</End_Page><Periodical>Nucleic Acids Research</Periodical><Volume>25</Volume><Issue>17</Issue><Address>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. altschul@ncbi.nlm.</Address><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Altschul et al_1997_gapped BLAST searches.mht</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Nucleic Acids Research</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Altschul et al., 1997) against protein sequences present in a number of large public reference databases including Uniprot_Swissprot, PIR (Protein Information Resource), PRF (Protein Research Foundation) and PDB (Protein Data Bank). BLASTP is now frequently applied for searching for similarities in protein sequences by performing local alignments. This detects more similarities that would be found using the entire query sequence length. The search generates a parameter known as the E value ADDIN REFMGR.CITE <Refman><Cite><Author>Baxevanis</Author><Year>2005</Year><RecNum>239</RecNum><IDText>Assessing Pairwise Sequence Similarity: BLAST and FASTA</IDText><Prefix>see eg </Prefix><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>239</Ref_ID><Title_Primary>Assessing Pairwise Sequence Similarity: BLAST and FASTA</Title_Primary><Authors_Primary>Baxevanis,A.D.</Authors_Primary><Date_Primary>2005</Date_Primary><Keywords>analysis</Keywords><Keywords>Genes</Keywords><Keywords>Proteins</Keywords><Reprint>In File</Reprint><Start_Page>295</Start_Page><End_Page>324</End_Page><Title_Secondary>Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins</Title_Secondary><Authors_Secondary>Baxevanis,A.D.</Authors_Secondary><Authors_Secondary>Ouellette,B.F.F.</Authors_Secondary><Issue>11</Issue><Publisher>John Wiley &amp; Sons, Inc.</Publisher><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Baxevanis_2005_BLAST and FASTA.pdf</u></Web_URL_Link2><ZZ_WorkformID>3</ZZ_WorkformID></MDL></Cite></Refman>(see eg Baxevanis, 2005). Comparisons between highly homologous proteins yield E-values approaching zero, indicating the very low probability that such matches would occur by chance. A larger E-value indicates a lower degree of similarity. All database sequences with an E-value of 1 or lower were identified by default by the BLASTP program. Although a statistically significant sequence similarity generally requires a match with an E-value of less than 0.01 ADDIN REFMGR.CITE <Refman><Cite><Author>Pearson</Author><Year>2000</Year><RecNum>240</RecNum><IDText>Flexible Sequence Similarity Searching with the FASTA3 Program Package</IDText><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>240</Ref_ID><Title_Primary>Flexible Sequence Similarity Searching with the FASTA3 Program Package</Title_Primary><Authors_Primary>Pearson,W.R.</Authors_Primary><Date_Primary>2000</Date_Primary><Keywords>methods</Keywords><Reprint>In File</Reprint><Start_Page>185</Start_Page><End_Page>219</End_Page><Title_Secondary>Methods in Molecular Biology, Volume 132: Bioinformatics Methods and Protocols</Title_Secondary><Authors_Secondary>Misener,S.</Authors_Secondary><Authors_Secondary>Krawetz,S.A.</Authors_Secondary><Issue>10</Issue><Pub_Place>Totowa, NJ</Pub_Place><Publisher>Human Press Inc.</Publisher><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Pearson_2000_FASTA3.pdf</u></Web_URL_Link2><ZZ_WorkformID>3</ZZ_WorkformID></MDL></Cite></Refman>(Pearson, 2000), setting a threshold E-value of 1.0 ensures that proteins with even limited similarity will not be excluded. Commonly, for protein-based searches, hits with E-values of 10-3 or less and sequence identity of 25% or more are considered significant although any conclusions reached need to be tempered by an investigation of the biology behind the putative homology ADDIN REFMGR.CITE <Refman><Cite><Author>Baxevanis</Author><Year>2005</Year><RecNum>239</RecNum><IDText>Assessing Pairwise Sequence Similarity: BLAST and FASTA</IDText><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>239</Ref_ID><Title_Primary>Assessing Pairwise Sequence Similarity: BLAST and FASTA</Title_Primary><Authors_Primary>Baxevanis,A.D.</Authors_Primary><Date_Primary>2005</Date_Primary><Keywords>analysis</Keywords><Keywords>Genes</Keywords><Keywords>Proteins</Keywords><Reprint>In File</Reprint><Start_Page>295</Start_Page><End_Page>324</End_Page><Title_Secondary>Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins</Title_Secondary><Authors_Secondary>Baxevanis,A.D.</Authors_Secondary><Authors_Secondary>Ouellette,B.F.F.</Authors_Secondary><Issue>11</Issue><Publisher>John Wiley &amp; Sons, Inc.</Publisher><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Baxevanis_2005_BLAST and FASTA.pdf</u></Web_URL_Link2><ZZ_WorkformID>3</ZZ_WorkformID></MDL></Cite></Refman>(Baxevanis, 2005).The AAD-12 similarity search identified 1,322 alignments with an E value of < 1.0, of which 1,267 had E values < 0.01. The most predominant classes were taurine dioxygenases (382), ketoglutarate dehydrogenase (220), taurine catabolism dioxygenases (170), dioxygenases (166), 2,4-D/ α-ketoglutarate dioxygenases (70) and α-ketoglutarate dioxygenases (30). Taurine dioxygenase is related to TfdA and has been documented to share homology with AAD-12 ADDIN REFMGR.CITE <Refman><Cite><Author>Westendorf</Author><Year>2002</Year><RecNum>771</RecNum><IDText>The two enantiospecific dichlorprop/a-ketoglutarate-dioxygenases from Delftia acidovorans MC1 - protein and sequence data of RdpA and SdpA</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>771</Ref_ID><Title_Primary>The two enantiospecific dichlorprop/<f name="Symbol">a</f>-ketoglutarate-dioxygenases from <i>Delftia acidovorans</i> MC1 - protein and sequence data of RdpA and SdpA</Title_Primary><Authors_Primary>Westendorf,A.</Authors_Primary><Authors_Primary>Benndorf,D.</Authors_Primary><Authors_Primary>M&#xFC;ller,R.H.</Authors_Primary><Authors_Primary>Babel,W.</Authors_Primary><Date_Primary>2002</Date_Primary><Keywords>Delftia acidovorans</Keywords><Keywords>Herbicides</Keywords><Keywords>Molecular Weight</Keywords><Keywords>Digestion</Keywords><Reprint>In File</Reprint><Start_Page>317</Start_Page><End_Page>322</End_Page><Periodical>Microbiological Research</Periodical><Volume>157</Volume><Issue>4</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Westendorf et al_2002_SdpA.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Microbiological Research</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Westendorf et al., 2002). None of these protein classes or any other of the identified proteins is associated with toxicity to humans or other animals.The 2m EPSPS similarity search identified 3,491 alignments with an E value of < 1.0, of which 2,565 had E values < 0.01. The most predominant classes were 3-phosphoshikimate 1-carboxyvinyltransferase (1,864), UDP-N-acetylglucosamine 1-carboxyvinyltransferase (348), and 5-enolpyruvyl shikimate 3-phosphate synthase (141). None of these protein classes or any other of the identified proteins is associated with toxicity to humans or other animals.4.5.3In vitro digestibilitySee Section 4.6.3.4.5.4Stability to heat The thermolability of a protein provides an indication of the stability of the protein under cooking/processing conditions. The study provided for the AAD-12 protein (Schafer 2008) has already been considered previously by FSANZ under Application A1046 ADDIN REFMGR.CITE <Refman><Cite><Author>FSANZ</Author><Year>2011</Year><RecNum>1292</RecNum><IDText>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>1292</Ref_ID><Title_Primary>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</Title_Primary><Authors_Primary>FSANZ</Authors_Primary><Date_Primary>2011</Date_Primary><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Publisher>Report prepared by Food Standards Australia New Zealand</Publisher><Web_URL><u>;(FSANZ, 2011a). This showed that while no significant changes to protein structure were indicated by SDS-PAGE after any of the heat treatments (up to 95°C) except autoclaving, the enzymatic activity of the protein was eliminated by any heating to 50°C or above.Bacterially-derived 2m EPSPS protein was solubilised in buffer and then either kept on ice or incubated at 25, 37, 55, 75, and 95°C for 30 min. The intactness of the protein was detected by gel electrophoresis (SDS-PAGE) coupled with a Coomassie blue staining, and by ELISA. Enzyme activity of 2mEPSPS was determined based upon the presence or absence of inorganic phosphate as measured by the malachite green dye assay (see Section 4.4.1).SDS-PAGE showed that as the temperature increased additional multimeric aggregates became apparent and there was also some degradation of the protein’s primary structure ,as indicated by a fading in band intensity with increasing temperature. The ELISA analysis indicated that the epitopes for the polyclonal antibody were significantly altered once the protein was heated to or above 55°C. Enzyme activity was significantly diminished after heating. At 55°C, approximately 73% of the activity was lost and at temperatures above 75°C, approximately 94% of the activity was lost. Taken together, the results indicate that heating above 55°C denatures the 2m EPSPS protein resulting in a loss of immunoreactivity and enzymatic activity.4.5.5Acute oral toxicity studyAcute oral toxicity studies in mice using bacterially-produced 2m EPSPS and AAD-12 proteins were submitted by the Applicant but are not included in this safety assessment since no safety concerns were identified in any of the other studies. 4.6Potential allergenicityThe potential allergenicity of novel proteins was evaluated using an integrated, step-wise, case-by-case approach relying on various criteria used in combination. This is because no single criterion is sufficiently predictive of either allergenicity or non-allergenicity ADDIN REFMGR.CITE <Refman><Cite><Author>Thomas</Author><Year>2009</Year><RecNum>414</RecNum><IDText>Scientific advancement of novel protein allergenicity evaluation: An overview of work from the HESI Protein Allergenicity Technical Committee (2000 - 2008)</IDText><Prefix>see e.g. </Prefix><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>414</Ref_ID><Title_Primary>Scientific advancement of novel protein allergenicity evaluation: An overview of work from the HESI Protein Allergenicity Technical Committee (2000 - 2008)</Title_Primary><Authors_Primary>Thomas,K.</Authors_Primary><Authors_Primary>MacIntosh,S.</Authors_Primary><Authors_Primary>Bannon,G.</Authors_Primary><Authors_Primary>Herouet-Guicheney,C.</Authors_Primary><Authors_Primary>Holsapple,M.</Authors_Primary><Authors_Primary>Ladics,G.</Authors_Primary><Authors_Primary>McClain,S.</Authors_Primary><Authors_Primary>Vieths,S.</Authors_Primary><Authors_Primary>Woolhiser,M.</Authors_Primary><Authors_Primary>Privalle,L.</Authors_Primary><Date_Primary>2009</Date_Primary><Keywords>allergenicity</Keywords><Reprint>In File</Reprint><Start_Page>1041</Start_Page><End_Page>1050</End_Page><Periodical>Food and Chemical Toxicology</Periodical><Volume>47</Volume><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Thomas et al_2009_novel protein allergenicity.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Food and Chemical Toxicology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(see e.g. Thomas et al., 2009). The assessment focuses on: the source of the novel protein; any significant amino acid sequence similarity between the novel protein and known allergens;the structural properties of the novel protein, including susceptibility to digestion, heat stability and/or enzymatic treatment; andspecific serum screening if the novel protein is derived from a source known to be allergenic or has amino acid sequence similarity to a known allergen, additional in vitro and in vivo immunological testing may be warranted.Applying this approach systematically provides reasonable evidence about the potential of a novel protein to act as an allergen.As with the assessment of potential toxicity, the PAT protein is not considered in this assessment of allergenicity as it has been adequately characterised elsewhere ADDIN REFMGR.CITE <Refman><Cite><Author>Delaney</Author><Year>2008</Year><RecNum>288</RecNum><IDText>Evaluation of protein safety in the context of agricultural biotechnology</IDText><Prefix>see e.g. </Prefix><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>288</Ref_ID><Title_Primary>Evaluation of protein safety in the context of agricultural biotechnology</Title_Primary><Authors_Primary>Delaney,B.</Authors_Primary><Authors_Primary>Astwood,J.D.</Authors_Primary><Authors_Primary>Cunny,H.</Authors_Primary><Authors_Primary>Eichen Conn,R.</Authors_Primary><Authors_Primary>Herouet-Guicheney,C.</Authors_Primary><Authors_Primary>MacIntosh,S.</Authors_Primary><Authors_Primary>Meyer,L.S.</Authors_Primary><Authors_Primary>Privalle,L.S.</Authors_Primary><Authors_Primary>Gao,Y.</Authors_Primary><Authors_Primary>Mattsson,J.</Authors_Primary><Authors_Primary>Levine,M.</Authors_Primary><Authors_Primary>ILSI</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>Safety</Keywords><Keywords>Proteins</Keywords><Keywords>methods</Keywords><Keywords>Amino Acid Sequence</Keywords><Reprint>In File</Reprint><Start_Page>S71</Start_Page><End_Page>S97</End_Page><Periodical>Food and Chemical Toxicology</Periodical><Volume>46</Volume><Web_URL_Link3><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Delaney et al_2008_Protein Safety.pdf</u></Web_URL_Link3><ZZ_JournalFull><f name="System">Food and Chemical Toxicology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(see e.g. Delaney et al., 2008). A bioinformatics analysis was submitted by the Applicant comparing the PAT protein sequence with sequences in an updated (February 2011) protein database but none of the significant sequence alignments were associated with any known protein allergens.Studies submitted:Guttikonda, S. (2011). Similarity assessment of 2mEPSPS protein to known allergens by bioinformatics analysis (updated March, 2011). Study ID# 110328, Dow AgroSciences (unpublished).Song, P. (2011). Sequence similarity assessment of AAD-12 protein to known allergens by bioinformatics analysis (updated February, 2011). Study ID# 110326, Dow AgroSciences (unpublished).Embrey, S.K. (2011). In vitro simulated gastric fluid digestibility study of double mutant 5-enolpyruvylshikimate-3-phosphate synthase (2mEPSPS) protein. Study ID# 102106, Dow AgroSciences (unpublished).Embrey, S.K.; Schafer, B.W. (2008). In vitro simulated gastric fluid digestibility of aryloxyalkanoate dioxygenase-12 (abbreviation AAD-12). Study ID# 080064, Dow AgroSciences (unpublished).Schafer, B.W.; Embrey, S.K. (2011). In vitro simulated gastric fluid digestibility of aryloxyalkanoate dioxygenase-12 (AAD-12) in soybean leaf extracts. Study ID# 110265, Dow AgroSciences (unpublished).Song, P. (2011). Sequence similarity assessment of PAT protein to known allergens by bioinformatics analysis (updated February, 2011). Study ID# 110330, Dow AgroSciences (unpublished).4.6.1Source of the proteinThe 2m EPSPS protein is derived from Zea mays. Few food-induced allergic reactions to corn have been reported and corn tends not be regarded as a commonly allergenic food ADDIN REFMGR.CITE <Refman><Cite><Author>OECD</Author><Year>2002</Year><RecNum>79</RecNum><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>79</Ref_ID><Title_Primary>Consensus document on compositional considerations for new varieties of maize (<i>Zea mays</i>): Key food and feed nutrients, antinutrients and secondard plant metabolites</Title_Primary><Authors_Primary>OECD</Authors_Primary><Date_Primary>2002</Date_Primary><Keywords>Zea mays</Keywords><Reprint>Not in File</Reprint><Pub_Place>Paris</Pub_Place><Publisher>Organisation for Economic Co-operation and Development</Publisher><Title_Series>Series on the safety of novel foods and feeds, No. 6</Title_Series><Web_URL><u>(2002)25&amp;doclanguage=en</u></Web_URL><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OECD, 2002). Nevertheless, there are allergenicity concerns associated with certain proteins expressed in the pollen of corn, e.g. Zm13 protein ADDIN REFMGR.CITE <Refman><Cite><Author>Heiss</Author><Year>1996</Year><RecNum>852</RecNum><IDText>Expression of Zm13, a pollen specific maize protein in Escherichia coli reveals IgE-binding capacity and allergenic potential</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>852</Ref_ID><Title_Primary>Expression of Zm13, a pollen specific maize protein in <i>Escherichia coli</i> reveals IgE-binding capacity and allergenic potential</Title_Primary><Authors_Primary>Heiss,S.</Authors_Primary><Authors_Primary>Flicker,S.</Authors_Primary><Authors_Primary>Hamilton,D.A.</Authors_Primary><Authors_Primary>Kraft,D.</Authors_Primary><Authors_Primary>Mascarenhas,J.P.</Authors_Primary><Authors_Primary>Valenta,R.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>maize</Keywords><Keywords>Escherichia coli</Keywords><Keywords>Plant Proteins</Keywords><Keywords>Proteins</Keywords><Keywords>Allergens</Keywords><Keywords>Plants</Keywords><Reprint>In File</Reprint><Start_Page>217</Start_Page><End_Page>221</End_Page><Periodical>FEBS Letters</Periodical><Volume>381</Volume><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Heiss et al_1996_Zm13 allergen.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">FEBS Letters</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Heiss et al., 1996), and a number of allergens have also been isolated from the seed, although most have not been clinically evaluated for their allergenic potential. The most significant of these is Zm14 ADDIN REFMGR.CITE <Refman><Cite><Author>Pastorello</Author><Year>2000</Year><RecNum>853</RecNum><IDText>The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>853</Ref_ID><Title_Primary>The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein</Title_Primary><Authors_Primary>Pastorello,E.A.</Authors_Primary><Authors_Primary>Farioli,L.</Authors_Primary><Authors_Primary>Pravettoni,V.</Authors_Primary><Authors_Primary>Ispano,M.</Authors_Primary><Authors_Primary>Scibola,E.</Authors_Primary><Authors_Primary>Trambaioli,C.</Authors_Primary><Authors_Primary>Giuffrida,M.G.</Authors_Primary><Authors_Primary>Ansaloni,R.</Authors_Primary><Authors_Primary>Godovac-Zimmermann,J.</Authors_Primary><Authors_Primary>Conti,A.</Authors_Primary><Authors_Primary>Fortunato,D.</Authors_Primary><Authors_Primary>Ortolani,C.</Authors_Primary><Date_Primary>2000</Date_Primary><Keywords>Human</Keywords><Keywords>Diet</Keywords><Keywords>diagnosis</Keywords><Keywords>Allergens</Keywords><Keywords>maize</Keywords><Keywords>Proteins</Keywords><Keywords>Fruit</Keywords><Keywords>methods</Keywords><Keywords>Skin</Keywords><Keywords>Immunoblotting</Keywords><Keywords>Mass Spectrometry</Keywords><Keywords>Wheat</Keywords><Keywords>Trypsin Inhibitors</Keywords><Keywords>Molecular Weight</Keywords><Reprint>In File</Reprint><Start_Page>744</Start_Page><End_Page>751</End_Page><Periodical>Journal of Allergy and Clinical Immunology</Periodical><Volume>106</Volume><Issue>4</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Pastorello et al_2000_Zm14 allergen.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Journal of Allergy and Clinical Immunology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Pastorello et al., 2000), a lipid transfer protein that can maintain its IgE binding capacity even after heat treatment ADDIN REFMGR.CITE <Refman><Cite><Author>Pastorello</Author><Year>2003</Year><RecNum>854</RecNum><IDText>Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 degrees C, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>854</Ref_ID><Title_Primary>Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 degrees C, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results</Title_Primary><Authors_Primary>Pastorello,E.A.</Authors_Primary><Authors_Primary>Pompei,C.</Authors_Primary><Authors_Primary>Pravettoni,V.</Authors_Primary><Authors_Primary>Farioli,L.</Authors_Primary><Authors_Primary>Calamari,A.M.</Authors_Primary><Authors_Primary>Scibilia,J.</Authors_Primary><Authors_Primary>Robino,A.M.</Authors_Primary><Authors_Primary>Conti,A.</Authors_Primary><Authors_Primary>Iametti,S.</Authors_Primary><Authors_Primary>Fortunato,D.</Authors_Primary><Authors_Primary>Bonomi,S.</Authors_Primary><Authors_Primary>Ortolani,C.</Authors_Primary><Date_Primary>2003</Date_Primary><Keywords>maize</Keywords><Keywords>allergenicity</Keywords><Keywords>methods</Keywords><Keywords>Immunoblotting</Keywords><Keywords>Circular Dichroism</Keywords><Keywords>Amino Acid Sequence</Keywords><Reprint>In File</Reprint><Start_Page>775</Start_Page><End_Page>783</End_Page><Periodical>Journal of Allergy and Clinical Immunology</Periodical><Volume>112</Volume><Issue>4</Issue><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Pastorello et al_2003_Zm14 allergenpdf.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Journal of Allergy and Clinical Immunology</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Pastorello et al., 2003). Zm14 has been associated with anaphylactic reaction in susceptible individuals. The EPSPS proteins, from corn or other species, have not themselves been implicated in any food-related allergic reactions.The AAD-12 protein is derived from a common soil bacterium Delftia acidovorans which has not been reported to be a source of allergenic proteins. Humans would be inadvertently exposed to this organism through the ingestion of fresh produce.4.6.2Amino acid sequence similarity to known allergensBioinformatic analysis is part of a ‘weight of evidence’ approach for assessing potential allergenicity of novel proteins introduced to GM plants PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRob21hczwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJl

