Mathematics in Early Childhood and Primary Education (3–8 ...
[Pages:166]Research Report No. 17
Mathematics in Early Childhood and Primary Education (3?8 years)
Definitions, Theories, Development and Progression
Elizabeth Dunphy, Th?r?se Dooley and Gerry Shiel With Deirdre Butler, Dolores Corcoran, Miriam Ryan and Joe Travers International Advisor: Professor Bob Perry
? NCCA 2014 ISSN 1649-3362
National Council for Curriculum and Assessment 35 Fitzwilliam Square, Dublin 2.
T: +353 1 661 7177 F: +353 1 661 7180 E: info@ncca.ie
ncca.ie
Mathematics in Early Childhood and Primary Education (3?8 years)
Definitions, Theories, Development and Progression
Elizabeth Dunphy, St. Patrick's College, Dublin Th?r?se Dooley, St. Patrick's College, Dublin Gerry Shiel, Educational Research Centre, Dublin Deirdre Butler, St. Patrick's College, Dublin Dolores Corcoran, St. Patrick's College, Dublin Miriam Ryan, St. Patrick's College, Dublin Joe Travers, St. Patrick's College, Dublin Professor Bob Perry, Charles Sturt University, Australia
Research conducted on behalf of the National Council for Curriculum and Assessment
Educational Research Centre
Foras Taighde Ar Oideachas
2014
2
Research Report No. 17 Mathematics in Early Childhood and Primary Education (3?8 years)
Acronyms
AAMT Australian Association of Mathematics Teachers
Aistear The Early Childhood Curriculum Framework (2009)
CCSSM Common Core States Standards for Mathematics (United States)
CHAT Cultural historical activity theory
DEIS Delivering Equality of Opportunities in Schools
DES Department of Education and Skills (formerly Department of Education and Science )
DfEE Department for Education and Employment (United Kingdom)
EAL English as an Additional Language
ECA Early Childhood Australia
ENRP Early Numeracy Research Project (Victoria, Australia)
ERC Educational Research Centre
HLT Hypothetical Learning Trajectory
ICT Information and Communication Technology
KDU Key Developmental Understanding
LFIN Learning Framework in Number (Wright, Martland & Stafford, 2006)
LT
Learning Trajectory
NAEYC National Association for the Education of Young Children (United States)
NCCA National Council for Curriculum and Assessment
NCTM National Council of Teachers of Mathematics (United States)
NGA National Governors Association (United States)
NRC National Research Council (United States)
OECD Organisation for Economic Cooperation and Development
PISA Programme for International Student Assessment
PM Project Maths
PSC Primary School Curriculum (1999)
PSMC Primary School Mathematics Curriculum (1999)
RME Realistic Mathematics Education
RTI Response to Intervention (United States Initiative)
STEM Science, Technology, Engineering and Mathematics
TAL Tussendoelen Annex Leerlijinen (in Dutch); Intermediate Attainment Targets (in English)
TIMSS Trends in International Mathematics and Science Study
Table of Contents
3
Table of Contents
Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 A View of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Definitions of Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Theoretical Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Language and Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Defining Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 The Development of Children's Mathematical Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Assessing and Planning for Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Addressing Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Key Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A View of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Developing Mathematics Education in Ireland for Children Aged 3?8 Years . . . . . . . . . . . . . . 20 Curriculum Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Performance Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Policy Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Linguistic and Social Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 1: Defining Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 The Foundations of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 A Definition of Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Numeracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Defining Mathematics Education for Children Aged 3?8 Years . . . . . . . . . . . . . . . . . . . . . . . . 36 A Key Aim of Mathematics Education: Mathematical Proficiency . . . . . . . . . . . . . . . . . . . . . . 37 Mathematization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4
Research Report No. 17 Mathematics in Early Childhood and Primary Education (3?8 years)
Chapter 2: Theoretical Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Sociocultural Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A Cultural-Historical Activity Theory Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A Situative Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Cognitive Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Constructivist Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Constructionism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A Redeveloped Primary School Mathematics Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Implications for Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Chapter 3: Language, Communication and Mathematics . . . . . . . . . . . . . . . . . . . . 57 The Role of Language in Developing Mathematical Knowledge . . . . . . . . . . . . . . . . . . . . . . . 