Y051bT40MDc8L1JlY051bT48SURUZXh0PkluIHNpbGljbyBtZXRob2RzIGZvciBldmFsdWF0aW5n

IGh1bWFuIGFsbGVyZ2VuaWNpdHkgdG8gbm92ZWwgcHJvdGVpbnM6IEludGVybmF0aW9uYWwgQmlv

aW5mb3JtYXRpY3MgV29ya3Nob3AgTWVldGluZyBSZXBvcnQgRmVicnVhcnkgMjMgLSAyNCwgMjAw

NTwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZf

VHlwZT48UmVmX0lEPjQwNzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkluIHNpbGljbyBtZXRob2Rz

IGZvciBldmFsdWF0aW5nIGh1bWFuIGFsbGVyZ2VuaWNpdHkgdG8gbm92ZWwgcHJvdGVpbnM6IElu

dGVybmF0aW9uYWwgQmlvaW5mb3JtYXRpY3MgV29ya3Nob3AgTWVldGluZyBSZXBvcnQgRmVicnVh

cnkgMjMgLSAyNCwgMjAwNTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRob21hcyxL

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFubm9uLEcuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZWZsZSxTLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+SGVyb3VldCxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SG9s

c2FwcGxlLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MYWRpY3MsRy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1hY0ludG9zaCxTLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+UHJpdmFsbGUsTC48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Q

cmltYXJ5PjIwMDU8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YWxsZXJnZW5pY2l0eTwvS2V5d29y

ZHM+PEtleXdvcmRzPkh1bWFuPC9LZXl3b3Jkcz48S2V5d29yZHM+bWV0aG9kczwvS2V5d29yZHM+

PEtleXdvcmRzPlByb3RlaW5zPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxT

dGFydF9QYWdlPjMwNzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+MzEwPC9FbmRfUGFnZT48UGVyaW9k

aWNhbD5Ub3hpY29sb2dpY2FsIFNjaWVuY2VzPC9QZXJpb2RpY2FsPjxWb2x1bWU+ODg8L1ZvbHVt

ZT48V2ViX1VSTD48dT5odHRwOi8vdG94c2NpLm94Zm9yZGpvdXJuYWxzLm9yZy9jZ2kvY29udGVu

dC9hYnN0cmFjdC84OC8yLzMwNzwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTov

L0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJl

bmNlc1xHTSBSZWZlcmVuY2VzXFRob21hcyBldCBhbF8yMDA1X0Jpb2luZm9ybWF0aWMgdGVzdGlu

ZyBvZiBhbGxlcmdlbmljaXR5LnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxs

PjxmIG5hbWU9IlN5c3RlbSI+VG94aWNvbG9naWNhbCBTY2llbmNlczwvZj48L1paX0pvdXJuYWxG

dWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxB

dXRob3I+R29vZG1hbjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT40MTY8L1JlY051

bT48SURUZXh0PlByYWN0aWNhbCBhbmQgcHJlZGljdGl2ZSBiaW9pbmZvcm1hdGljcyBtZXRob2Rz

IGZvciB0aGUgaWRlbnRpZmljYXRpb24gb2YgcG90ZW50aWFsbHkgY3Jvc3MtcmVhY3RpdmUgcHJv

dGVpbiBtYXRjaGVzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpv

dXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NDE2PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+UHJhY3Rp

Y2FsIGFuZCBwcmVkaWN0aXZlIGJpb2luZm9ybWF0aWNzIG1ldGhvZHMgZm9yIHRoZSBpZGVudGlm

aWNhdGlvbiBvZiBwb3RlbnRpYWxseSBjcm9zcy1yZWFjdGl2ZSBwcm90ZWluIG1hdGNoZXM8L1Rp

dGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Hb29kbWFuLFIuRS48L0F1dGhvcnNfUHJpbWFy

eT48RGF0ZV9QcmltYXJ5PjIwMDY8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+bWV0aG9kczwvS2V5

d29yZHM+PEtleXdvcmRzPlByb3RlaW5zPC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXRpYyBFbmdp

bmVlcmluZzwvS2V5d29yZHM+PEtleXdvcmRzPkFsbGVyZ2VuczwvS2V5d29yZHM+PEtleXdvcmRz

PlNhZmV0eTwvS2V5d29yZHM+PEtleXdvcmRzPkFtaW5vIEFjaWRzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+YWxsZXJnZW5pY2l0eTwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3Rh

cnRfUGFnZT42NTU8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjY2MDwvRW5kX1BhZ2U+PFBlcmlvZGlj

YWw+TW9sZWN1bGFyIE51dHJpdGlvbiBhbmQgRm9vZCBSZXNlYXJjaDwvUGVyaW9kaWNhbD48Vm9s

dW1lPjUwPC9Wb2x1bWU+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVu

dCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2Vz

XEdvb2RtYW5fMjAwNl9iaW9pbmZvcm1hdGljcy5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxaWl9K

b3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPk1vbGVjdWxhciBOdXRyaXRpb24gYW5kIEZvb2Qg

UmVzZWFyY2g8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9y

bUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRob21hczwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJl

Y051bT40MDc8L1JlY051bT48SURUZXh0PkluIHNpbGljbyBtZXRob2RzIGZvciBldmFsdWF0aW5n

IGh1bWFuIGFsbGVyZ2VuaWNpdHkgdG8gbm92ZWwgcHJvdGVpbnM6IEludGVybmF0aW9uYWwgQmlv

aW5mb3JtYXRpY3MgV29ya3Nob3AgTWVldGluZyBSZXBvcnQgRmVicnVhcnkgMjMgLSAyNCwgMjAw

NTwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZf

VHlwZT48UmVmX0lEPjQwNzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkluIHNpbGljbyBtZXRob2Rz

IGZvciBldmFsdWF0aW5nIGh1bWFuIGFsbGVyZ2VuaWNpdHkgdG8gbm92ZWwgcHJvdGVpbnM6IElu

dGVybmF0aW9uYWwgQmlvaW5mb3JtYXRpY3MgV29ya3Nob3AgTWVldGluZyBSZXBvcnQgRmVicnVh

cnkgMjMgLSAyNCwgMjAwNTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRob21hcyxL

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFubm9uLEcuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZWZsZSxTLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+SGVyb3VldCxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SG9s

c2FwcGxlLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MYWRpY3MsRy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1hY0ludG9zaCxTLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+UHJpdmFsbGUsTC48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Q

cmltYXJ5PjIwMDU8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YWxsZXJnZW5pY2l0eTwvS2V5d29y

ZHM+PEtleXdvcmRzPkh1bWFuPC9LZXl3b3Jkcz48S2V5d29yZHM+bWV0aG9kczwvS2V5d29yZHM+

PEtleXdvcmRzPlByb3RlaW5zPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxT

dGFydF9QYWdlPjMwNzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+MzEwPC9FbmRfUGFnZT48UGVyaW9k

aWNhbD5Ub3hpY29sb2dpY2FsIFNjaWVuY2VzPC9QZXJpb2RpY2FsPjxWb2x1bWU+ODg8L1ZvbHVt

ZT48V2ViX1VSTD48dT5odHRwOi8vdG94c2NpLm94Zm9yZGpvdXJuYWxzLm9yZy9jZ2kvY29udGVu

dC9hYnN0cmFjdC84OC8yLzMwNzwvdT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTov

L0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJl

bmNlc1xHTSBSZWZlcmVuY2VzXFRob21hcyBldCBhbF8yMDA1X0Jpb2luZm9ybWF0aWMgdGVzdGlu

ZyBvZiBhbGxlcmdlbmljaXR5LnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxs

PjxmIG5hbWU9IlN5c3RlbSI+VG94aWNvbG9naWNhbCBTY2llbmNlczwvZj48L1paX0pvdXJuYWxG

dWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxB

dXRob3I+R29vZG1hbjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT40MTY8L1JlY051

bT48SURUZXh0PlByYWN0aWNhbCBhbmQgcHJlZGljdGl2ZSBiaW9pbmZvcm1hdGljcyBtZXRob2Rz

IGZvciB0aGUgaWRlbnRpZmljYXRpb24gb2YgcG90ZW50aWFsbHkgY3Jvc3MtcmVhY3RpdmUgcHJv

dGVpbiBtYXRjaGVzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpv

dXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+NDE2PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+UHJhY3Rp

Y2FsIGFuZCBwcmVkaWN0aXZlIGJpb2luZm9ybWF0aWNzIG1ldGhvZHMgZm9yIHRoZSBpZGVudGlm

aWNhdGlvbiBvZiBwb3RlbnRpYWxseSBjcm9zcy1yZWFjdGl2ZSBwcm90ZWluIG1hdGNoZXM8L1Rp

dGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Hb29kbWFuLFIuRS48L0F1dGhvcnNfUHJpbWFy

eT48RGF0ZV9QcmltYXJ5PjIwMDY8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+bWV0aG9kczwvS2V5

d29yZHM+PEtleXdvcmRzPlByb3RlaW5zPC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXRpYyBFbmdp

bmVlcmluZzwvS2V5d29yZHM+PEtleXdvcmRzPkFsbGVyZ2VuczwvS2V5d29yZHM+PEtleXdvcmRz

PlNhZmV0eTwvS2V5d29yZHM+PEtleXdvcmRzPkFtaW5vIEFjaWRzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+YWxsZXJnZW5pY2l0eTwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3Rh

cnRfUGFnZT42NTU8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjY2MDwvRW5kX1BhZ2U+PFBlcmlvZGlj

YWw+TW9sZWN1bGFyIE51dHJpdGlvbiBhbmQgRm9vZCBSZXNlYXJjaDwvUGVyaW9kaWNhbD48Vm9s

dW1lPjUwPC9Wb2x1bWU+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVu

dCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2Vz

XEdvb2RtYW5fMjAwNl9iaW9pbmZvcm1hdGljcy5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxaWl9K

b3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPk1vbGVjdWxhciBOdXRyaXRpb24gYW5kIEZvb2Qg

UmVzZWFyY2g8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9y

bUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN EN.CITE.DATA (Thomas et al., 2005; Goodman, 2006). It is a method for comparing the amino acid sequence of the introduced protein with sequences of known allergens in order to indicate potential cross-reactivity between allergenic proteins and the introduced protein. As with the bioinformatic analysis that looked at similarities of the novel proteins with known protein toxins (refer to Section 4.5.2), the generation of an E value provides an important indicator of significance of matches PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJheGV2YW5pczwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+

PFJlY051bT4yMzk8L1JlY051bT48SURUZXh0PkFzc2Vzc2luZyBQYWlyd2lzZSBTZXF1ZW5jZSBT

aW1pbGFyaXR5OiBCTEFTVCBhbmQgRkFTVEE8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJCb29rIENo

YXB0ZXIiPjxSZWZfVHlwZT5Cb29rIENoYXB0ZXI8L1JlZl9UeXBlPjxSZWZfSUQ+MjM5PC9SZWZf

SUQ+PFRpdGxlX1ByaW1hcnk+QXNzZXNzaW5nIFBhaXJ3aXNlIFNlcXVlbmNlIFNpbWlsYXJpdHk6

IEJMQVNUIGFuZCBGQVNUQTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJheGV2YW5p

cyxBLkQuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDA1PC9EYXRlX1ByaW1hcnk+

PEtleXdvcmRzPmFuYWx5c2lzPC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXM8L0tleXdvcmRzPjxL

ZXl3b3Jkcz5Qcm90ZWluczwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3Rh

cnRfUGFnZT4yOTU8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjMyNDwvRW5kX1BhZ2U+PFRpdGxlX1Nl

Y29uZGFyeT5CaW9pbmZvcm1hdGljczogQSBQcmFjdGljYWwgR3VpZGUgdG8gdGhlIEFuYWx5c2lz

IG9mIEdlbmVzIGFuZCBQcm90ZWluczwvVGl0bGVfU2Vjb25kYXJ5PjxBdXRob3JzX1NlY29uZGFy

eT5CYXhldmFuaXMsQS5ELjwvQXV0aG9yc19TZWNvbmRhcnk+PEF1dGhvcnNfU2Vjb25kYXJ5Pk91

ZWxsZXR0ZSxCLkYuRi48L0F1dGhvcnNfU2Vjb25kYXJ5PjxJc3N1ZT4xMTwvSXNzdWU+PFB1Ymxp

c2hlcj5Kb2huIFdpbGV5ICZhbXA7IFNvbnMsIEluYy48L1B1Ymxpc2hlcj48V2ViX1VSTF9MaW5r

Mj48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0gQ2hlbWljYWwgU2FmZXR5XEdNTyAtIHNo

YXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcQmF4ZXZhbmlzXzIwMDVfQkxBU1QgYW5kIEZB

U1RBLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX1dvcmtmb3JtSUQ+MzwvWlpfV29ya2Zvcm1J

RD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZWFyc29uPC9BdXRob3I+PFllYXI+MjAwMDwv

WWVhcj48UmVjTnVtPjI0MDwvUmVjTnVtPjxJRFRleHQ+RmxleGlibGUgU2VxdWVuY2UgU2ltaWxh

cml0eSBTZWFyY2hpbmcgd2l0aCB0aGUgRkFTVEEzIFByb2dyYW0gUGFja2FnZTwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkJvb2sgQ2hhcHRlciI+PFJlZl9UeXBlPkJvb2sgQ2hhcHRlcjwvUmVmX1R5

cGU+PFJlZl9JRD4yNDA8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5GbGV4aWJsZSBTZXF1ZW5jZSBT

aW1pbGFyaXR5IFNlYXJjaGluZyB3aXRoIHRoZSBGQVNUQTMgUHJvZ3JhbSBQYWNrYWdlPC9UaXRs

ZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGVhcnNvbixXLlIuPC9BdXRob3JzX1ByaW1hcnk+

PERhdGVfUHJpbWFyeT4yMDAwPC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPm1ldGhvZHM8L0tleXdv

cmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MTg1PC9TdGFydF9QYWdl

PjxFbmRfUGFnZT4yMTk8L0VuZF9QYWdlPjxUaXRsZV9TZWNvbmRhcnk+TWV0aG9kcyBpbiBNb2xl

Y3VsYXIgQmlvbG9neSwgVm9sdW1lIDEzMjogQmlvaW5mb3JtYXRpY3MgTWV0aG9kcyBhbmQgUHJv

dG9jb2xzPC9UaXRsZV9TZWNvbmRhcnk+PEF1dGhvcnNfU2Vjb25kYXJ5Pk1pc2VuZXIsUy48L0F1

dGhvcnNfU2Vjb25kYXJ5PjxBdXRob3JzX1NlY29uZGFyeT5LcmF3ZXR6LFMuQS48L0F1dGhvcnNf

U2Vjb25kYXJ5PjxJc3N1ZT4xMDwvSXNzdWU+PFB1Yl9QbGFjZT5Ub3Rvd2EsIE5KPC9QdWJfUGxh

Y2U+PFB1Ymxpc2hlcj5IdW1hbiBQcmVzcyBJbmMuPC9QdWJsaXNoZXI+PFdlYl9VUkxfTGluazI+

PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFy

ZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFBlYXJzb25fMjAwMF9GQVNUQTMucGRmPC91Pjwv

V2ViX1VSTF9MaW5rMj48WlpfV29ya2Zvcm1JRD4zPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0

ZT48L1JlZm1hbj4A

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJheGV2YW5pczwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+

PFJlY051bT4yMzk8L1JlY051bT48SURUZXh0PkFzc2Vzc2luZyBQYWlyd2lzZSBTZXF1ZW5jZSBT

aW1pbGFyaXR5OiBCTEFTVCBhbmQgRkFTVEE8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJCb29rIENo

YXB0ZXIiPjxSZWZfVHlwZT5Cb29rIENoYXB0ZXI8L1JlZl9UeXBlPjxSZWZfSUQ+MjM5PC9SZWZf

SUQ+PFRpdGxlX1ByaW1hcnk+QXNzZXNzaW5nIFBhaXJ3aXNlIFNlcXVlbmNlIFNpbWlsYXJpdHk6

IEJMQVNUIGFuZCBGQVNUQTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJheGV2YW5p

cyxBLkQuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDA1PC9EYXRlX1ByaW1hcnk+

PEtleXdvcmRzPmFuYWx5c2lzPC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXM8L0tleXdvcmRzPjxL

ZXl3b3Jkcz5Qcm90ZWluczwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3Rh

cnRfUGFnZT4yOTU8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjMyNDwvRW5kX1BhZ2U+PFRpdGxlX1Nl

Y29uZGFyeT5CaW9pbmZvcm1hdGljczogQSBQcmFjdGljYWwgR3VpZGUgdG8gdGhlIEFuYWx5c2lz

IG9mIEdlbmVzIGFuZCBQcm90ZWluczwvVGl0bGVfU2Vjb25kYXJ5PjxBdXRob3JzX1NlY29uZGFy

eT5CYXhldmFuaXMsQS5ELjwvQXV0aG9yc19TZWNvbmRhcnk+PEF1dGhvcnNfU2Vjb25kYXJ5Pk91

ZWxsZXR0ZSxCLkYuRi48L0F1dGhvcnNfU2Vjb25kYXJ5PjxJc3N1ZT4xMTwvSXNzdWU+PFB1Ymxp

c2hlcj5Kb2huIFdpbGV5ICZhbXA7IFNvbnMsIEluYy48L1B1Ymxpc2hlcj48V2ViX1VSTF9MaW5r

Mj48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0gQ2hlbWljYWwgU2FmZXR5XEdNTyAtIHNo

YXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcQmF4ZXZhbmlzXzIwMDVfQkxBU1QgYW5kIEZB

U1RBLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX1dvcmtmb3JtSUQ+MzwvWlpfV29ya2Zvcm1J

RD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZWFyc29uPC9BdXRob3I+PFllYXI+MjAwMDwv

WWVhcj48UmVjTnVtPjI0MDwvUmVjTnVtPjxJRFRleHQ+RmxleGlibGUgU2VxdWVuY2UgU2ltaWxh

cml0eSBTZWFyY2hpbmcgd2l0aCB0aGUgRkFTVEEzIFByb2dyYW0gUGFja2FnZTwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkJvb2sgQ2hhcHRlciI+PFJlZl9UeXBlPkJvb2sgQ2hhcHRlcjwvUmVmX1R5

cGU+PFJlZl9JRD4yNDA8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5GbGV4aWJsZSBTZXF1ZW5jZSBT

aW1pbGFyaXR5IFNlYXJjaGluZyB3aXRoIHRoZSBGQVNUQTMgUHJvZ3JhbSBQYWNrYWdlPC9UaXRs

ZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGVhcnNvbixXLlIuPC9BdXRob3JzX1ByaW1hcnk+

PERhdGVfUHJpbWFyeT4yMDAwPC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPm1ldGhvZHM8L0tleXdv

cmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MTg1PC9TdGFydF9QYWdl

PjxFbmRfUGFnZT4yMTk8L0VuZF9QYWdlPjxUaXRsZV9TZWNvbmRhcnk+TWV0aG9kcyBpbiBNb2xl

Y3VsYXIgQmlvbG9neSwgVm9sdW1lIDEzMjogQmlvaW5mb3JtYXRpY3MgTWV0aG9kcyBhbmQgUHJv

dG9jb2xzPC9UaXRsZV9TZWNvbmRhcnk+PEF1dGhvcnNfU2Vjb25kYXJ5Pk1pc2VuZXIsUy48L0F1

dGhvcnNfU2Vjb25kYXJ5PjxBdXRob3JzX1NlY29uZGFyeT5LcmF3ZXR6LFMuQS48L0F1dGhvcnNf

U2Vjb25kYXJ5PjxJc3N1ZT4xMDwvSXNzdWU+PFB1Yl9QbGFjZT5Ub3Rvd2EsIE5KPC9QdWJfUGxh

Y2U+PFB1Ymxpc2hlcj5IdW1hbiBQcmVzcyBJbmMuPC9QdWJsaXNoZXI+PFdlYl9VUkxfTGluazI+

PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFy

ZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXFBlYXJzb25fMjAwMF9GQVNUQTMucGRmPC91Pjwv

V2ViX1VSTF9MaW5rMj48WlpfV29ya2Zvcm1JRD4zPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0

ZT48L1JlZm1hbj4A

ADDIN EN.CITE.DATA (Pearson, 2000; Baxevanis, 2005).The 2m EPSPS and AAD-12 sequences were compared with all known allergen sequences contained in a reference allergen database (Food Allergy Research and Resource Program - FARRP, version 11 – released in January 2011) using the FASTA algorithm and BLOSUM50 scoring matrix. The criteria used to indicate potential allergenicity in both searches were a minimum of 8-contiguous amino acid identity or 35% identity on a window of 80 amino acids within the sequence of an allergenic protein. No matches were found in either search with known allergenic proteins or with known allergenic epitopes.Neither protein shared a sequence of eight or more consecutive identical amino acids or 35% or greater identity over 80 amino acids with any potential allergens.4.6.3In vitro digestibilityTypically, food proteins that are allergenic tend to be stable to enzymes such as pepsin and the acidic conditions of the digestive system, exposing them to the intestinal mucosa and leading to an allergic response PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkFzdHdvb2Q8L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxS

ZWNOdW0+MzwvUmVjTnVtPjxJRFRleHQ+QWxsZXJnZW5pY2l0eSBvZiBmb29kcyBkZXJpdmVkIGZy

b20gdHJhbnNnZW5pYyBwbGFudHM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVm

X1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4zPC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+

QWxsZXJnZW5pY2l0eSBvZiBmb29kcyBkZXJpdmVkIGZyb20gdHJhbnNnZW5pYyBwbGFudHM8L1Rp

dGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Bc3R3b29kLEouRC48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PkZ1Y2hzLFIuTC48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Qcmlt

YXJ5PjE5OTY8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YWxsZXJnZW5pY2l0eTwvS2V5d29yZHM+

PEtleXdvcmRzPlBsYW50czwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+

PFN0YXJ0X1BhZ2U+MTA1PC9TdGFydF9QYWdlPjxFbmRfUGFnZT4xMjA8L0VuZF9QYWdlPjxQZXJp

b2RpY2FsPk1vbm9ncmFwaHMgaW4gQWxsZXJneTwvUGVyaW9kaWNhbD48Vm9sdW1lPjMyIChIaWdo

bGlnaHRzIGluIEZvb2QgQWxsZXJneSk8L1ZvbHVtZT48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0i

U3lzdGVtIj5Nb25vZ3JhcGhzIGluIEFsbGVyZ3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk1ldGNh

bGZlPC9BdXRob3I+PFllYXI+MTk5NjwvWWVhcj48UmVjTnVtPjM5PC9SZWNOdW0+PElEVGV4dD5B

c3Nlc3NtZW50IG9mIHRoZSBhbGxlcmdlbmljIHBvdGVudGlhbCBvZiBmb29kcyBkZXJpdmVkIGZy

b20gZ2VuZXRpY2FsbHkgZW5naW5lZXJlZCBjcm9wIHBsYW50czwvSURUZXh0PjxNREwgUmVmX1R5

cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjM5PC9SZWZf

SUQ+PFRpdGxlX1ByaW1hcnk+QXNzZXNzbWVudCBvZiB0aGUgYWxsZXJnZW5pYyBwb3RlbnRpYWwg

b2YgZm9vZHMgZGVyaXZlZCBmcm9tIGdlbmV0aWNhbGx5IGVuZ2luZWVyZWQgY3JvcCBwbGFudHM8

L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NZXRjYWxmZSxELkQuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Bc3R3b29kLEouRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PlRvd25zZW5kLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5TYW1wc29uLEguQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRheWxvcixT

LkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5GdWNocyxSLkwuPC9BdXRob3Jz

X1ByaW1hcnk+PERhdGVfUHJpbWFyeT4xOTk2PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPmFsbGVy

Z2VuaWNpdHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5BbGxlcmdlbnM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5BbWlubyBBY2lkIFNlcXVlbmNlPC9LZXl3b3Jkcz48S2V5d29yZHM+QW5pbWFsczwvS2V5d29y

ZHM+PEtleXdvcmRzPmNoZW1pc3RyeTwvS2V5d29yZHM+PEtleXdvcmRzPkRydWcgU3RhYmlsaXR5

PC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXRpYyBFbmdpbmVlcmluZzwvS2V5d29yZHM+PEtleXdv

cmRzPmdlbmV0aWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+SHVtYW48L0tleXdvcmRzPjxLZXl3b3Jk

cz5pbW11bm9sb2d5PC9LZXl3b3Jkcz48S2V5d29yZHM+TW9sZWN1bGFyIFNlcXVlbmNlIERhdGE8

L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudCBQcm90ZWluczwvS2V5d29yZHM+PEtleXdvcmRzPlBs

YW50czwvS2V5d29yZHM+PEtleXdvcmRzPlBsYW50cyxFZGlibGU8L0tleXdvcmRzPjxSZXByaW50

Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPlMxNjU8L1N0YXJ0X1BhZ2U+PEVuZF9Q

YWdlPlMxODY8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNyaXRpY2FsIFJldmlld3MgaW4gRm9vZCBT

Y2llbmNlIGFuZCBOdXRyaXRpb248L1BlcmlvZGljYWw+PFZvbHVtZT4zNiBTdXBwbDwvVm9sdW1l

PjxBZGRyZXNzPklMU0kgQWxsZXJneSBhbmQgSW1tdW5vbG9neSBJbnN0aXR1dGUsIFVTQTwvQWRk

cmVzcz48V2ViX1VSTD5QTTo4OTU5MzgyPC9XZWJfVVJMPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6

Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVy

ZW5jZXNcR00gUmVmZXJlbmNlc1xNZXRjYWxmZSBldCBhbC4gMTk5Ni5wZGY8L3U+PC9XZWJfVVJM

X0xpbmsyPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkNyaXRpY2FsIFJldmlld3Mg

aW4gRm9vZCBTY2llbmNlIGFuZCBOdXRyaXRpb248L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPktpbWJl

cjwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJlY051bT40MDwvUmVjTnVtPjxJRFRleHQ+VG94

aWNvbG9neSBvZiBwcm90ZWluIGFsbGVyZ2VuaWNpdHk6IHByZWRpY3Rpb24gYW5kIGNoYXJhY3Rl

cml6YXRpb248L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5h

bDwvUmVmX1R5cGU+PFJlZl9JRD40MDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlRveGljb2xvZ3kg

b2YgcHJvdGVpbiBhbGxlcmdlbmljaXR5OiBwcmVkaWN0aW9uIGFuZCBjaGFyYWN0ZXJpemF0aW9u

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltYmVyLEkuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5LZXJrdmxpZXQsTi5JLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+VGF5bG9yLFMuTC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkFzdHdvb2QsSi5ELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2FybG8sSy48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlYXJtYW4sUi5KLjwvQXV0aG9yc19Q

cmltYXJ5PjxEYXRlX1ByaW1hcnk+MTk5OS80PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPmFkdmVy

c2UgZWZmZWN0czwvS2V5d29yZHM+PEtleXdvcmRzPmFsbGVyZ2VuaWNpdHk8L0tleXdvcmRzPjxL

ZXl3b3Jkcz5BbGxlcmdlbnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5jaGVtaXN0cnk8L0tleXdvcmRz

PjxLZXl3b3Jkcz5ldGlvbG9neTwvS2V5d29yZHM+PEtleXdvcmRzPkdhc3Ryb2ludGVzdGluYWwg

RGlzZWFzZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5pbW11bm9sb2d5PC9LZXl3b3Jkcz48S2V5d29y

ZHM+UGxhbnRzPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzLEdlbmV0aWNhbGx5IE1vZGlmaWVk

PC9LZXl3b3Jkcz48S2V5d29yZHM+UHJvdGVpbnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5SZXNwaXJh

dG9yeSBIeXBlcnNlbnNpdGl2aXR5PC9LZXl3b3Jkcz48S2V5d29yZHM+UmlzayBBc3Nlc3NtZW50

PC9LZXl3b3Jkcz48S2V5d29yZHM+U3RydWN0dXJlLUFjdGl2aXR5IFJlbGF0aW9uc2hpcDwvS2V5

d29yZHM+PEtleXdvcmRzPnRveGljaXR5PC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwv

UmVwcmludD48U3RhcnRfUGFnZT4xNTc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjE2MjwvRW5kX1Bh

Z2U+PFBlcmlvZGljYWw+VG94aWNvbG9naWNhbCBTY2llbmNlczwvUGVyaW9kaWNhbD48Vm9sdW1l

PjQ4PC9Wb2x1bWU+PElzc3VlPjI8L0lzc3VlPjxBZGRyZXNzPlplbmVjYSBDZW50cmFsIFRveGlj

b2xvZ3kgTGFib3JhdG9yeSwgTWFjY2xlc2ZpZWxkLCBDaGVzaGlyZSwgVW5pdGVkIEtpbmdkb20u

IGlhbi5raW1iZXJAY3RsLnplbmVjYS5jb208L0FkZHJlc3M+PFdlYl9VUkw+UE06MTAzNTMzMDY8

L1dlYl9VUkw+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+VG94aWNvbG9naWNhbCBT

Y2llbmNlczwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3Jt

SUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkFzdHdvb2Q8L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxS

ZWNOdW0+MzwvUmVjTnVtPjxJRFRleHQ+QWxsZXJnZW5pY2l0eSBvZiBmb29kcyBkZXJpdmVkIGZy

b20gdHJhbnNnZW5pYyBwbGFudHM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVm

X1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4zPC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+

QWxsZXJnZW5pY2l0eSBvZiBmb29kcyBkZXJpdmVkIGZyb20gdHJhbnNnZW5pYyBwbGFudHM8L1Rp

dGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Bc3R3b29kLEouRC48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PkZ1Y2hzLFIuTC48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Qcmlt

YXJ5PjE5OTY8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YWxsZXJnZW5pY2l0eTwvS2V5d29yZHM+

PEtleXdvcmRzPlBsYW50czwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+

PFN0YXJ0X1BhZ2U+MTA1PC9TdGFydF9QYWdlPjxFbmRfUGFnZT4xMjA8L0VuZF9QYWdlPjxQZXJp

b2RpY2FsPk1vbm9ncmFwaHMgaW4gQWxsZXJneTwvUGVyaW9kaWNhbD48Vm9sdW1lPjMyIChIaWdo

bGlnaHRzIGluIEZvb2QgQWxsZXJneSk8L1ZvbHVtZT48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0i

U3lzdGVtIj5Nb25vZ3JhcGhzIGluIEFsbGVyZ3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk1ldGNh

bGZlPC9BdXRob3I+PFllYXI+MTk5NjwvWWVhcj48UmVjTnVtPjM5PC9SZWNOdW0+PElEVGV4dD5B

c3Nlc3NtZW50IG9mIHRoZSBhbGxlcmdlbmljIHBvdGVudGlhbCBvZiBmb29kcyBkZXJpdmVkIGZy

b20gZ2VuZXRpY2FsbHkgZW5naW5lZXJlZCBjcm9wIHBsYW50czwvSURUZXh0PjxNREwgUmVmX1R5

cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjM5PC9SZWZf

SUQ+PFRpdGxlX1ByaW1hcnk+QXNzZXNzbWVudCBvZiB0aGUgYWxsZXJnZW5pYyBwb3RlbnRpYWwg

b2YgZm9vZHMgZGVyaXZlZCBmcm9tIGdlbmV0aWNhbGx5IGVuZ2luZWVyZWQgY3JvcCBwbGFudHM8

L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NZXRjYWxmZSxELkQuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Bc3R3b29kLEouRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PlRvd25zZW5kLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5TYW1wc29uLEguQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRheWxvcixT

LkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5GdWNocyxSLkwuPC9BdXRob3Jz

X1ByaW1hcnk+PERhdGVfUHJpbWFyeT4xOTk2PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPmFsbGVy

Z2VuaWNpdHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5BbGxlcmdlbnM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5BbWlubyBBY2lkIFNlcXVlbmNlPC9LZXl3b3Jkcz48S2V5d29yZHM+QW5pbWFsczwvS2V5d29y

ZHM+PEtleXdvcmRzPmNoZW1pc3RyeTwvS2V5d29yZHM+PEtleXdvcmRzPkRydWcgU3RhYmlsaXR5

PC9LZXl3b3Jkcz48S2V5d29yZHM+R2VuZXRpYyBFbmdpbmVlcmluZzwvS2V5d29yZHM+PEtleXdv

cmRzPmdlbmV0aWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+SHVtYW48L0tleXdvcmRzPjxLZXl3b3Jk

cz5pbW11bm9sb2d5PC9LZXl3b3Jkcz48S2V5d29yZHM+TW9sZWN1bGFyIFNlcXVlbmNlIERhdGE8

L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudCBQcm90ZWluczwvS2V5d29yZHM+PEtleXdvcmRzPlBs

YW50czwvS2V5d29yZHM+PEtleXdvcmRzPlBsYW50cyxFZGlibGU8L0tleXdvcmRzPjxSZXByaW50

Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPlMxNjU8L1N0YXJ0X1BhZ2U+PEVuZF9Q

YWdlPlMxODY8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNyaXRpY2FsIFJldmlld3MgaW4gRm9vZCBT

Y2llbmNlIGFuZCBOdXRyaXRpb248L1BlcmlvZGljYWw+PFZvbHVtZT4zNiBTdXBwbDwvVm9sdW1l

PjxBZGRyZXNzPklMU0kgQWxsZXJneSBhbmQgSW1tdW5vbG9neSBJbnN0aXR1dGUsIFVTQTwvQWRk

cmVzcz48V2ViX1VSTD5QTTo4OTU5MzgyPC9XZWJfVVJMPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6

Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVy

ZW5jZXNcR00gUmVmZXJlbmNlc1xNZXRjYWxmZSBldCBhbC4gMTk5Ni5wZGY8L3U+PC9XZWJfVVJM

X0xpbmsyPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkNyaXRpY2FsIFJldmlld3Mg

aW4gRm9vZCBTY2llbmNlIGFuZCBOdXRyaXRpb248L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPktpbWJl

cjwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJlY051bT40MDwvUmVjTnVtPjxJRFRleHQ+VG94

aWNvbG9neSBvZiBwcm90ZWluIGFsbGVyZ2VuaWNpdHk6IHByZWRpY3Rpb24gYW5kIGNoYXJhY3Rl

cml6YXRpb248L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5h

bDwvUmVmX1R5cGU+PFJlZl9JRD40MDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlRveGljb2xvZ3kg

b2YgcHJvdGVpbiBhbGxlcmdlbmljaXR5OiBwcmVkaWN0aW9uIGFuZCBjaGFyYWN0ZXJpemF0aW9u

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S2ltYmVyLEkuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5LZXJrdmxpZXQsTi5JLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+VGF5bG9yLFMuTC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkFzdHdvb2QsSi5ELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2FybG8sSy48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlYXJtYW4sUi5KLjwvQXV0aG9yc19Q

cmltYXJ5PjxEYXRlX1ByaW1hcnk+MTk5OS80PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPmFkdmVy

c2UgZWZmZWN0czwvS2V5d29yZHM+PEtleXdvcmRzPmFsbGVyZ2VuaWNpdHk8L0tleXdvcmRzPjxL

ZXl3b3Jkcz5BbGxlcmdlbnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5jaGVtaXN0cnk8L0tleXdvcmRz

PjxLZXl3b3Jkcz5ldGlvbG9neTwvS2V5d29yZHM+PEtleXdvcmRzPkdhc3Ryb2ludGVzdGluYWwg

RGlzZWFzZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5pbW11bm9sb2d5PC9LZXl3b3Jkcz48S2V5d29y

ZHM+UGxhbnRzPC9LZXl3b3Jkcz48S2V5d29yZHM+UGxhbnRzLEdlbmV0aWNhbGx5IE1vZGlmaWVk

PC9LZXl3b3Jkcz48S2V5d29yZHM+UHJvdGVpbnM8L0tleXdvcmRzPjxLZXl3b3Jkcz5SZXNwaXJh

dG9yeSBIeXBlcnNlbnNpdGl2aXR5PC9LZXl3b3Jkcz48S2V5d29yZHM+UmlzayBBc3Nlc3NtZW50

PC9LZXl3b3Jkcz48S2V5d29yZHM+U3RydWN0dXJlLUFjdGl2aXR5IFJlbGF0aW9uc2hpcDwvS2V5

d29yZHM+PEtleXdvcmRzPnRveGljaXR5PC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwv

UmVwcmludD48U3RhcnRfUGFnZT4xNTc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjE2MjwvRW5kX1Bh

Z2U+PFBlcmlvZGljYWw+VG94aWNvbG9naWNhbCBTY2llbmNlczwvUGVyaW9kaWNhbD48Vm9sdW1l

PjQ4PC9Wb2x1bWU+PElzc3VlPjI8L0lzc3VlPjxBZGRyZXNzPlplbmVjYSBDZW50cmFsIFRveGlj

b2xvZ3kgTGFib3JhdG9yeSwgTWFjY2xlc2ZpZWxkLCBDaGVzaGlyZSwgVW5pdGVkIEtpbmdkb20u

IGlhbi5raW1iZXJAY3RsLnplbmVjYS5jb208L0FkZHJlc3M+PFdlYl9VUkw+UE06MTAzNTMzMDY8

L1dlYl9VUkw+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+VG94aWNvbG9naWNhbCBT

Y2llbmNlczwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3Jt

SUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA (Astwood and Fuchs, 1996; Metcalfe et al., 1996; Kimber et al., 1999). Therefore some correlation exists between resistance to digestion by pepsin and potential allergenicity although it does not necessarily follow that resistance to digestion is always an indicator of an allergenic protein PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkhlcm1hbjwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJl

Y051bT40MDY8L1JlY051bT48SURUZXh0PlN0YWJpbGl0eSBvZiBhIHNldCBvZiBhbGxlcmdlbnMg

YW5kIG5vbi1hbGxlcmdlbnMgaW4gc2ltdWxhdGVkIGdhc3RyaWMgZmx1aWQ8L0lEVGV4dD48TURM

IFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD40

MDY8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5TdGFiaWxpdHkgb2YgYSBzZXQgb2YgYWxsZXJnZW5z

IGFuZCBub24tYWxsZXJnZW5zIGluIHNpbXVsYXRlZCBnYXN0cmljIGZsdWlkPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SGVybWFuLFIuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5Pldvb2xoaXNlcixNLk0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5MYWRpY3MsRy5TLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S29yamFnaW4s

Vi5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2NoYWZlcixCLlcuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TdG9yZXIsTi5QLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+R3JlZW4sUy5CLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+S2FuLEwuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDA3PC9EYXRlX1By

aW1hcnk+PEtleXdvcmRzPkFsbGVyZ2VuczwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVw

cmludD48U3RhcnRfUGFnZT4xMjU8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjE0MTwvRW5kX1BhZ2U+

PFBlcmlvZGljYWw+SW50ZXJuYXRpb25hbCBKb3VybmFsIG9mIEZvb2QgU2NpZW5jZXMgYW5kIE51

dHJpdGlvbjwvUGVyaW9kaWNhbD48Vm9sdW1lPjU4PC9Wb2x1bWU+PFdlYl9VUkxfTGluazI+PHU+

ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRc

UmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEhlcm1hbiBldCBhbF8yMDA3X2FsbGVyZ2VuIHN0YWJp

bGl0eSBpbiBTR0YucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48WlpfSm91cm5hbEZ1bGw+PGYgbmFt

ZT0iU3lzdGVtIj5JbnRlcm5hdGlvbmFsIEpvdXJuYWwgb2YgRm9vZCBTY2llbmNlcyBhbmQgTnV0

cml0aW9uPC9mPjwvWlpfSm91cm5hbEZ1bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1J

RD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5UaG9tYXM8L0F1dGhvcj48WWVhcj4yMDA0PC9Z

ZWFyPjxSZWNOdW0+OTk8L1JlY051bT48SURUZXh0PkEgbXVsdGktbGFib3JhdG9yeSBldmFsdWF0

aW9uIG9mIGEgY29tbW9uIGluIHZpdHJvIHBlcHNpbiBkaWdlc3Rpb24gYXNzYXkgcHJvdG9jb2wg

dXNlZCBpbiBhc3Nlc3NpbmcgdGhlIHNhZmV0eSBvZiBub3ZlbCBwcm90ZWluczwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lE

Pjk5PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+QSBtdWx0aS1sYWJvcmF0b3J5IGV2YWx1YXRpb24g

b2YgYSBjb21tb24gPGk+aW4gdml0cm88L2k+IHBlcHNpbiBkaWdlc3Rpb24gYXNzYXkgcHJvdG9j

b2wgdXNlZCBpbiBhc3Nlc3NpbmcgdGhlIHNhZmV0eSBvZiBub3ZlbCBwcm90ZWluczwvVGl0bGVf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRob21hcyxLLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+QWFsYmVycyxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