59 Adult Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 The Nature and Scope of Mathematical Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Establishing a Math-Talk Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Learning Mathematical Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Variation in Language Skills and Impact on Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Chapter 4: Defining Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A Coherent Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Specifying Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Overarching Goals for Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Higher-Order Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Engaging with Powerful Mathematical Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Exploring the Big Ideas in Mathematics Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 The Structure of Curriculum Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Breaking Down the Goals: Critical Transitions within Mathematical Domains . . . . . . . . . . . . . . 75 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Chapter 5: The Development of Children's Mathematical Thinking . . . . . . . . . . . . . 79 A Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 From Stages of Development to Levels of Sophistication in Thinking . . . . . . . . . . . . . . . . . . . 81
5
Table of Contents
Developing Children's Mathematical Thinking: Three Approaches . . . . . . . . . . . . . . . . . . . . . 81 The First Approach: Working with Children's Thinking and Understanding (RME) . . . . . . . . . . . 82 Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 The Teacher's Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 The Second Approach: Teacher-Generated Hypothetical Learning Trajectories (Simon) . . . . . . . . 85 The Third Approach: Pre-Specified Developmental Progressions as a Basis for Learning Trajectories (Sarama and Clements) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Comparing the Three Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Definitions and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Recognising Diverse Routes in Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Recognising Developmental Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Curriculum Development and the Role of Learning Trajectories . . . . . . . . . . . . . . . . . . . . . . . 94 Supporting Teachers in Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Supporting Learning for Pre-Service Teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Chapter 6: Assessing and Planning for Progression . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Assessing Mathematics Learning in Early Childhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Formative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Conceptual Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Pedagogical Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Supporting Children's Progression with Formative Assessment . . . . . . . . . . . . . . . . . . . . . . . . 104 Diagnostic and Summative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Screening/Diagnostic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Standardised Norm-Referenced Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Planning for Progression Using Assessment Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Immersion Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Children with Special Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6
Research Report No. 17 Mathematics in Early Childhood and Primary Education (3?8 years)
Chapter 7: Addressing Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Identification of Learning Difficulties in Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Exceptional Children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Intellectual and Developmental Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Specific Difficulties in Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Developmental Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Mathematically Talented Children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Cultural Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Ethnicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Socioeconomic Disadvantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Chapter 8: Key Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
The executive summaries of reports No. 17 and No. 18 are available online at ncca.ie/primarymaths. The online versions include some hyperlinks which appear
as text on dotted lines in this print copy.
Acknowledgements
The authors thank the National Council for Curriculum and Assessment for commissioning and supporting this report. We are very thankful to Arlene Forster and Aoife Kelly of the NCCA for providing detailed feedback on earlier drafts of the report. The authors are also indebted to Professor Bob Perry, Charles Sturt University, Australia who read early drafts of the report and who provided expert advice on various issues addressed in the report.
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- fun math game printables
- doing mathematics with your child
- gloss gloss nzmaths
- donna burk the math learning center mlc
- mathematics in early childhood and primary education 3 8
- lesson intro lesson ages 8 12
- the new zealand curriculum mathematics
- math from three to seven
- math home scoe
- keeping your gifted child challenged in math
Related searches
- bachelors in early childhood education
- bachelor degree in early childhood education online
- science in early childhood development
- certificate in early childhood education
- bachelors in early childhood education online
- theorists in early childhood education
- science in early childhood classrooms
- early childhood and literacy
- ba in early childhood education
- bs in early childhood education
- current issues in early childhood education
- science in early childhood education