QmFubm9uLEcuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJhcnRlbHMsTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlYXJtYW4sUi5KLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RXNkYWlsZSxELkouPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5GdSxULi1KLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

R2xhdHQsQy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SGFkZmllbGQsTi48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhhdHpvcyxDLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SGVmbGUsUy5MLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+SGV5bGluZ3MsSi5SLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

R29vZG1hbixSLkUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZW5yeSxCLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SGVyb3VldCxDLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SG9sc2FwcGxlLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5MYWRpY3MsRy5TLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

TGFuZHJ5LFQuRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1hY0ludG9zaCxT

LkMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5SaWNlLEUuQS48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlByaXZhbGxlLEwuUy48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlN0ZWluZXIsSC5ZLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+VGVzaGltYSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VmFuIFJl

ZSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29vbGhpc2VyLE0uPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5aYXdvZG55LEouPC9BdXRob3JzX1ByaW1hcnk+

PERhdGVfUHJpbWFyeT4yMDA0LzQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YWxsZXJnZW5pY2l0

eTwvS2V5d29yZHM+PEtleXdvcmRzPmNoZW1pc3RyeTwvS2V5d29yZHM+PEtleXdvcmRzPkNvbXBh

cmF0aXZlIFN0dWR5PC9LZXl3b3Jkcz48S2V5d29yZHM+RGlnZXN0aW9uPC9LZXl3b3Jkcz48S2V5

d29yZHM+RWxlY3Ryb3Bob3Jlc2lzLFBvbHlhY3J5bGFtaWRlIEdlbDwvS2V5d29yZHM+PEtleXdv

cmRzPkdhc3Ryb2ludGVzdGluYWwgQWdlbnRzPC9LZXl3b3Jkcz48S2V5d29yZHM+SHlkcm9nZW4t

SW9uIENvbmNlbnRyYXRpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5MYWJvcmF0b3J5IFRlY2huaXF1

ZXMgYW5kIFByb2NlZHVyZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5tZXRob2RzPC9LZXl3b3Jkcz48

S2V5d29yZHM+UGVwc2luIEE8L0tleXdvcmRzPjxLZXl3b3Jkcz5QZXB0aWRlIEZyYWdtZW50czwv

S2V5d29yZHM+PEtleXdvcmRzPlBlcm94aWRhc2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5Qcm90ZWlu

czwvS2V5d29yZHM+PEtleXdvcmRzPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9LZXl3b3Jk

cz48S2V5d29yZHM+U2FmZXR5PC9LZXl3b3Jkcz48S2V5d29yZHM+c3RhbmRhcmRzPC9LZXl3b3Jk

cz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjg3PC9TdGFydF9QYWdlPjxF

bmRfUGFnZT45ODwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+UmVndWxhdG9yeSBUb3hpY29sb2d5IGFu

ZCBQaGFybWFjb2xvZ3k8L1BlcmlvZGljYWw+PFZvbHVtZT4zOTwvVm9sdW1lPjxBZGRyZXNzPklM

U0kgSGVhbHRoIGFuZCBFbnZpcm9ubWVudGFsIFNjaWVuY2VzIEluc3RpdHV0ZSwgV2FzaGluZ3Rv

biwgREMsIFVTQS4ga3Rob21hc0BpbHNpLm9yZzwvQWRkcmVzcz48V2ViX1VSTD5QTToxNTA0MTE0

MjwvV2ViX1VSTD48V2ViX1VSTF9MaW5rMj48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0g

Q2hlbWljYWwgU2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcVGhv

bWFzIGV0IGFsXzIwMDRfU0dGIGFuZCBHTSBzYWZldHkgYXNzZXNzLnBkZjwvdT48L1dlYl9VUkxf

TGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+UmVndWxhdG9yeSBUb3hpY29s

b2d5IGFuZCBQaGFybWFjb2xvZ3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4x

PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkhlcm1hbjwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJl

Y051bT40MDY8L1JlY051bT48SURUZXh0PlN0YWJpbGl0eSBvZiBhIHNldCBvZiBhbGxlcmdlbnMg

YW5kIG5vbi1hbGxlcmdlbnMgaW4gc2ltdWxhdGVkIGdhc3RyaWMgZmx1aWQ8L0lEVGV4dD48TURM

IFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD40

MDY8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5TdGFiaWxpdHkgb2YgYSBzZXQgb2YgYWxsZXJnZW5z

IGFuZCBub24tYWxsZXJnZW5zIGluIHNpbXVsYXRlZCBnYXN0cmljIGZsdWlkPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SGVybWFuLFIuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5Pldvb2xoaXNlcixNLk0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5MYWRpY3MsRy5TLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+S29yamFnaW4s

Vi5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2NoYWZlcixCLlcuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TdG9yZXIsTi5QLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+R3JlZW4sUy5CLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+S2FuLEwuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDA3PC9EYXRlX1By

aW1hcnk+PEtleXdvcmRzPkFsbGVyZ2VuczwvS2V5d29yZHM+PFJlcHJpbnQ+SW4gRmlsZTwvUmVw

cmludD48U3RhcnRfUGFnZT4xMjU8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjE0MTwvRW5kX1BhZ2U+

PFBlcmlvZGljYWw+SW50ZXJuYXRpb25hbCBKb3VybmFsIG9mIEZvb2QgU2NpZW5jZXMgYW5kIE51

dHJpdGlvbjwvUGVyaW9kaWNhbD48Vm9sdW1lPjU4PC9Wb2x1bWU+PFdlYl9VUkxfTGluazI+PHU+

ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRc

UmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXEhlcm1hbiBldCBhbF8yMDA3X2FsbGVyZ2VuIHN0YWJp

bGl0eSBpbiBTR0YucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48WlpfSm91cm5hbEZ1bGw+PGYgbmFt

ZT0iU3lzdGVtIj5JbnRlcm5hdGlvbmFsIEpvdXJuYWwgb2YgRm9vZCBTY2llbmNlcyBhbmQgTnV0

cml0aW9uPC9mPjwvWlpfSm91cm5hbEZ1bGw+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1J

RD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5UaG9tYXM8L0F1dGhvcj48WWVhcj4yMDA0PC9Z

ZWFyPjxSZWNOdW0+OTk8L1JlY051bT48SURUZXh0PkEgbXVsdGktbGFib3JhdG9yeSBldmFsdWF0

aW9uIG9mIGEgY29tbW9uIGluIHZpdHJvIHBlcHNpbiBkaWdlc3Rpb24gYXNzYXkgcHJvdG9jb2wg

dXNlZCBpbiBhc3Nlc3NpbmcgdGhlIHNhZmV0eSBvZiBub3ZlbCBwcm90ZWluczwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lE

Pjk5PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+QSBtdWx0aS1sYWJvcmF0b3J5IGV2YWx1YXRpb24g

b2YgYSBjb21tb24gPGk+aW4gdml0cm88L2k+IHBlcHNpbiBkaWdlc3Rpb24gYXNzYXkgcHJvdG9j

b2wgdXNlZCBpbiBhc3Nlc3NpbmcgdGhlIHNhZmV0eSBvZiBub3ZlbCBwcm90ZWluczwvVGl0bGVf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRob21hcyxLLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+QWFsYmVycyxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

QmFubm9uLEcuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJhcnRlbHMsTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRlYXJtYW4sUi5KLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RXNkYWlsZSxELkouPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5GdSxULi1KLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

R2xhdHQsQy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SGFkZmllbGQsTi48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhhdHpvcyxDLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SGVmbGUsUy5MLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+SGV5bGluZ3MsSi5SLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

R29vZG1hbixSLkUuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZW5yeSxCLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SGVyb3VldCxDLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SG9sc2FwcGxlLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5MYWRpY3MsRy5TLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

TGFuZHJ5LFQuRC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pk1hY0ludG9zaCxT

LkMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5SaWNlLEUuQS48L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlByaXZhbGxlLEwuUy48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlN0ZWluZXIsSC5ZLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+VGVzaGltYSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VmFuIFJl

ZSxSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V29vbGhpc2VyLE0uPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5aYXdvZG55LEouPC9BdXRob3JzX1ByaW1hcnk+

PERhdGVfUHJpbWFyeT4yMDA0LzQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YWxsZXJnZW5pY2l0

eTwvS2V5d29yZHM+PEtleXdvcmRzPmNoZW1pc3RyeTwvS2V5d29yZHM+PEtleXdvcmRzPkNvbXBh

cmF0aXZlIFN0dWR5PC9LZXl3b3Jkcz48S2V5d29yZHM+RGlnZXN0aW9uPC9LZXl3b3Jkcz48S2V5

d29yZHM+RWxlY3Ryb3Bob3Jlc2lzLFBvbHlhY3J5bGFtaWRlIEdlbDwvS2V5d29yZHM+PEtleXdv

cmRzPkdhc3Ryb2ludGVzdGluYWwgQWdlbnRzPC9LZXl3b3Jkcz48S2V5d29yZHM+SHlkcm9nZW4t

SW9uIENvbmNlbnRyYXRpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5MYWJvcmF0b3J5IFRlY2huaXF1

ZXMgYW5kIFByb2NlZHVyZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5tZXRob2RzPC9LZXl3b3Jkcz48

S2V5d29yZHM+UGVwc2luIEE8L0tleXdvcmRzPjxLZXl3b3Jkcz5QZXB0aWRlIEZyYWdtZW50czwv

S2V5d29yZHM+PEtleXdvcmRzPlBlcm94aWRhc2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5Qcm90ZWlu

czwvS2V5d29yZHM+PEtleXdvcmRzPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9LZXl3b3Jk

cz48S2V5d29yZHM+U2FmZXR5PC9LZXl3b3Jkcz48S2V5d29yZHM+c3RhbmRhcmRzPC9LZXl3b3Jk

cz48UmVwcmludD5JbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjg3PC9TdGFydF9QYWdlPjxF

bmRfUGFnZT45ODwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+UmVndWxhdG9yeSBUb3hpY29sb2d5IGFu

ZCBQaGFybWFjb2xvZ3k8L1BlcmlvZGljYWw+PFZvbHVtZT4zOTwvVm9sdW1lPjxBZGRyZXNzPklM

U0kgSGVhbHRoIGFuZCBFbnZpcm9ubWVudGFsIFNjaWVuY2VzIEluc3RpdHV0ZSwgV2FzaGluZ3Rv

biwgREMsIFVTQS4ga3Rob21hc0BpbHNpLm9yZzwvQWRkcmVzcz48V2ViX1VSTD5QTToxNTA0MTE0

MjwvV2ViX1VSTD48V2ViX1VSTF9MaW5rMj48dT5maWxlOi8vRjpcUmlzayBBc3Nlc3NtZW50IC0g

Q2hlbWljYWwgU2FmZXR5XEdNTyAtIHNoYXJlZFxSZWZlcmVuY2VzXEdNIFJlZmVyZW5jZXNcVGhv

bWFzIGV0IGFsXzIwMDRfU0dGIGFuZCBHTSBzYWZldHkgYXNzZXNzLnBkZjwvdT48L1dlYl9VUkxf

TGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+UmVndWxhdG9yeSBUb3hpY29s

b2d5IGFuZCBQaGFybWFjb2xvZ3k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfV29ya2Zvcm1JRD4x

PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN EN.CITE.DATA (Thomas et al., 2004; Herman et al., 2007). As a consequence, one of the criteria for assessing potential allergenicity is to examine the stability of novel proteins in conditions mimicking human digestion. Proteins that are rapidly degraded in such conditions are considered less likely to be involved in eliciting an allergic response. However, evidence of slow or limited protein digestibility does not necessarily indicate that the protein is allergenic.A pepsin digestibility assay PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRob21hczwvQXV0aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJl

Y051bT45OTwvUmVjTnVtPjxJRFRleHQ+QSBtdWx0aS1sYWJvcmF0b3J5IGV2YWx1YXRpb24gb2Yg

YSBjb21tb24gaW4gdml0cm8gcGVwc2luIGRpZ2VzdGlvbiBhc3NheSBwcm90b2NvbCB1c2VkIGlu

IGFzc2Vzc2luZyB0aGUgc2FmZXR5IG9mIG5vdmVsIHByb3RlaW5zPC9JRFRleHQ+PE1ETCBSZWZf

VHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+OTk8L1Jl

Zl9JRD48VGl0bGVfUHJpbWFyeT5BIG11bHRpLWxhYm9yYXRvcnkgZXZhbHVhdGlvbiBvZiBhIGNv

bW1vbiA8aT5pbiB2aXRybzwvaT4gcGVwc2luIGRpZ2VzdGlvbiBhc3NheSBwcm90b2NvbCB1c2Vk

IGluIGFzc2Vzc2luZyB0aGUgc2FmZXR5IG9mIG5vdmVsIHByb3RlaW5zPC9UaXRsZV9QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+VGhvbWFzLEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5BYWxiZXJzLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CYW5ub24s

Ry5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFydGVscyxNLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RGVhcm1hbixSLkouPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5Fc2RhaWxlLEQuSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkZ1LFQuLUouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HbGF0dCxD

Lk0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IYWRmaWVsZCxOLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SGF0em9zLEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5IZWZsZSxTLkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5IZXlsaW5ncyxKLlIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Hb29kbWFu

LFIuRS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhlbnJ5LEIuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZXJvdWV0LEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Ib2xzYXBwbGUsTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkxhZGljcyxHLlMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MYW5kcnks

VC5ELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWFjSW50b3NoLFMuQy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJpY2UsRS5BLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+UHJpdmFsbGUsTC5TLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+U3RlaW5lcixILlkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5U

ZXNoaW1hLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5WYW4gUmVlLFIuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Xb29saGlzZXIsTS48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5Plphd29kbnksSi48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Q

cmltYXJ5PjIwMDQvNDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hbGxlcmdlbmljaXR5PC9LZXl3

b3Jkcz48S2V5d29yZHM+Y2hlbWlzdHJ5PC9LZXl3b3Jkcz48S2V5d29yZHM+Q29tcGFyYXRpdmUg

U3R1ZHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5EaWdlc3Rpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5F

bGVjdHJvcGhvcmVzaXMsUG9seWFjcnlsYW1pZGUgR2VsPC9LZXl3b3Jkcz48S2V5d29yZHM+R2Fz

dHJvaW50ZXN0aW5hbCBBZ2VudHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5IeWRyb2dlbi1Jb24gQ29u

Y2VudHJhdGlvbjwvS2V5d29yZHM+PEtleXdvcmRzPkxhYm9yYXRvcnkgVGVjaG5pcXVlcyBhbmQg

UHJvY2VkdXJlczwvS2V5d29yZHM+PEtleXdvcmRzPm1ldGhvZHM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5QZXBzaW4gQTwvS2V5d29yZHM+PEtleXdvcmRzPlBlcHRpZGUgRnJhZ21lbnRzPC9LZXl3b3Jk

cz48S2V5d29yZHM+UGVyb3hpZGFzZTwvS2V5d29yZHM+PEtleXdvcmRzPlByb3RlaW5zPC9LZXl3

b3Jkcz48S2V5d29yZHM+UmVwcm9kdWNpYmlsaXR5IG9mIFJlc3VsdHM8L0tleXdvcmRzPjxLZXl3

b3Jkcz5TYWZldHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5zdGFuZGFyZHM8L0tleXdvcmRzPjxSZXBy

aW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+ODc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdl

Pjk4PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5SZWd1bGF0b3J5IFRveGljb2xvZ3kgYW5kIFBoYXJt

YWNvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjM5PC9Wb2x1bWU+PEFkZHJlc3M+SUxTSSBIZWFs

dGggYW5kIEVudmlyb25tZW50YWwgU2NpZW5jZXMgSW5zdGl0dXRlLCBXYXNoaW5ndG9uLCBEQywg

VVNBLiBrdGhvbWFzQGlsc2kub3JnPC9BZGRyZXNzPjxXZWJfVVJMPlBNOjE1MDQxMTQyPC9XZWJf

VVJMPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNh

bCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xUaG9tYXMgZXQg

YWxfMjAwNF9TR0YgYW5kIEdNIHNhZmV0eSBhc3Nlc3MucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48

WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5SZWd1bGF0b3J5IFRveGljb2xvZ3kgYW5k

IFBoYXJtYWNvbG9neTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dv

cmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRob21hczwvQXV0aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJl

Y051bT45OTwvUmVjTnVtPjxJRFRleHQ+QSBtdWx0aS1sYWJvcmF0b3J5IGV2YWx1YXRpb24gb2Yg

YSBjb21tb24gaW4gdml0cm8gcGVwc2luIGRpZ2VzdGlvbiBhc3NheSBwcm90b2NvbCB1c2VkIGlu

IGFzc2Vzc2luZyB0aGUgc2FmZXR5IG9mIG5vdmVsIHByb3RlaW5zPC9JRFRleHQ+PE1ETCBSZWZf

VHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+OTk8L1Jl

Zl9JRD48VGl0bGVfUHJpbWFyeT5BIG11bHRpLWxhYm9yYXRvcnkgZXZhbHVhdGlvbiBvZiBhIGNv

bW1vbiA8aT5pbiB2aXRybzwvaT4gcGVwc2luIGRpZ2VzdGlvbiBhc3NheSBwcm90b2NvbCB1c2Vk

IGluIGFzc2Vzc2luZyB0aGUgc2FmZXR5IG9mIG5vdmVsIHByb3RlaW5zPC9UaXRsZV9QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+VGhvbWFzLEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5BYWxiZXJzLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CYW5ub24s

Ry5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFydGVscyxNLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RGVhcm1hbixSLkouPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5Fc2RhaWxlLEQuSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkZ1LFQuLUouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5HbGF0dCxD

Lk0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IYWRmaWVsZCxOLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SGF0em9zLEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5IZWZsZSxTLkwuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5IZXlsaW5ncyxKLlIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Hb29kbWFu

LFIuRS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhlbnJ5LEIuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5IZXJvdWV0LEMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5Ib2xzYXBwbGUsTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkxhZGljcyxHLlMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5MYW5kcnks

VC5ELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWFjSW50b3NoLFMuQy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJpY2UsRS5BLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+UHJpdmFsbGUsTC5TLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+U3RlaW5lcixILlkuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5U

ZXNoaW1hLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5WYW4gUmVlLFIuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Xb29saGlzZXIsTS48L0F1dGhvcnNfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5Plphd29kbnksSi48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Q

cmltYXJ5PjIwMDQvNDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hbGxlcmdlbmljaXR5PC9LZXl3

b3Jkcz48S2V5d29yZHM+Y2hlbWlzdHJ5PC9LZXl3b3Jkcz48S2V5d29yZHM+Q29tcGFyYXRpdmUg

U3R1ZHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5EaWdlc3Rpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5F

bGVjdHJvcGhvcmVzaXMsUG9seWFjcnlsYW1pZGUgR2VsPC9LZXl3b3Jkcz48S2V5d29yZHM+R2Fz

dHJvaW50ZXN0aW5hbCBBZ2VudHM8L0tleXdvcmRzPjxLZXl3b3Jkcz5IeWRyb2dlbi1Jb24gQ29u

Y2VudHJhdGlvbjwvS2V5d29yZHM+PEtleXdvcmRzPkxhYm9yYXRvcnkgVGVjaG5pcXVlcyBhbmQg

UHJvY2VkdXJlczwvS2V5d29yZHM+PEtleXdvcmRzPm1ldGhvZHM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5QZXBzaW4gQTwvS2V5d29yZHM+PEtleXdvcmRzPlBlcHRpZGUgRnJhZ21lbnRzPC9LZXl3b3Jk

cz48S2V5d29yZHM+UGVyb3hpZGFzZTwvS2V5d29yZHM+PEtleXdvcmRzPlByb3RlaW5zPC9LZXl3

b3Jkcz48S2V5d29yZHM+UmVwcm9kdWNpYmlsaXR5IG9mIFJlc3VsdHM8L0tleXdvcmRzPjxLZXl3

b3Jkcz5TYWZldHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5zdGFuZGFyZHM8L0tleXdvcmRzPjxSZXBy

aW50PkluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+ODc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdl

Pjk4PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5SZWd1bGF0b3J5IFRveGljb2xvZ3kgYW5kIFBoYXJt

YWNvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjM5PC9Wb2x1bWU+PEFkZHJlc3M+SUxTSSBIZWFs

dGggYW5kIEVudmlyb25tZW50YWwgU2NpZW5jZXMgSW5zdGl0dXRlLCBXYXNoaW5ndG9uLCBEQywg

VVNBLiBrdGhvbWFzQGlsc2kub3JnPC9BZGRyZXNzPjxXZWJfVVJMPlBNOjE1MDQxMTQyPC9XZWJf

VVJMPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNh

bCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xUaG9tYXMgZXQg

YWxfMjAwNF9TR0YgYW5kIEdNIHNhZmV0eSBhc3Nlc3MucGRmPC91PjwvV2ViX1VSTF9MaW5rMj48

WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5SZWd1bGF0b3J5IFRveGljb2xvZ3kgYW5k

IFBoYXJtYWNvbG9neTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dv

cmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN EN.CITE.DATA (Thomas et al., 2004) was conducted to determine the digestive stability of the 2m EPSPS and AAD-12 proteins purified from a bacterial system and AAD-12 contained in lyophilized leaf tissue from soybean 44406, using simulated gastric fluid (SGF) ADDIN REFMGR.CITE <Refman><Cite><Author>U.S.Pharmacopeia</Author><Year>1995</Year><RecNum>277</RecNum><IDText>The United States Pharmacopeia 23. The National Formulary 18</IDText><MDL Ref_Type="Book, Whole"><Ref_Type>Book, Whole</Ref_Type><Ref_ID>277</Ref_ID><Title_Primary>The United States Pharmacopeia 23. The National Formulary 18</Title_Primary><Authors_Primary>U.S.Pharmacopeia</Authors_Primary><Date_Primary>1995</Date_Primary><Reprint>In File</Reprint><Pub_Place>Rockville, MD</Pub_Place><Publisher>United States Pharmacopeia Convention, Inc</Publisher><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\U.S pharmacopeia_1995_SIF and SGF.pdf</u></Web_URL_Link2><ZZ_WorkformID>2</ZZ_WorkformID></MDL></Cite></Refman>(U.S.Pharmacopeia, 1995). For AAD-12 the test material was evaluated following incubation in SGF at 37? for 0.5, 1, 2, 4, 8, and 16 minutes). For 2m EPSPS, the incubation times were 1, 2, 4, 8, and 16 minutes The equivalent of a zero time point was prepared by neutralizing the SGF with sodium carbonate prior to adding the test protein sample. All samples were then run on SDS-PAGE. Proteins were visualised by GelCode Blue staining of the resulting gel. Two control proteins were treated in parallel: bovine serum albumin (BSA) is known to hydrolyse readily in pepsin and served as a positive control; β-lactoglobulin is known to persist in pepsin and was used as a negative control. For the soybean 44406 leaf extract, a further control was tested – leaf extract from ‘Maverick’ spiked with microbial-derived AAD-12. Western blotting of the SDS gels was also performed using an appropriate rabbit polyclonal primary antibody and horseradish peroxidase-linked secondary antibody.The AAD-12 protein was not detectable after 30 s, while the 2m EPSPS protein was not detectable after 1 min. This indicates that both proteins are readily digested by pepsin under simulated gastric conditions.4.6.4Stability to heatSee Section 4.5.4.4.7ConclusionSoybean line DAS-44406-6 expresses three novel proteins, 2m EPSPS, AAD-12 and PAT. Expression analyses of the three proteins showed that all three were detected in the plant parts tested. The 2m EPSPS protein was lowest in the seed (approximately 22 ?g/g dry weight) and highest in V10 – 12 leaves (approximately 2323 ?g/g dry weight). AAD-12 was lowest in the roots (approximately 25 ?g/g dry weight) and highest in V10 – 12 leaves (approximately 116 ?g/g dry weight). PAT protein concentrations were much lower than those for AAD-12 but similarly, the V10 – 12 leaves contained the highest levels (approximately 10 ?g/g dry weight) and the roots contained the lowest levels (approximately 2 ?g/g dry weight). A number of studies were used to confirm the identity and physicochemical properties of the plant-derived 2m EPSPS, AAD-12 and PAT proteins. These studies demonstrated that all three proteins conform in size and amino acid sequence to that expected, and do not exhibit any post-translational modification including glycosylation.In relation to potential toxicity and allergenicity, the PAT protein has previously been demonstrated to be non-toxic to mammals and also does not exhibit any potential to be allergenic to humans. For the 2m EPSPS and AAD-12 proteins, bioinformatic studies confirmed the lack of any significant amino acid sequence similarity to known protein toxins or allergens; digestibility studies suggest the proteins would be rapidly degraded in the stomach following ingestion; and thermolability studies showed that both proteins are inactivated by heating. Taken together, the evidence indicates that neither 2m EPSPS nor AAD-12 are likely to be toxic or allergenic to humans.5.Other novel substancesAs part of the safety assessment it is important to establish whether the expression of a novel protein(s) is likely to result in the accumulation of other novel substances. If such substances are found to occur as a result of the genetic modification, then it is important to determine their potential toxicity.In the case of soybean DAS-44406-6, the metabolic profiles resulting from the novel protein x herbicide interactions have been assessed in previous applications (for 2m EPSPS/glyphosate, see e.g. Application A1051 ADDIN REFMGR.CITE <Refman><Cite><Author>FSANZ</Author><Year>2011</Year><RecNum>1300</RecNum><IDText>Application A1051 - Food derived from Herbicide-tolerant Soybean Event FG72</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>1300</Ref_ID><Title_Primary>Application A1051 - Food derived from Herbicide-tolerant Soybean Event FG72</Title_Primary><Authors_Primary>FSANZ</Authors_Primary><Date_Primary>2011</Date_Primary><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Publisher>Report prepared by Food Standards Australia New Zealand</Publisher><Web_URL><u>;(FSANZ, 2011b); for AAD-12/2,4-D see Application A1046 ADDIN REFMGR.CITE <Refman><Cite><Author>FSANZ</Author><Year>2011</Year><RecNum>1292</RecNum><IDText>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>1292</Ref_ID><Title_Primary>Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4</Title_Primary><Authors_Primary>FSANZ</Authors_Primary><Date_Primary>2011</Date_Primary><Keywords>soybean</Keywords><Reprint>Not in File</Reprint><Publisher>Report prepared by Food Standards Australia New Zealand</Publisher><Web_URL><u>;(FSANZ, 2011a)) or, in the case of PAT/glufosinate ammonium, have significant history of use. There are no concerns that the spraying of soybean 44406 with glyphosate, 2,4-D or glufosinate ammonium would result in the production of metabolites that are not also produced in crops sprayed with the same herbicides and already used in the food supply.positional analysisThe main purpose of compositional analysis is to determine if any unexpected changes in composition have occurred to the food and to establish its nutritional adequacy. Compositional analysis can also be important for evaluating the intended effect where there has been a deliberate change to the composition of food.The classic approach to the compositional analysis of GM food is a targeted one; rather than analysing every single constituent, which would be impractical, the aim is to analyse only those constituents most relevant to the safety of the food or that may have an impact on the whole diet. Important analytes therefore include the key nutrients, toxicants and anti-nutrients for the food in question. The key nutrients and anti-nutrients are those components in a particular food that may have a substantial impact in the overall diet. They may be major constituents (fats, proteins, carbohydrates or enzyme inhibitors as anti-nutrients) or minor constituents (minerals, vitamins). Key toxicants are those toxicologically significant compounds known to be inherently present in an organism, such as compounds whose toxic potency and level may be significant to health (eg solanine in potatoes). 6.1Key components of soybeanFor soybean intended for human food use, the key components considered important for compositional analysis include the proximates (moisture, crude protein, fat, ash, fibre), amino acids, fatty acids, minerals, vitamins, isoflavones, phospholipids, sterols, saponins and the anti-nutrients phytic acid, trypsin inhibitors, stachyose, raffinose and lectins, ADDIN REFMGR.CITE <Refman><Cite><Author>OECD</Author><Year>2012</Year><RecNum>1306</RecNum><IDText>Revised consensus document on compositional considerations for new varieties of soybean [Glycine max (L.) Merr.]: Key food and feed nutrients, antinutrients, toxicants and allergens</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>1306</Ref_ID><Title_Primary>Revised consensus document on compositional considerations for new varieties of soybean [<i>Glycine max</i> (L.) Merr.]: Key food and feed nutrients, antinutrients, toxicants and allergens</Title_Primary><Authors_Primary>OECD</Authors_Primary><Date_Primary>2012</Date_Primary><Keywords>soybean</Keywords><Keywords>nutrients</Keywords><Keywords>Allergens</Keywords><Reprint>Not in File</Reprint><Volume>ENV/JM/MONO(2012)24</Volume><Publisher>Organisation for Economic Co-operation and Development</Publisher><Web_URL><u>:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\OECD_2012_soybean compositional doc.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OECD, 2012). It is noted that the OECD recommendations for analysis of phospholipids, sterols and saponins are not emphasised in the previous version of the consensus document ADDIN REFMGR.CITE <Refman><Cite><Author>OECD</Author><Year>2001</Year><RecNum>124</RecNum><IDText>Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients</IDText><MDL Ref_Type="Report"><Ref_Type>Report</Ref_Type><Ref_ID>124</Ref_ID><Title_Primary>Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients</Title_Primary><Authors_Primary>OECD</Authors_Primary><Date_Primary>2001</Date_Primary><Keywords>Safety</Keywords><Reprint>In File</Reprint><Volume>ENV/JM/MONO(2001)15</Volume><Pub_Place>Paris</Pub_Place><Publisher>Organisation for Economic Co-operation and Development</Publisher><Title_Series>Series on the Safety of Novel Foods and Feeds No. 2</Title_Series><Web_URL_Link1><u>file://F:\Standards Management\APPLICATIONS\A1001-A1050\A1018 High Oleic GM Soybean\A1018 Application\A1018 Literature References\Consensus_document_on_compositional_considerations_for_new_v.PDF</u></Web_URL_Link1><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\OECD_2001_consensus doc on compos of soybean.pdf</u></Web_URL_Link2><ZZ_WorkformID>24</ZZ_WorkformID></MDL></Cite></Refman>(OECD, 2001) and that the compositional studies done by the Applicant were based on this previous version.Analyses for key components were done on seed and forage. In general, soybean is cultivated for the production of seed, which is used as a source of both human food and animal feed, and is only infrequently used as a forage crop for livestock. As there are no human food products derived from forage, only the results of the compositional analyses for seed and its processed fractions are presented in this report. The compositional analyses for forage yielded comparable results to those obtained for seed. Studies submitted:Lepping, M. (2011). Field production and agronomic characteristics of a transformed soybean cultivar containing aryloxyalkanoate dioxygenase-12 (AAD-12) double mutant maize EPSPS gene (2mEPSPS) and phosphinothricin acetyltransferase (PAT) – event DAS-44406-6. Study ID# 101104.01, Dow AgroSciences (unpublished).Lepping, M. (2011). Nutrient composition of a transformed soybean cultivar containing aryloxyalkanoate dioxygenase-12 (AAD-12) double mutant maize EPSPS gene (2mEPSPS) and phosphinothricin acetyltransferase (PAT) – event DAS-44406-6. Study ID# 101104.03, Dow AgroSciences (unpublished).6.2Study design and conductThe test (DAS-44406-6, seed of T4 lineage), and control (‘Maverick’) lines were grown under similar conditions at 10 field sites across North America during the 2010 growing season. ‘Maverick’ is the original transformed line and therefore represents the isogenic control line for the purposes of the comparative analyses. Six different non-GM soybean lines were also grown under the same conditions in order to generate a reference range for each analyte. The purity and identity of the test, control and reference lines was verified.Five herbicide treatments, at target rates already described in Section 4.3, were applied to soybean 44406, namely: unsprayed; sprayed with 2,4-D (Weedar 64); sprayed with glufosinate (Liberty); sprayed with glyphosate (Durango DMA) and sprayed with 2,4-D + glufosinate + glyphosate. Seeds of the test and control soybean lines were planted in a randomised complete block design, with four replicated plots at each of the 10 sites. The reference lines were randomised across sites in a balanced incomplete-block design.Seed and forage from soybean 44406 and ‘Maverick’ were harvested from all replicated plots and analysed for composition. Forage was collected at the R3 plant growth stage, and seed (R4) was harvested at physiological maturity (refer to Table 3 for reference to growth stages). Methods of composition analysis were based on internationally recognised procedures (e.g. those of the Association of Analytical Communities - AOAC), methods specified by the manufacturer of the equipment used for analysis, or other published methods.Data were transformed into Statistical Analysis Software (SAS) data sets and analysed using SAS version 9.2. A least squares mean (LSM) value was generated and used for each analyte comparison, and standard error and minimum and maximum values were also calculated for each analyte The calculated means are summarised in Tables 4 – 10. Analysis of Variance was used for over-all analysis. The significance of an overall treatment effect was estimated using an F-test, while paired contrasts were made between the unsprayed and each of the 3 sprayed treatments using t-tests. Probability values were adjusted using False Discovery Rate procedures to improve discrimination of true differences PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJlbmphbWluaTwvQXV0aG9yPjxZZWFyPjE5OTU8L1llYXI+

PFJlY051bT4xODQ8L1JlY051bT48SURUZXh0PkNvbnRyb2xsaW5nIHRoZSBmYWxzZSBkaXNjb3Zl

cnkgcmF0ZTogYSBwcmFjdGljYWwgYW5kIHBvd2VyZnVsIGFwcHJvYWNoIHRvIG11bHRpcGxlIHRl

c3Rpbmc8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIChGdWxsKSI+PFJlZl9UeXBlPkpv

dXJuYWwgKEZ1bGwpPC9SZWZfVHlwZT48UmVmX0lEPjE4NDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5

PkNvbnRyb2xsaW5nIHRoZSBmYWxzZSBkaXNjb3ZlcnkgcmF0ZTogYSBwcmFjdGljYWwgYW5kIHBv

d2VyZnVsIGFwcHJvYWNoIHRvIG11bHRpcGxlIHRlc3Rpbmc8L1RpdGxlX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5CZW5qYW1pbmksWS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkhvY2hiZXJnLFkuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4xOTk1PC9EYXRlX1By

aW1hcnk+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT4yODk8L1N0YXJ0X1Bh

Z2U+PEVuZF9QYWdlPjMwMDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Sm91cm5hbCBvZiB0aGUgUm95

YWwgU3RhdGlzdGljYWwgU29jaWV0eSBTZXJpZXMgQi1NZXRob2RvbG9naWNhbDwvUGVyaW9kaWNh

bD48Vm9sdW1lPjU3PC9Wb2x1bWU+PElzc3VlPjE8L0lzc3VlPjxJU1NOX0lTQk4+MDAzNS05MjQ2

PC9JU1NOX0lTQk4+PFdlYl9VUkxfTGluazE+PHU+ZmlsZTovL0Y6XFN0YW5kYXJkcyBNYW5hZ2Vt

ZW50XEFQUExJQ0FUSU9OU1xBMTAwMS1BMTA1MFxBMTAxOCBIaWdoIE9sZWljIEdNIFNveWJlYW5c

QTEwMTggQXBwbGljYXRpb25cQTEwMTggTGl0ZXJhdHVyZSBSZWZlcmVuY2VzXENvbnRyb2xsaW5n

X3RoZV9GYWxzZV9EaXNjb3ZlcnlfUmF0ZV9fYV9QcmFjdGljYWxfYW5kX1Bvd2VyZi5QREY8L3U+

PC9XZWJfVVJMX0xpbmsxPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21l

bnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNl

c1xCZW5qYW1pbiAmYW1wOyBIb2NoYmVyZ18xOTk1X2ZhbHNlIGRpc2NvdmVyeSByYXRlLnBkZjwv

dT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+Sm91cm5h

bCBvZiB0aGUgUm95YWwgU3RhdGlzdGljYWwgU29jaWV0eSBTZXJpZXMgQi1NZXRob2RvbG9naWNh

bDwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjMyPC9aWl9Xb3JrZm9ybUlEPjwv

TURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk9FQ0Q8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS

ZWNOdW0+MTMwNjwvUmVjTnVtPjxJRFRleHQ+UmV2aXNlZCBjb25zZW5zdXMgZG9jdW1lbnQgb24g

Y29tcG9zaXRpb25hbCBjb25zaWRlcmF0aW9ucyBmb3IgbmV3IHZhcmlldGllcyBvZiBzb3liZWFu

IFtHbHljaW5lIG1heCAoTC4pIE1lcnIuXTogS2V5IGZvb2QgYW5kIGZlZWQgbnV0cmllbnRzLCBh

bnRpbnV0cmllbnRzLCB0b3hpY2FudHMgYW5kIGFsbGVyZ2VuczwvSURUZXh0PjxNREwgUmVmX1R5

cGU9IlJlcG9ydCI+PFJlZl9UeXBlPlJlcG9ydDwvUmVmX1R5cGU+PFJlZl9JRD4xMzA2PC9SZWZf

SUQ+PFRpdGxlX1ByaW1hcnk+UmV2aXNlZCBjb25zZW5zdXMgZG9jdW1lbnQgb24gY29tcG9zaXRp

b25hbCBjb25zaWRlcmF0aW9ucyBmb3IgbmV3IHZhcmlldGllcyBvZiBzb3liZWFuIFs8aT5HbHlj

aW5lIG1heDwvaT4gKEwuKSBNZXJyLl06IEtleSBmb29kIGFuZCBmZWVkIG51dHJpZW50cywgYW50

aW51dHJpZW50cywgdG94aWNhbnRzIGFuZCBhbGxlcmdlbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5PRUNEPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEyPC9EYXRl

X1ByaW1hcnk+PEtleXdvcmRzPnNveWJlYW48L0tleXdvcmRzPjxLZXl3b3Jkcz5udXRyaWVudHM8

L0tleXdvcmRzPjxLZXl3b3Jkcz5BbGxlcmdlbnM8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBG

aWxlPC9SZXByaW50PjxWb2x1bWU+RU5WL0pNL01PTk8oMjAxMikyNDwvVm9sdW1lPjxQdWJsaXNo

ZXI+T3JnYW5pc2F0aW9uIGZvciBFY29ub21pYyBDby1vcGVyYXRpb24gYW5kIERldmVsb3BtZW50

PC9QdWJsaXNoZXI+PFdlYl9VUkw+PHU+aHR0cDovL3d3dy5vZWNkLm9yZy9lbnYvY2hlbWljYWxz

YWZldHlhbmRiaW9zYWZldHkvYmlvc2FmZXR5LWJpb3RyYWNrL2NvbnNlbnN1c2RvY3VtZW50c2Zv

cnRoZXdvcmtvbnRoZXNhZmV0eW9mbm92ZWxmb29kc2FuZGZlZWRzcGxhbnRzLmh0bTwvdT48L1dl

Yl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1p

Y2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXE9FQ0RfMjAx

Ml9zb3liZWFuIGNvbXBvc2l0aW9uYWwgZG9jLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX1dv

cmtmb3JtSUQ+MjQ8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJlbmphbWluaTwvQXV0aG9yPjxZZWFyPjE5OTU8L1llYXI+

PFJlY051bT4xODQ8L1JlY051bT48SURUZXh0PkNvbnRyb2xsaW5nIHRoZSBmYWxzZSBkaXNjb3Zl

cnkgcmF0ZTogYSBwcmFjdGljYWwgYW5kIHBvd2VyZnVsIGFwcHJvYWNoIHRvIG11bHRpcGxlIHRl

c3Rpbmc8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIChGdWxsKSI+PFJlZl9UeXBlPkpv

dXJuYWwgKEZ1bGwpPC9SZWZfVHlwZT48UmVmX0lEPjE4NDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5

PkNvbnRyb2xsaW5nIHRoZSBmYWxzZSBkaXNjb3ZlcnkgcmF0ZTogYSBwcmFjdGljYWwgYW5kIHBv

d2VyZnVsIGFwcHJvYWNoIHRvIG11bHRpcGxlIHRlc3Rpbmc8L1RpdGxlX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5CZW5qYW1pbmksWS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PkhvY2hiZXJnLFkuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4xOTk1PC9EYXRlX1By

aW1hcnk+PFJlcHJpbnQ+SW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT4yODk8L1N0YXJ0X1Bh

Z2U+PEVuZF9QYWdlPjMwMDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Sm91cm5hbCBvZiB0aGUgUm95

YWwgU3RhdGlzdGljYWwgU29jaWV0eSBTZXJpZXMgQi1NZXRob2RvbG9naWNhbDwvUGVyaW9kaWNh

bD48Vm9sdW1lPjU3PC9Wb2x1bWU+PElzc3VlPjE8L0lzc3VlPjxJU1NOX0lTQk4+MDAzNS05MjQ2

PC9JU1NOX0lTQk4+PFdlYl9VUkxfTGluazE+PHU+ZmlsZTovL0Y6XFN0YW5kYXJkcyBNYW5hZ2Vt

ZW50XEFQUExJQ0FUSU9OU1xBMTAwMS1BMTA1MFxBMTAxOCBIaWdoIE9sZWljIEdNIFNveWJlYW5c

QTEwMTggQXBwbGljYXRpb25cQTEwMTggTGl0ZXJhdHVyZSBSZWZlcmVuY2VzXENvbnRyb2xsaW5n

X3RoZV9GYWxzZV9EaXNjb3ZlcnlfUmF0ZV9fYV9QcmFjdGljYWxfYW5kX1Bvd2VyZi5QREY8L3U+

PC9XZWJfVVJMX0xpbmsxPjxXZWJfVVJMX0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21l

bnQgLSBDaGVtaWNhbCBTYWZldHlcR01PIC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNl

c1xCZW5qYW1pbiAmYW1wOyBIb2NoYmVyZ18xOTk1X2ZhbHNlIGRpc2NvdmVyeSByYXRlLnBkZjwv

dT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+Sm91cm5h

bCBvZiB0aGUgUm95YWwgU3RhdGlzdGljYWwgU29jaWV0eSBTZXJpZXMgQi1NZXRob2RvbG9naWNh

bDwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjMyPC9aWl9Xb3JrZm9ybUlEPjwv

TURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk9FQ0Q8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS

ZWNOdW0+MTMwNjwvUmVjTnVtPjxJRFRleHQ+UmV2aXNlZCBjb25zZW5zdXMgZG9jdW1lbnQgb24g

Y29tcG9zaXRpb25hbCBjb25zaWRlcmF0aW9ucyBmb3IgbmV3IHZhcmlldGllcyBvZiBzb3liZWFu

IFtHbHljaW5lIG1heCAoTC4pIE1lcnIuXTogS2V5IGZvb2QgYW5kIGZlZWQgbnV0cmllbnRzLCBh

bnRpbnV0cmllbnRzLCB0b3hpY2FudHMgYW5kIGFsbGVyZ2VuczwvSURUZXh0PjxNREwgUmVmX1R5

cGU9IlJlcG9ydCI+PFJlZl9UeXBlPlJlcG9ydDwvUmVmX1R5cGU+PFJlZl9JRD4xMzA2PC9SZWZf

SUQ+PFRpdGxlX1ByaW1hcnk+UmV2aXNlZCBjb25zZW5zdXMgZG9jdW1lbnQgb24gY29tcG9zaXRp

b25hbCBjb25zaWRlcmF0aW9ucyBmb3IgbmV3IHZhcmlldGllcyBvZiBzb3liZWFuIFs8aT5HbHlj

aW5lIG1heDwvaT4gKEwuKSBNZXJyLl06IEtleSBmb29kIGFuZCBmZWVkIG51dHJpZW50cywgYW50

aW51dHJpZW50cywgdG94aWNhbnRzIGFuZCBhbGxlcmdlbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5PRUNEPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEyPC9EYXRl

X1ByaW1hcnk+PEtleXdvcmRzPnNveWJlYW48L0tleXdvcmRzPjxLZXl3b3Jkcz5udXRyaWVudHM8

L0tleXdvcmRzPjxLZXl3b3Jkcz5BbGxlcmdlbnM8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBG

aWxlPC9SZXByaW50PjxWb2x1bWU+RU5WL0pNL01PTk8oMjAxMikyNDwvVm9sdW1lPjxQdWJsaXNo

ZXI+T3JnYW5pc2F0aW9uIGZvciBFY29ub21pYyBDby1vcGVyYXRpb24gYW5kIERldmVsb3BtZW50

PC9QdWJsaXNoZXI+PFdlYl9VUkw+PHU+aHR0cDovL3d3dy5vZWNkLm9yZy9lbnYvY2hlbWljYWxz

YWZldHlhbmRiaW9zYWZldHkvYmlvc2FmZXR5LWJpb3RyYWNrL2NvbnNlbnN1c2RvY3VtZW50c2Zv

cnRoZXdvcmtvbnRoZXNhZmV0eW9mbm92ZWxmb29kc2FuZGZlZWRzcGxhbnRzLmh0bTwvdT48L1dl

Yl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAtIENoZW1p

Y2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXE9FQ0RfMjAx

Ml9zb3liZWFuIGNvbXBvc2l0aW9uYWwgZG9jLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX1dv

cmtmb3JtSUQ+MjQ8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPgB=

ADDIN EN.CITE.DATA (Benjamini and Hochberg, 1995; OECD, 2012). In assessing the significance of any difference between the mean analyte value for soybean 44406 and ‘Maverick’ a P-value of 0.05 was used. This means that approximately 5% of statistically significant differences are expected to occur due to chance alone.The results for the treatments were compared to:The reference range (min – max) compiled from the results of the six non-GM reference lines, in order to assess whether any differences were likely to be biologically meaningful.A combined literature range for each analyte, compiled from published literature. Any mean value for a soybean 44406 analyte that fell within the combined literature range was considered to be within the normal variability of commercial soybean cultivars even if the mean value was statistically different from the ‘Maverick’ control. It is noted, however, that information in the published literature is limited and is unlikely to provide a broad reflection of the natural diversity that occurs within soybean. Therefore, even if means fall outside the published range, this is not necessarily a concern.6.3Seed composition6.3.1Proximates and fibreResults of the proximate and fibre analysis are shown in Table 4. Significant overall treatment effects were found for protein, carbohydrate and NDF. For carbohydrate, the means for all 44406 treatments were lower than the ‘Maverick’ mean, while for protein and NDF the main contributor to the overall effect came largely from a single treatment. All mean results were within both the reference range and the range reported in the literature.Table SEQ Table \* ARABIC 4: Mean percentage of proximates and fibre in seed from ‘Maverick’ and DAS-44406-6Analyte‘Mav’44406 no spray44406 + 2,4-D44406 + glufos44406 + glyphos44406 + 3 herbOverall treat effect (P-value)Reference rangeCombined literaturerangeProtein(%dw)37.838.038.538.238.238.620.03935.1 – 44.932 – 48.4Fat(%dw)18.919.519.219.319.219.1NS15.3 – 22.98.1 – 24.7Ash(%dw)5.155.235.245.245.215.22NS4.45 – 6.33.8 – 6.9Moisture(%fw)10.610.210.09.99.99.9NS7.26 – 17.24.7 – 34.4Carbohydrate(%dw)138.1337.237.137.2137.3837.040.00228.7 – 43.029.3 – 50.2Total dietary fibre(%dw)22.421.621.721.521.921.4NS16.2 – 27.7Not reportedADF(%dw)15.515.215.515.015.614.9NS8.02 – 20.97.81 – 26.6NDF(%dw)17.717.017.116.717.316.50.0313.3 – 22.28.53 – 23.91 Carbohydrate calculated as 100% - (protein %dw + fat %dw + ash %dw)2 Mauve shading represents 44406 means where a pairwise contrast t-test showed a significantly lower value than for the control mean (using an adjusted P value), while orange shading represents 44406 means that were significantly higher than the control.6.3.2Fatty acidsThe levels of 22 fatty acids were measured. Of these, the following had > 50% of samples below the limit of quantitation (LOQ) and were therefore not statistically analysed: caprylic (8:0), capric (10:0), lauric (12:0), myristic (14:0), myristoleic (14:1), pentadecanoic (15:0), pentadecanoic (15:1), palmitoleic (16:1), heptadecanoic (17:0), heptadecanoic (17:1), γ-linolenic (18:3), eicosadienoic (20:2), eicosatrienoic (20:3), and arachidonic (20:4). Results for the remaining eight fatty acids are given in Table 5 and can be summarised as follows:There was no significant difference in the combined site analyses between the control and soybean 44406 in terms of the levels of stearic, arachidic and eicosenoic acids.The mean levels of palmitic and oleic acids were significantly lower in all soybean 44406 treatments than in ‘Maverick’ but all means were within both the reference range and the combined literature range.The mean levels of linoleic and linolenic acids were significantly higher in all soybean 44406 treatments than in ‘Maverick’ but all means were within both the reference range and the combined literature range.Overall, the levels of behenic acid in the soybean 44406 treatments were higher than in ‘Maverick’ but in a pairwise contrast (t-test) only the three-herbicide treatment mean was significantly higher than the control mean. All means were within both the reference range and the combined literature range.Table SEQ Table \* ARABIC 5: Mean percentage composition, relative to total fat, of major fatty acids in seed from 'Maverick' and DAS-44406-6Fatty Acid‘Mav’%total44406 no spray%total44406 + 2,4-D%total44406 + glufos%total44406 + glyphos%total44406 + 3 herb%totalOverall treat effect (P-value)Reference range%totalCombined literaturerange%totalPalmitic (16:0)10.910.7110.710.710.710.6<0.0019.5 – 11.39.5 – 15.7Stearic (18:0)4.514.474.474.484.484.52NS3.28 – 4.982.59 – 5.88Oleic (18:1)23.521.421.521.821.721.9<0.00118.1 – 27.914.3 – 45.6Linoleic (18:2)53.054.854.654.454.554.2<0.00150.1 – 56.735.36 – 58.8Linolenic (18:3)7.327.777.797.867.767.92<0.0014.83 – 9.823 – 12.52Arachidic (20:0)0.3280.3230.3230.3250.3230.327NS0.254 – 0.4270.163 – 0.57Eicosenoic (20:1)0.1690.1710.1710.1710.1720.168NS<LOQ - 0.272<LOQ – 0.35.Behenic (22:0)0.3260.3320.3310.3320.3280.3350.0090.29 – 0.4540.277 – 0.5951 Mauve shading represents 44406 means where a pairwise contrast t-test showed a significantly lower value than for the control mean (using an adjusted P value), while orange shading represents 44406 means that were significantly higher than the control.6.3.3Amino acidsLevels of 18 amino acids were measured. Since asparagine and glutamine are converted to aspartate and glutamate respectively during the analysis, levels for aspartate include both aspartate and asparagine, while glutamate levels include both glutamate and glutamine. Results of the analysis are given in Table 6. Overall, the only significant difference was for cysteine where the pairwise analysis showed three of the 44406 treatment means were significantly higher than the control mean. All means were within both the reference range and the combined literature range.Table SEQ Table \* ARABIC 6: Mean percentage dry weight (dw), relative to total dry weight, of amino acids in seed from ‘Maverick’ and DAS-44406-6Amino Acid‘Mav’%dw44406 no spray%dw44406 + 2,4-D%dw44406 + glufos%dw44406 + glyphos%dw44406 + 3 herb%dwOverall treat effect (P-value)Reference range%dwCombined literaturerange%dwAlanine1.681.671.671.681.671.68NS1.55 – 1.91.43 – 2.10Arginine2.742.712.752.742.742.75NS2.59 – 3.452.15 – 3.46Aspartate4.184.194.234.224.224.24NS3.58 – 4.943.81 – 6.04Cysteine0.5320.55610.5470.560.5490.560.0020.429 – 0.710.37 – 0.81Glutamate6.266.226.266.276.266.28NS5.85 – 7.775.84 – 9.15Glycine1.641.631.651.641.651.65NS1.55 – 1.891.41 – 2.00Histidine1.021.021.041.021.031.03NS0.197 – 1.180.86 – 1.24Isoleucine1.811.811.831.811.831.82NS1.68 – 2.181.49 – 2.08Leucine2.842.832.872.852.862.86NS2.68 – 3.322.2 – 4.0Lysine2.462.482.532.482.492.49NS2 – 3.042.19 – 3.32Methionine0.5040.5020.5050.5010.4990.507NS0.418 – 0.5960.39 – 0.68Phenylalanine1.91.891.911.91.911.91NS1.8 – 2.281.6 – 2.44Proline1.961.951.951.951.961.95NS1.78 – 2.411.63 – 2.28Serine1.791.801.791.821.821.83NS1.56 – 2.21.11 – 2.48Threonine1.521.511.521.521.531.53NS1.4 – 1.751.14 – 1.89Tryptophan0.5740.5880.5890.5750.5830.583NS0.495 – 0.7040.30 – 0.67Tyrosine1.441.441.461.451.451.45NS1.34 – 1.640.79 – 1.61Valine1.851.851.861.851.861.85NS1.71 – 2.161.5 – 2.441Orange shading represents 44406 means where a pairwise contrast t-test showed a significantly higher value than for the control mean (using an adjusted P value)6.3.4IsoflavonesIn total, there are 12 different soybean isoflavone isomers, namely three parent isoflavones (genistein, daidzein and glycitein), their respective β-glucosides (genistin, daidzin, and glycitin), and three β-glucosides each esterified with either malonic or acetic acid ADDIN REFMGR.CITE <Refman><Cite><Author>Messina</Author><Year>2005</Year><RecNum>256</RecNum><IDText>Isoflavones</IDText><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>256</Ref_ID><Title_Primary>Isoflavones</Title_Primary><Authors_Primary>Messina,M.</Authors_Primary><Date_Primary>2005</Date_Primary><Keywords>Isoflavones</Keywords><Reprint>In File</Reprint><Title_Secondary>Encyclopedia of Dietary Supplements</Title_Secondary><Authors_Secondary>Coates,P.</Authors_Secondary><Authors_Secondary>Blackman,M.R.</Authors_Secondary><Authors_Secondary>Cragg,G.</Authors_Secondary><Authors_Secondary>Levine,M.</Authors_Secondary><Authors_Secondary>Moss,J.</Authors_Secondary><Authors_Secondary>White,J.</Authors_Secondary><Publisher>Informa Healthcare</Publisher><ZZ_WorkformID>3</ZZ_WorkformID></MDL></Cite></Refman>(Messina, 2005). The parent isoflavones are also referred to as free or aglycon isoflavones, while the glucosides and their esters are also referred to as conjugated isoflavones. The Applicant used an AOAC International method ADDIN REFMGR.CITE <Refman><Cite><Author>AOAC</Author><Year>2005</Year><RecNum>897</RecNum><MDL Ref_Type="Book Chapter"><Ref_Type>Book Chapter</Ref_Type><Ref_ID>897</Ref_ID><Title_Primary>AOAC Official Method 2001.10: Determination of Isoflavones in Soy and Selected Food Containing Soy</Title_Primary><Authors_Primary>AOAC</Authors_Primary><Date_Primary>2005</Date_Primary><Keywords>Isoflavones</Keywords><Keywords>methods</Keywords><Keywords>analysis</Keywords><Reprint>In File</Reprint><Volume>18th</Volume><Title_Secondary>Official Methods of Analysis of AOAC International</Title_Secondary><Pub_Place>Gaithersburg</Pub_Place><Publisher>AOAC International</Publisher><ZZ_JournalFull><f name="System">Journal of Agricultural and Food Chemistry</f></ZZ_JournalFull><ZZ_WorkformID>3</ZZ_WorkformID></MDL></Cite></Refman>(AOAC, 2005), to measure the levels of the three parent isoflavones and the conjugates in seed from soybean 44406 and the control. Levels of the three parent isoflavones were below the limit of quantitation and no data are presented. Levels for the conjugates (comprising glucoside esters and β-glucosides and reported as aglycon equivalents) are given in Table 7 and show that the mean levels of total daidzein, total genistein and total glycitein in soybean 44406 were not significantly different from those in ‘Maverick’.Table SEQ Table \* ARABIC 7: Mean weight (?g/g dry weight expressed as aglycon equivalents) of isoflavones in DAS- 44406-6 and ‘Maverick’ seedIsoflavone‘Mav’(?g/g dw)44406 no spray(?g/g dw)44406 + 2,4-D(?g/g dw)44406 + glufos(?g/g dw)44406 + glyphos(?g/g dw)44406 + 3 herb(?g/g dw)Overall treat effect (P-value)Reference range(?g/g dw)Combined literaturerange(?g/g dw)Total Daidzein (aglycon equivalents)809777799800771781NS153 - 171025 - 2453Total Genistein (aglycon equivalents)890863870877848855NS205 - 198028 - 2837Total Glycitein (aglycon equivalents)453459465452448443NS85 - 163015 - 3496.3.5Anti-nutrientsLevels of key anti-nutrients are given in Table 8. Overall, there were no significant differences between the 44406 means and the control mean for phytic acid, raffinose and stachyose. For lectin and trypsin inhibitor some of the 44406 treatment means were significantly higher than the control mean. All means were within both the reference range and the combined literature range.Table SEQ Table \* ARABIC 8: Mean levels of anti-nutrients in DAS-44406-6 and ‘Maverick’ seedAnti-nutrient‘Mav’(?g/g dw)44406 no spray(?g/g dw)44406 + 2,4-D(?g/g dw)44406 + glufos(?g/g dw)44406 + glyphos(?g/g dw)44406 + 3 herb(?g/g dw)Overall treat effect (P-value)Reference range(?g/g dw)Combined literaturerange(?g/g dw)Lectin (Haemagglutinat Units/mg protein dw)791071949492990.00418.5 - 14437 - 323Phytic acid (%dw)1.191.181.191.181.181.19NS0.55 – 1.540.41 – 2.74Raffinose (%dw)0.820.80.80.80.80.79NS0.57 – 1.40.21 – 1.62Stachyose (%dw)3.883.883.873.863.833.89NS2.92 – 4.481.21 – 6.1Trypsin inhibitor (trysin inhibitor units/mg)30.83535.536.633.634.20.02515.6 – 59.718.14 – 118.681 Orange shading represents 44406 means where a pairwise contrast t-test showed a significantly higher value than for the control mean (using an adjusted P value)6.3.6MineralsLevels of 10 minerals were measured. Sodium was below the level of quantitation. The means for the remaining nine minerals are given in Table 9 and show:The mean calcium levels in three of the DAS-44406-6 treatments were significantly higher than the mean for ‘Maverick’.For potassium, the means for all 44406 treatments were significantly higher than the mean for ‘Maverick’. Additionally, the mean potassium level in ‘Maverick’ as well as in all the 44406 treatments was outside (lower than) the literature range. The copper results for all DAS-44406-6 means and the ‘Maverick’ mean were higher than the combined literature range but within the reference range.These results do not raise any safety concerns.Table SEQ Table \* ARABIC 9: Mean values for mineral levels in seed from ‘Maverick’ and DAS-44406-6Mineral‘Mav’44406 no spray44406 + 2,4-D44406 + glufos44406 + glyphos44406 + 3 herbOverall treat effect (P-value)Reference rangeCombined literaturerangeCalcium (mg/100 g dw)3013241318304320306<0.001174 - 383116 - 510Copper (mg/100 g dw)1.321.341.351.321.351.33NS0.91 – 1.770.63 – 1.09Iron (mg/100 g dw)8.28.37.78.67.88.5NS5.35 – 87.93.73 – 10.95Magnesium (mg/100 g dw)229231230227230229NS195 - 317219 - 312Manganese (mg/100 g dw)2.993.13.273.093.183.14NS1.9 – 9.532.52 – 3.87Phosphorus (mg/100 g dw)557561558554558557NS360 - 659506 - 935Potassium (mg/100 g dw)173017801790177017701770<0.0011530 - 20301868 - 2510Selenium (ppb)451438489389420469NS59.5 - 3380Not reportedZinc (mg/100 g dw)4.174.344.344.254.34.3NS3.34 – 5.824.98 – 7.571 Orange shading represents 44406 means where a pairwise contrast t-test showed a significantly higher value than for the control mean (using an adjusted P value)6.3.7VitaminsLevels of 13 vitamins were measured. Vitamin A and β-tocopherol were below the LOQ. The means for the remaining 11 are given in Table 10.The mean levels of Vitamin B1 in all the 44406 treatments and in the control were all outside (higher than) the literature range but were within the reference range. No significant differences from the control were identified.The mean level of vitamin B9 in the 44406 treatment sprayed with all three herbicides was significantly lower than the mean level in ‘Maverick but within both the reference range and literature range.The mean levels of ?-tocopherol in three of the 44406 treatments were significantly higher than in the control. This difference was also reflected in the mean levels of total tocopherols. All means were within the reference range.Table SEQ Table \* ARABIC 10: Mean weight (?g/g dry weight) of vitamins in seed from ‘Maverick’ and DAS-44406-6Vitamin‘Mav’(?g/g dw)44406 no spray(?g/g dw)44406 + 2,4-D(?g/g dw)44406 + glufos(?g/g dw)44406 + glyphos(?g/g dw)44406 + 3 herb(?g/g dw)Overall treat effect (P-value)Reference range(?g/g dw)Combined literaturerange(?g/g dw)Vitamin B1 (thiamin)3.643.423.463.323.383.55NS1.65 – 5.481.01 – 2.54Vitamin B2 (riboflavin)3.993.903.883.993.883.77NS2.72 – 4.761.9 – 3.21Vitamin B3 (niacin)26.526.226.526.326.626.4NS20.1 - 33Not reportedVitamin B5 (pantothenate)15.415.915.615.315.615.8NS9.55 – 18.1Not reportedVitamin B6 (pyridoxine)4.894.854.864.794.944.93NS2.77 – 6.2Not reportedVitamin B9 (Folic acid)4.294.094.034.024.073.9210.0292.35 – 5.982.38 – 4.71Vitamin C121.4107.8111.1112.1112.8113.6NS0 - 141Not reportedVitamin E (α-tocopherol)18.622.222.422.221.922.2NS6.43 – 49.90.108 – 61.7γ-tocopherol1741851841791831810.005116 - 215Not reportedδ-tocopherol73.37271.573.872.172.2NS40 - 114Not reportedTotal tocopherol2662792782752772760.035199 - 321Not reported1 Mauve shading represents 44406 means where a pairwise contrast t-test showed a significantly lower value than for the control mean (using an adjusted P value), while orange shading represents 44406 means that were significantly higher than the control.6.3.8Summary of analysis of key componentsStatistically significant differences in the analyte levels found in seed of soybean 44406 and ‘Maverick’ are summarised in Table 11. These statistically significant differences do not raise safety concerns, given that:there are no trends in the results, for the majority of analytes there were no significant differences, and for all the analytes where there was a significant difference, the soybean 44406 means fall within both the reference range and (where it exists) the literature range.Table SEQ Table \* ARABIC 11: Summary of analyte means found in seed of DAS-44406-6 treatments that are significantly (adj. P<0.05) different from those found in seed of the control line 'Maverick'Analyte‘Mav’%dw44406 no spray%dw44406 + 2,4-D%dw44406 + glufos%dw44406 + glyphos%dw44406 + 3 herb%dwDAS-44406-6 within reference range?DAS- 44406-6 within lit range?Protein(%dw)37.838.038.538.238.238.61yesyesFat(%dw)18.919.519.219.319.219.1yesyesCarbohydrate(%dw)138.1337.237.137.2137.3837.04yesyesNDF(%dw)17.717.017.116.717.316.5yesyesPalmitic Acid (% total fat)10.910.7110.710.710.710.6yesyesOleic Acid (% total fat)23.521.421.521.821.721.9yesyesLinoleic Acid (% total fat)53.054.854.654.454.554.2yesyesLinolenic Acid (% total fat)7.327.777.797.867.767.92yesyesBehenic Acid (% total fat)0.3260.3320.3310.3320.3280.335yesyesCystine (%dw)0.5320.5560.5470.560.5490.56yesyesLectin (Haemagglutinat Units/mg protein dw)7910794949299yesyesTrypsin inhibitor (trysin inhibitor units/mg)30.83535.536.633.634.2yesyesCalcium (mg/100 g dw)301324318304320306yesyesPotassium (mg/100 g dw)173017801790177017701770yesyesVitamin B9 (Folic acid)4.294.094.034.024.073.92yesyesγ-tocopherol174185184179183181yesNot reportedγ-tocopherol174185184179183181yesNot reported1 Mauve shading represents 44406 means where a pairwise contrast t-test showed a significantly lower value than for the control mean (using an adjusted P value), while orange shading represents 44406 means that were significantly higher than the control.6.4Endogenous allergensSoybean naturally contains allergenic proteins and is one of a group of known allergenic foods including milk, eggs, fish, shellfish, wheat, peanuts, tree nuts and sesame. This group of foods accounts for approximately 90% of all food allergies ADDIN REFMGR.CITE <Refman><Cite><Author>Metcalfe</Author><Year>1996</Year><RecNum>39</RecNum><IDText>Assessment of the allergenic potential of foods derived from genetically engineered crop plants</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>39</Ref_ID><Title_Primary>Assessment of the allergenic potential of foods derived from genetically engineered crop plants</Title_Primary><Authors_Primary>Metcalfe,D.D.</Authors_Primary><Authors_Primary>Astwood,J.D.</Authors_Primary><Authors_Primary>Townsend,R.</Authors_Primary><Authors_Primary>Sampson,H.A.</Authors_Primary><Authors_Primary>Taylor,S.L.</Authors_Primary><Authors_Primary>Fuchs,R.L.</Authors_Primary><Date_Primary>1996</Date_Primary><Keywords>allergenicity</Keywords><Keywords>Allergens</Keywords><Keywords>Amino Acid Sequence</Keywords><Keywords>Animals</Keywords><Keywords>chemistry</Keywords><Keywords>Drug Stability</Keywords><Keywords>Genetic Engineering</Keywords><Keywords>genetics</Keywords><Keywords>Human</Keywords><Keywords>immunology</Keywords><Keywords>Molecular Sequence Data</Keywords><Keywords>Plant Proteins</Keywords><Keywords>Plants</Keywords><Keywords>Plants,Edible</Keywords><Reprint>Not in File</Reprint><Start_Page>S165</Start_Page><End_Page>S186</End_Page><Periodical>Critical Reviews in Food Science and Nutrition</Periodical><Volume>36 Suppl</Volume><Address>ILSI Allergy and Immunology Institute, USA</Address><Web_URL>PM:8959382</Web_URL><Web_URL_Link2><u>file://F:\Risk Assessment - Chemical Safety\GMO - shared\References\GM References\Metcalfe et al. 1996.pdf</u></Web_URL_Link2><ZZ_JournalFull><f name="System">Critical Reviews in Food Science and Nutrition</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>(Metcalfe et al., 1996). The FARRP Allergen Protein Database lists 33 allergenic proteins for soybean. These include the β-conglycinin family of proteins, the glycinin family, the trypsin inhibitor family and other miscellaneous allergens. The major allergens are among the major proteins present in soybean seed.6.5ConclusionThe compositional analyses do not indicate any differences of biological significance between the seed from soybean DAS-44406-6 and the non-GM control ‘Maverick’. Significant differences were noted in a number of constituents. However the differences were typically small and all mean values were within both the tolerance range obtained for non-GM reference varieties grown at the same time and (where it exists) the literature range.Any observed differences are therefore considered to represent the natural variability that exists within soybean. The spraying of soybean line DAS-44406-6 with 2,4-D, glufosinate ammonium and glyphosate, either alone or in combination, did not have a significant effect on seed composition. 7.Nutritional impact In assessing the safety of a GM food, a key factor is the need to establish that the food is nutritionally adequate and will support typical growth and well-being. In most cases, this can be achieved through an understanding of the genetic modification and its consequences, together with an extensive compositional analysis of the food.If the compositional analysis indicates biologically significant changes to the levels of certain nutrients in the GM food, additional nutritional assessment should be undertaken to assess the consequences of the changes and determine whether nutrient intakes are likely to be altered by the introduction of such foods into the food supply. Where a GM food has been shown to be compositionally equivalent to conventional varieties, as is the case for soybean line 44406, the evidence to date indicates that feeding studies using target livestock species will add little value to the safety assessment and generally are not warranted PFJlZm1hbj48Q2l0ZT48QXV0aG9yPk9FQ0Q8L0F1dGhvcj48WWVhcj4yMDAzPC9ZZWFyPjxSZWNO

dW0+MTc1PC9SZWNOdW0+PElEVGV4dD5Db25zaWRlcmF0aW9ucyBmb3IgdGhlIFNhZmV0eSBBc3Nl

c3NtZW50IG9mIEFuaW1hbCBGZWVkc3R1ZmZzIERlcml2ZWQgZnJvbSBHZW5ldGljYWxseSBNb2Rp

ZmllZCBQbGFudHM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJSZXBvcnQiPjxSZWZfVHlwZT5SZXBv

cnQ8L1JlZl9UeXBlPjxSZWZfSUQ+MTc1PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+Q29uc2lkZXJh

dGlvbnMgZm9yIHRoZSBTYWZldHkgQXNzZXNzbWVudCBvZiBBbmltYWwgRmVlZHN0dWZmcyBEZXJp

dmVkIGZyb20gR2VuZXRpY2FsbHkgTW9kaWZpZWQgUGxhbnRzPC9UaXRsZV9QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+T0VDRDwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMzwvRGF0

ZV9QcmltYXJ5PjxLZXl3b3Jkcz5TYWZldHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudHM8L0tl

eXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFB1Yl9QbGFjZT5QYXJpczwvUHViX1Bs

YWNlPjxQdWJsaXNoZXI+T3JnYW5pc2F0aW9uIGZvciBFY29ub21pYyBDb29wZXJhdGlvbiBhbmQg

RGV2ZWxvcG1lbnQ8L1B1Ymxpc2hlcj48VGl0bGVfU2VyaWVzPjxmIG5hbWU9IlRpbWVzIE5ldyBS

b21hbiI+U2VyaWVzIG9uIHRoZSBTYWZldHkgb2YgTm92ZWwgRm9vZHMgYW5kIEZlZWRzLCBOby4g

OTwvZj48L1RpdGxlX1Nlcmllcz48V2ViX1VSTD48dT5odHRwOi8vd3d3Lm9saXMub2VjZC5vcmcv

b2xpcy8yMDAzZG9jLm5zZi9MaW5rVG8vTlQwMDAwNDI2QS8kRklMRS9KVDAwMTQ3Njk2LlBERjwv

dT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAt

IENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXE9F

Q0RfMjAwM19hbmltYWwgZmVlZHN0dWZmcy5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxaWl9Xb3Jr

Zm9ybUlEPjI0PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkVGU0E8

L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxSZWNOdW0+MjcwPC9SZWNOdW0+PElEVGV4dD5TYWZl

dHkgYW5kIG51dHJpdGlvbmFsIGFzc2Vzc21lbnQgb2YgR00gcGxhbnRzIGFuZCBkZXJpdmVkIGZv

b2QgYW5kIGZlZWQ6IFRoZSByb2xlIG9mIGFuaW1hbCBmZWVkaW5nIHRyaWFsczwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lE

PjI3MDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlNhZmV0eSBhbmQgbnV0cml0aW9uYWwgYXNzZXNz

bWVudCBvZiBHTSBwbGFudHMgYW5kIGRlcml2ZWQgZm9vZCBhbmQgZmVlZDogVGhlIHJvbGUgb2Yg

YW5pbWFsIGZlZWRpbmcgdHJpYWxzPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RUZT

QTwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwODwvRGF0ZV9QcmltYXJ5PjxLZXl3

b3Jkcz5TYWZldHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudHM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5SaXNrIEFzc2Vzc21lbnQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5Tb3liZWFuczwvS2V5d29yZHM+

PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+SHVtYW5zPC9LZXl3b3Jkcz48S2V5

d29yZHM+SHVtYW48L0tleXdvcmRzPjxLZXl3b3Jkcz5BbmltYWxzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+YW5hbHlzaXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5Qcm90ZWluczwvS2V5d29yZHM+PEtleXdv

cmRzPlBvdGF0b2VzPC9LZXl3b3Jkcz48S2V5d29yZHM+UmF0czwvS2V5d29yZHM+PEtleXdvcmRz

Pk1pY2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5Cb2R5IFdlaWdodDwvS2V5d29yZHM+PEtleXdvcmRz

PmNoZW1pc3RyeTwvS2V5d29yZHM+PEtleXdvcmRzPmFkdmVyc2UgZWZmZWN0czwvS2V5d29yZHM+

PEtleXdvcmRzPk51dHJpdGl2ZSBWYWx1ZTwvS2V5d29yZHM+PEtleXdvcmRzPm1ldGhvZHM8L0tl

eXdvcmRzPjxLZXl3b3Jkcz50b3hpY2l0eTwvS2V5d29yZHM+PEtleXdvcmRzPkRuYTwvS2V5d29y

ZHM+PEtleXdvcmRzPlBlc3RpY2lkZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5EaWV0PC9LZXl3b3Jk

cz48S2V5d29yZHM+QWR1bHQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5zdGFuZGFyZHM8L0tleXdvcmRz

PjxLZXl3b3Jkcz5BbmltYWwgTnV0cml0aW9uPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9S

ZXByaW50PjxTdGFydF9QYWdlPlMxPC9TdGFydF9QYWdlPjxFbmRfUGFnZT5TNzAsIDxmIG5hbWU9

IkFkdkVQU1RJTSI+ZG9pOjEwLjEwMTYvai5mY3QuMjAwOC4wMi4wMDg8L2Y+PC9FbmRfUGFnZT48

UGVyaW9kaWNhbD5Gb29kIGFuZCBDaGVtaWNhbCBUb3hpY29sb2d5PC9QZXJpb2RpY2FsPjxWb2x1

bWU+NDY8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnNjaWVuY2VkaXJlY3QuY29tL3Nj

aWVuY2UvYXJ0aWNsZS9waWkvUzAyNzg2OTE1MDgwMDA4ODQ8L3U+PC9XZWJfVVJMPjxXZWJfVVJM

X0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01P

IC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xFRlNBXzIwMDhfYW5pbWFsIGZlZWRp

bmcgdHJpYWxzLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9

IlN5c3RlbSI+Rm9vZCBhbmQgQ2hlbWljYWwgVG94aWNvbG9neTwvZj48L1paX0pvdXJuYWxGdWxs

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPk9FQ0Q8L0F1dGhvcj48WWVhcj4yMDAzPC9ZZWFyPjxSZWNO

dW0+MTc1PC9SZWNOdW0+PElEVGV4dD5Db25zaWRlcmF0aW9ucyBmb3IgdGhlIFNhZmV0eSBBc3Nl

c3NtZW50IG9mIEFuaW1hbCBGZWVkc3R1ZmZzIERlcml2ZWQgZnJvbSBHZW5ldGljYWxseSBNb2Rp

ZmllZCBQbGFudHM8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJSZXBvcnQiPjxSZWZfVHlwZT5SZXBv

cnQ8L1JlZl9UeXBlPjxSZWZfSUQ+MTc1PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+Q29uc2lkZXJh

dGlvbnMgZm9yIHRoZSBTYWZldHkgQXNzZXNzbWVudCBvZiBBbmltYWwgRmVlZHN0dWZmcyBEZXJp

dmVkIGZyb20gR2VuZXRpY2FsbHkgTW9kaWZpZWQgUGxhbnRzPC9UaXRsZV9QcmltYXJ5PjxBdXRo

b3JzX1ByaW1hcnk+T0VDRDwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwMzwvRGF0

ZV9QcmltYXJ5PjxLZXl3b3Jkcz5TYWZldHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudHM8L0tl

eXdvcmRzPjxSZXByaW50PkluIEZpbGU8L1JlcHJpbnQ+PFB1Yl9QbGFjZT5QYXJpczwvUHViX1Bs

YWNlPjxQdWJsaXNoZXI+T3JnYW5pc2F0aW9uIGZvciBFY29ub21pYyBDb29wZXJhdGlvbiBhbmQg

RGV2ZWxvcG1lbnQ8L1B1Ymxpc2hlcj48VGl0bGVfU2VyaWVzPjxmIG5hbWU9IlRpbWVzIE5ldyBS

b21hbiI+U2VyaWVzIG9uIHRoZSBTYWZldHkgb2YgTm92ZWwgRm9vZHMgYW5kIEZlZWRzLCBOby4g

OTwvZj48L1RpdGxlX1Nlcmllcz48V2ViX1VSTD48dT5odHRwOi8vd3d3Lm9saXMub2VjZC5vcmcv

b2xpcy8yMDAzZG9jLm5zZi9MaW5rVG8vTlQwMDAwNDI2QS8kRklMRS9KVDAwMTQ3Njk2LlBERjwv

dT48L1dlYl9VUkw+PFdlYl9VUkxfTGluazI+PHU+ZmlsZTovL0Y6XFJpc2sgQXNzZXNzbWVudCAt

IENoZW1pY2FsIFNhZmV0eVxHTU8gLSBzaGFyZWRcUmVmZXJlbmNlc1xHTSBSZWZlcmVuY2VzXE9F

Q0RfMjAwM19hbmltYWwgZmVlZHN0dWZmcy5wZGY8L3U+PC9XZWJfVVJMX0xpbmsyPjxaWl9Xb3Jr

Zm9ybUlEPjI0PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkVGU0E8

L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxSZWNOdW0+MjcwPC9SZWNOdW0+PElEVGV4dD5TYWZl

dHkgYW5kIG51dHJpdGlvbmFsIGFzc2Vzc21lbnQgb2YgR00gcGxhbnRzIGFuZCBkZXJpdmVkIGZv

b2QgYW5kIGZlZWQ6IFRoZSByb2xlIG9mIGFuaW1hbCBmZWVkaW5nIHRyaWFsczwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lE

PjI3MDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlNhZmV0eSBhbmQgbnV0cml0aW9uYWwgYXNzZXNz

bWVudCBvZiBHTSBwbGFudHMgYW5kIGRlcml2ZWQgZm9vZCBhbmQgZmVlZDogVGhlIHJvbGUgb2Yg

YW5pbWFsIGZlZWRpbmcgdHJpYWxzPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+RUZT

QTwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAwODwvRGF0ZV9QcmltYXJ5PjxLZXl3

b3Jkcz5TYWZldHk8L0tleXdvcmRzPjxLZXl3b3Jkcz5QbGFudHM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5SaXNrIEFzc2Vzc21lbnQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5Tb3liZWFuczwvS2V5d29yZHM+

PEtleXdvcmRzPkdlbmVzPC9LZXl3b3Jkcz48S2V5d29yZHM+SHVtYW5zPC9LZXl3b3Jkcz48S2V5

d29yZHM+SHVtYW48L0tleXdvcmRzPjxLZXl3b3Jkcz5BbmltYWxzPC9LZXl3b3Jkcz48S2V5d29y

ZHM+YW5hbHlzaXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5Qcm90ZWluczwvS2V5d29yZHM+PEtleXdv

cmRzPlBvdGF0b2VzPC9LZXl3b3Jkcz48S2V5d29yZHM+UmF0czwvS2V5d29yZHM+PEtleXdvcmRz

Pk1pY2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5Cb2R5IFdlaWdodDwvS2V5d29yZHM+PEtleXdvcmRz

PmNoZW1pc3RyeTwvS2V5d29yZHM+PEtleXdvcmRzPmFkdmVyc2UgZWZmZWN0czwvS2V5d29yZHM+

PEtleXdvcmRzPk51dHJpdGl2ZSBWYWx1ZTwvS2V5d29yZHM+PEtleXdvcmRzPm1ldGhvZHM8L0tl

eXdvcmRzPjxLZXl3b3Jkcz50b3hpY2l0eTwvS2V5d29yZHM+PEtleXdvcmRzPkRuYTwvS2V5d29y

ZHM+PEtleXdvcmRzPlBlc3RpY2lkZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5EaWV0PC9LZXl3b3Jk

cz48S2V5d29yZHM+QWR1bHQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5zdGFuZGFyZHM8L0tleXdvcmRz

PjxLZXl3b3Jkcz5BbmltYWwgTnV0cml0aW9uPC9LZXl3b3Jkcz48UmVwcmludD5JbiBGaWxlPC9S

ZXByaW50PjxTdGFydF9QYWdlPlMxPC9TdGFydF9QYWdlPjxFbmRfUGFnZT5TNzAsIDxmIG5hbWU9

IkFkdkVQU1RJTSI+ZG9pOjEwLjEwMTYvai5mY3QuMjAwOC4wMi4wMDg8L2Y+PC9FbmRfUGFnZT48

UGVyaW9kaWNhbD5Gb29kIGFuZCBDaGVtaWNhbCBUb3hpY29sb2d5PC9QZXJpb2RpY2FsPjxWb2x1

bWU+NDY8L1ZvbHVtZT48V2ViX1VSTD48dT5odHRwOi8vd3d3LnNjaWVuY2VkaXJlY3QuY29tL3Nj

aWVuY2UvYXJ0aWNsZS9waWkvUzAyNzg2OTE1MDgwMDA4ODQ8L3U+PC9XZWJfVVJMPjxXZWJfVVJM

X0xpbmsyPjx1PmZpbGU6Ly9GOlxSaXNrIEFzc2Vzc21lbnQgLSBDaGVtaWNhbCBTYWZldHlcR01P

IC0gc2hhcmVkXFJlZmVyZW5jZXNcR00gUmVmZXJlbmNlc1xFRlNBXzIwMDhfYW5pbWFsIGZlZWRp

bmcgdHJpYWxzLnBkZjwvdT48L1dlYl9VUkxfTGluazI+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9

IlN5c3RlbSI+Rm9vZCBhbmQgQ2hlbWljYWwgVG94aWNvbG9neTwvZj48L1paX0pvdXJuYWxGdWxs

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA (OECD, 2003; EFSA, 2008). Soybean 44406 is the result of a simple genetic modification to confer herbicide tolerance with no intention to significantly alter nutritional parameters in the food. In addition, the extensive compositional analyses of seed that have been undertaken to demonstrate the nutritional adequacy of line 44406, indicate it is equivalent in composition to conventional soybean cultivars. The introduction of soybean line DAS-44406-6 into the food supply is therefore expected to have little nutritional impact. References ADDIN REFMGR.REFLIST Abranches, R., Shultz, R.W., Thompson, W.F. and Allen, G.C. (2005) Matrix attachment regions and regulated transcription increase and stabilize transgene expression. Plant Biotechnology Journal 3(5):535-543.Abu-Qarn, M., Eichler, J. and Sharon, N. (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Current Opinion in Structural Biology 18:544-550.Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17):3389-3402.AOAC. (2005) AOAC Official Method 2001.10: Determination of Isoflavones in Soy and Selected Food Containing Soy. In: Official Methods of Analysis of AOAC International. 18th ed, AOAC International, Gaithersburg.Astwood, J.D. and Fuchs, R.L. (1996) Allergenicity of foods derived from transgenic plants. Monographs in Allergy 32 (Highlights in Food Allergy):105-120.Baelum, J., Nicolaisen, M.H., Holben, W.E., Strobel, B.W., Sorensen, J. and Jacobsen, S. (2008) Direct analysis of tdfA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. The ISME Journal 2:677-687.Barker, R.F., Idler, K.B., Thompson D.V. and Kemp, J.D. (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Molecular Biology 2:335-350.Baxevanis, A.D. (2005) Assessing Pairwise Sequence Similarity: BLAST and FASTA. In: Baxevanis, A.D. and Ouellette, B.F.F. eds. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Chapter 11. John Wiley & Sons, Inc., pp. 295-324.Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57(1):289-300.Berman, K.H., Harrigan, G.G., Riordan, S.G., Nemeth, M.A., Hanson, C., Smith, M., Sorbet, R., Zhu, E. and Ridley, W.P. (2009) Compositions of seed, forage, and processed fractions from insect-protected soybean MON 87701 are equivalent to those of conventional soybean. Journal of Agricultural and Food Chemistry 57(23):11360-11369.Berman, K.H., Harrigan, G.G., Riordan, S.G., Nemeth, M.A., Hanson, C., Smith, M., Sorbet, R., Zhu, E. and Ridley, W.P. (2010) Compositions of forage and seed from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max). Journal of Agricultural and Food Chemistry :Bilyeu, K.D., Zeng, P., Coello, P., Zhang, Z.J., Krishnan, H.B., Bailey, A., Beuselinck, P.R. and Polacco, J.C. (2008) Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiology 146(2):468-477.Bradbury, J.F. (1986) Guide to Plant Pathogenic Bacteria. Cambridge News Ltd, Aberystwyth, p190-197.Brookes, G. and Barfoot, P. (2009) GM crops: global socio-economic and environmental impacts 1996-2007. PG Economics Ltd. . Chaboute, M.-E., Chaubet, N., Philipps, G., Ehling, M. and Gigot, C. (1987) Genomic organization and nucleotide sequences of two histone H3 and two histone H4 genes of Arabidopsis thaliana. Plant Molecular Biology 8:179-191.Chun, J., Lee, J., Bae, J., Kim, M., Lee, J.-G., Shin, S.-Y., Kim, Y.R. and Lee, K.-H. (2009) Delftia acidovorans from the drainage in an immunocompetent patient with empyema. Tuberculosis and Respiratory Diseases 67(3):239-243.Deblaere, R., Reynaerts, A., H?fte, H., Hernalsteens, J.-P., Leemans, J. and van Montagu, M. (1987) Vectors for cloning in plant cells. Methods in Enzymology 153:277-292.Delaney, B., Astwood, J.D., Cunny, H., Eichen Conn, R., Herouet-Guicheney, C., MacIntosh, S., Meyer, L.S., Privalle, L.S., Gao, Y., Mattsson, J., Levine, M. and ILSI. (2008) Evaluation of protein safety in the context of agricultural biotechnology. Food and Chemical Toxicology 46:S71-S97.EFSA. (2008) Safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trials. Food and Chemical Toxicology 46:S1-S70, doi:10.1016/j.fct.2008.02.008.El-Banna, N.M. (2007) Antifungal activity of Comamonas acidovorans isolated from water pond in south Jordan. African Journal of Biotechnology 6(19):2216-2219.FAOSTAT. (2011) Online database of the Food and Agriculture Organization of the United Nations. . FSANZ (2010) Application A1042 - Food derived from herbicide-tolerant corn line DAS-40278-9. Report prepared by Food Standards Australia New Zealand. . FSANZ (2011a) Application A1046 - Food derived from herbicide-tolerant soybean line DAS-68416-4. Report prepared by Food Standards Australia New Zealand. . FSANZ (2011b) Application A1051 - Food derived from Herbicide-tolerant Soybean Event FG72. Report prepared by Food Standards Australia New Zealand. . Funke, T., Yang, Y., Healy-Fried, M.L., Olesen, S., Becker, A. and Sch?nbrunn, E. (2009) Structural basis of glyphosate resistance resulting from the double mutation Thr973Ile and Pro1013Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli. The Journal of Biological Chemistry 284(15):9854-9860.Gazitúa, M.C., Slater, A.W., Melo, F. and González, B. (2010) Novel a-ketoglutarate dioxygenase tfdA-related genes are found in soil DNA after exposure to phenoxyalkanoic herbicides. Environmental Microbiology e-pub, doi: 10.1111/j.1462-2920.2010.02215.x:Goodman, R.E. (2006) Practical and predictive bioinformatics methods for the identification of potentially cross-reactive protein matches. Molecular Nutrition and Food Research 50:655-660.Grey, D. (2006) Growing Soybeans in Northern Victoria. State of Victoria, Department of Primary Industries, . Hall, G., Jr., Allen, G.C., Loer, D.S., Thompson, W.F. and Spiker, S. (1991) Nuclear scaffolds and scaffold-attachment regions in higher plants. Proceedings of the National Academy of Sciences 88(20):9320-9324.Han, J., Sun, L., Dong, X., Cai, Z., Sun, X., Yang, H., Wang, Y. and Song, W. (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology 28:66-76.Harrigan, G.G., Glenn, K.C. and Ridley, W.P. (2010) Assessing the natural variability in crop composition. Regulatory Toxicology and Pharmacology 58:S13-S20; doi:10.1016/j.yrtph.2010.08.023.Harrigan, G.G., Ridley, W.P., Riordan, S., Nemeth, M.A., Sorbet, R., Trujillo, W.A., Breeze, M. and Schneider, R.W. (2007) Chemical composition of glyphosate-tolerant soybean 40-3-2 grown in Europe remains equivalent with that of conventional soybean (Glycine max L.). Journal of Agricultural and Food Chemistry 55(15):6160-6168.Hartwig, E.E. and Kilen, T.C. (1991) Yield and composition of soybean seed from parents with different protein, similar yield. Crop Science 31(2):290-292.Heiss, S., Flicker, S., Hamilton, D.A., Kraft, D., Mascarenhas, J.P. and Valenta, R. (1996) Expression of Zm13, a pollen specific maize protein in Escherichia coli reveals IgE-binding capacity and allergenic potential. FEBS Letters 381:217-221.Herman, R.A., Woolhiser, M.M., Ladics, G.S., Korjagin, V.A., Schafer, B.W., Storer, N.P., Green, S.B. and Kan, L. (2007) Stability of a set of allergens and non-allergens in simulated gastric fluid. International Journal of Food Sciences and Nutrition 58:125-141.Hérouet, C., Esdaile, D.J., Mallyon, B.A., Debruyne, E., Schulz, A., Currier, T., Hendrickx, K., van der Klis, R.-J. and Rouan, D. (2005) Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regulatory Toxicology and Pharmacology 41:134-149.Hood, E.E., Helmer, G.L., Fraley, R.T. and Chilton, M.-D. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology 168(3):1291-1301.ILSI (2011) International Life Sciences Institute Crop Composition Database Version 4.0. . IPCS (1984) 2,4-Dichlorophenoxyacetic acid (2,4-D). Report No. Environmental Health Criteria 29, International Programme on Chemical Safety INCHEM. . Iskander, F.Y. (1987) Maturation stage and mineral content in soybeans. Food Chemistry 24:29-35.James, A.T. and Rose, I.A. (2004) Integrating crop physiology into the Australian soybean improvement program. In: 4th International Crop Science Congress, Brisbane, Australia, September 2004. , I., Kerkvliet, N.I., Taylor, S.L., Astwood, J.D., Sarlo, K. and Dearman, R.J. (1999) Toxicology of protein allergenicity: prediction and characterization. Toxicological Sciences 48(2):157-162.Krell, R. (1996) Value-Added Products from BeeKeeping. Chapter 3: Pollen, FAO Agricultural Services Bulletin No. 124, Food and Agriculture Organization of the United Nations, available online at ützner, H.J. (1981) The Family Streptomycetaceae. In: Starr, M.P., Stolp, H., Trüper, H.G., Ballows, A., and Schlegel, H.G. eds. The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria. Springer Verlag, Berlin, pp. 2028-2090.Labuda, I.M., Goers, S.K. and Keon, K.A. (1992) Bioconversion process for the production of vanillin. (US Patent 5,128,253): . Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. and Candia, O.A. (1979) An improved assay for nanomole amuonts of inorganic phosphate. Analytical Biochemistry 100:95-97.Lebrun, M., Leroux, B. and Sailland, A. (1996) Chimeric gene for the transformation of plants. (US5510471): . Lebrun, M., Sailland, A. and Freyssinet, G. (1997) Mutated 5-enol-pyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene. (WO/9704103 A2): . Lundry, D.R., Ridley, W.P., Meyer, J.J., Riordan, S.G., Nemeth, M.A., Trujillo, W.A., Breeze, M.L. and Sorbet, R. (2008) Composition of grain, forage, and processed fractions from second-generation glyphosate-tolerant soybean, MON 89788, is equivalent to that of conventional soybean (Glycine max L.). Journal of Agricultural and Food Chemistry 56(12):4611-4622.McCann, M.C., Liu, K., Trujillo, W.A. and Dobert, R.C. (2005) Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing. Journal of Agricultural and Food Chemistry 53:5331-5335.Messina, M. (2005) Isoflavones. In: Coates, P., Blackman, M.R., Cragg, G., Levine, M., Moss, J., and White, J. eds. Encyclopedia of Dietary Supplements. Informa Healthcare.Metcalfe, D.D., Astwood, J.D., Townsend, R., Sampson, H.A., Taylor, S.L. and Fuchs, R.L. (1996) Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Critical Reviews in Food Science and Nutrition 36 Suppl:S165-S186.Miletich, J.P. and Broze Jr., G.J. (1990) b Protein C is not glycosylated at asparagine 329. The Journal of Biological Chemistry 265:11397-11404.Müller, R.H., Jorks, S., Kleinsteuber, S. and Babel, W. (1999) Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiological Research 154(3):241-246.NDSU. (2004) Soybean Growth and Management Quick Guide: Reproductive Stages. Publication A-1174, North Dakota State University Agriculture and University Extension, . Norris, S.R., Meyer, S.E. and Callis, J. (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Molecular Biology 21(5):895-906.OECD (2001) Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients. Series on the Safety of Novel Foods and Feeds No. 2. Report No. ENV/JM/MONO(2001)15, Organisation for Economic Co-operation and Development, Paris.OECD (2002) Consensus document on compositional considerations for new varieties of maize (Zea mays): Key food and feed nutrients, antinutrients and secondard plant metabolites. Series on the safety of novel foods and feeds, No. 6. Organisation for Economic Co-operation and Development, Paris. (2002)25&doclanguage=en. OECD (2003) Considerations for the Safety Assessment of Animal Feedstuffs Derived from Genetically Modified Plants. Series on the Safety of Novel Foods and Feeds, No. 9. Organisation for Economic Cooperation and Development, Paris. $FILE/JT00147696.PDF. OECD (2012) Revised consensus document on compositional considerations for new varieties of soybean [Glycine max (L.) Merr.]: Key food and feed nutrients, antinutrients, toxicants and allergens. Report No. ENV/JM/MONO(2012)24, Organisation for Economic Co-operation and Development. . OGTR (2008) The biology of Zea mays L. ssp mays (maize or corn). Prepared by the Office of the Gene Technology Regulator, Australia. . Orlando, R. and Yang, Y. (1998) Analysis of Glycoproteins. In: Larsen, B.S. and McEwen, C.N. eds. Mass Spectrometry of Biological Materials. 2nd ed, Chapter 9. Marcel Dekker, pp. 216-246.Padgette, S.R., Taylor, N.B., Nida, D.L., Bailey, M.R., MacDonald, J., Holden, L.R. and Fuchs, R.L. (1996) The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. Journal of Nutrition 126(3):702-716.Pastorello, E.A., Farioli, L., Pravettoni, V., Ispano, M., Scibola, E., Trambaioli, C., Giuffrida, M.G., Ansaloni, R., Godovac-Zimmermann, J., Conti, A., Fortunato, D. and Ortolani, C. (2000) The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein. Journal of Allergy and Clinical Immunology 106(4):744-751.Pastorello, E.A., Pompei, C., Pravettoni, V., Farioli, L., Calamari, A.M., Scibilia, J., Robino, A.M., Conti, A., Iametti, S., Fortunato, D., Bonomi, S. and Ortolani, C. (2003) Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 degrees C, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results. Journal of Allergy and Clinical Immunology 112(4):775-783.Patel, D.S., Desai, A.J. and Desai, J.D. (1998) Biodegradation of dimethylterephthalate by Comamonas acidovorans D-4. Indian Journal of Experimental Biology 36(3):321-324.Paulin, M.M., Nicolaisen, M.H. and Sorensen, J. (2010) Abundance and expression of enantioselective rdpA and sdpA dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil. Applied and Environmental Microbiology 76(9):2873-2883.Pearson, W.R. (2000) Flexible Sequence Similarity Searching with the FASTA3 Program Package. In: Misener, S. and Krawetz, S.A. eds. Methods in Molecular Biology, Volume 132: Bioinformatics Methods and Protocols. Chapter 10. Human Press Inc., Totowa, NJ, pp. 185-219.Polevoda, B. and Sherman, F. (2002) The diversity of acetylated proteins. Genome Biology 3(5):reviews0006.Schleinizt, K.M., Kleinsteuber, S., Vallaeys, T. and Babel, W. (2004) Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy) propionate cleavage in Delftia acidovorans MC1. Applied and Environmental Microbiology 70(9):5357-5365.Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C. and Jackson, S.A. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178-183.Shurtleff, W. and Aoyagi, A. (2007) History of soybean crushing: Soy oil and soybean meal. In: History of soybeans and soyfoods: 1100 B.C. to the 1980s. SoyInfo Center, available online at , Lafayette, California.Sleper, D.A., Nickell, C.D., Noel, G.R., Cary, T.R., Thomas, D.J., Clark, K.M. and Rao Arelli, A.P. (1998) Registration of 'Maverick' soybean. Crop Science 38:549.Strauch, E., Wohlleben, W. and Pühler, A. (1988) Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63(1):65-74.Streber, W.R., Timmis, K.N. and Zenk, M.H. (1987) Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. Journal of Bacteriology 169(7):2950-2955.Sudesh, K. (2004) Microbial polyhydroxyalkanoates (PHAs): an emerging biomaterial for tissue engineering and therapeutic applications. Medical Journal of Malaysia 59 Suppl B:55-56.Tamaoka, J., Ha, D.-M. and Komagata, K. (1987) Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. International Journal of Systematic Bacteriology 37(1):52-59.Taylor, N.B., Fuchs, R.L., MacDonald, J., Shariff, A.R. and Padgette, S.R. (1999) Compositional analysis of glyphosate-tolerant soybeans treated with glyphosate. Journal of Agricultural and Food Chemistry 47(10):4469-4473.The American Soybean Association. (2011) Soy Stats 2011. . Thomas, K., Aalbers, M., Bannon, G.A., Bartels, M., Dearman, R.J., Esdaile, D.J., Fu, T.-J., Glatt, C.M., Hadfield, N., Hatzos, C., Hefle, S.L., Heylings, J.R., Goodman, R.E., Henry, B., Herouet, C., Holsapple, M., Ladics, G.S., Landry, T.D., MacIntosh, S.C., Rice, E.A., Privalle, L.S., Steiner, H.Y., Teshima, R., Van Ree, R., Woolhiser, M. and Zawodny, J. (2004) A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regulatory Toxicology and Pharmacology 39:87-98.Thomas, K., Bannon, G., Hefle, S., Herouet, C., Holsapple, M., Ladics, G., MacIntosh, S. and Privalle, L. (2005) In silico methods for evaluating human allergenicity to novel proteins: International Bioinformatics Workshop Meeting Report February 23 - 24, 2005. Toxicological Sciences 88:307-310.Thomas, K., MacIntosh, S., Bannon, G., Herouet-Guicheney, C., Holsapple, M., Ladics, G., McClain, S., Vieths, S., Woolhiser, M. and Privalle, L. (2009) Scientific advancement of novel protein allergenicity evaluation: An overview of work from the HESI Protein Allergenicity Technical Committee (2000 - 2008). Food and Chemical Toxicology 47:1041-1050.Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M. and Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO Journal 6:2519-2523.U.S.Pharmacopeia. (1995) The United States Pharmacopeia 23. The National Formulary 18. United States Pharmacopeia Convention, Inc, Rockville, MD.Urata, M., Uchida, E., Nojiri, H., Omori, T., Obo, R., Miyaura, N. and Ouchiyama, N. (2004) Genes involved in aniline degradation by Delftia acidovorans Strain 7N and its distribution in the natural environment. Bioscience, Biotechnology and Biochemistry 68(12):2457-2465.USDA (2009) Oilseeds: World markets and trade. Circular Series FOP1-09. Foreign Agricultural Service, United States Department of Agriculture. . Verdaguer, B., de Kochko, A., Beachy, R.N. and Fauquet, C. (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosiac virus (CVMV) promoter. Plant Molecular Biology 31:1129-1139.Verma, D., Verma, M., Dey, M., Jain, R.K. and Wu, R. (2005) Molecular dissection of the tobacco Rb7 matrix attachment region (MAR): Effect of 5' half on gene expression in rice. Plant Science 169(4):704-711.Wacker, M., Linton, D., Hitchen, P.G., Nita-Lazar, M., Haslam, S.M., North, S.J., Panico, M., Morris, H.R., Dell, A., Wren, B.W. and Aebi, M. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790-1793.Wehrmann, A., Van Vliet, A., Opsomer, C., Botterman, J. and Schulz, A. (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nature Biotechnology 14:1274-1278.Wen, A., Fegan, M., Hayward, C., Chakraborty, S. and Sly, L.I. (1999) Phylogenetic relationships among members of the Comamonadaceae, and the description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen.nov., comb. nov. International Journal of Systematic Bacteriology 49:567-576.Westendorf, A., Benndorf, D., Müller, R.H. and Babel, W. (2002) The two enantiospecific dichlorprop/a-ketoglutarate-dioxygenases from Delftia acidovorans MC1 - protein and sequence data of RdpA and SdpA. Microbiological Research 157(4):317-322.Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E. and Punier, A. (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70:25-37.Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., Almeida Jr, N.F., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., Karp, P.D., Bovee Sr, D., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.-J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.F., Gordon, M.P., Ison, M.V. and Ester, E.W. (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294(5550):2317-2323.Wright, T.R., Lira, J.M., Walsh, T., Merlo, D.J., Jayakumar, P. and Lin, G. (2007) Novel herbicide resistance genes. (World Patent 2007/053482 A2): . Wright, T.R., Shan, G., Walsh, T.A., Lira, J.M., Cui, C., Song, P., Zhuang, M., Arnold, N.L., Lin, G., Yau, K., Russell, S.M., Cicchillo, R.M., Peterson, M.A., Simpson, D.M., Zhou, N., Ponsamuel, J. and Zhang, Z. (2010a) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proceedings of the National Academy of Sciences ePub, doi:101073/pnas.1013154107:Wright, T.R., Shan, G., Walsh, T.A., Lira, J.M., Cui, C., Song, P., Zhuang, M., Arnold, N.L., Lin, G., Yau, K., Russell, S.M., Cicchillo, R.M., Peterson, M.A., Simpson, D.M., Zhou, N., Ponsamuel, J. and Zhang, Z. (2010b) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proceedings of the National Academy of Sciences ePub, doi:101073/pnas.1013154107:Yoon, S.-H., Li, C., Lee, Y.-M., Lee, S.-H., Kim, S.-H., Choi, M.-S., Seo, W.-T., Yang, J.-K., Kim, J.-Y. and Kim, S.-W. (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnology and Bioprocess Engineering 10:378-384.Zambryski, P. (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annual Review of Genetics 22:1-30.Zambryski, P., Depicker, A., Kruger, K. and Goodman, H.M. (1982) Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. Journal of Molecular and Applied Genetics 1(4):361-370.Zeng, P., Vadnais, D.A., Zhang, Z. and Polacco, J.C. (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Reports 22:478-482. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download