Abstract - the UWA Profiles and Research Repository



Gas Hydrate Formation Probability Distributions: The effect of shear & comparisons with nucleation theoryEric F. May1,*, Vincent W. Lim1, Peter J. Metaxas1, Jianwei Du1, Paul L. Stanwix1, Darren Rowland1, Michael L. Johns1, Gert Haandrikman2, Daniel Crosby3, Zachary M. Aman1Fluid Science & Resources, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, AustraliaShell Technology Centre Amsterdam, P.O. Box 3800, 1030 BN Amsterdam, NetherlandsShell Technology Center Houston, P.O. Box 432, 3333 Highway 6 South, Houston, Texas 77210, USA*eric.may@uwa.edu.auKeywords: Gas hydrates, Nucleation, Growth, Probability distribution, kinetic inhibitorAbstract Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here we present statistically significant measurements of formation probability distributions for natural gas hydrates systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low mass, Peltier-cooled pressure cells, cycled in temperature between (40 and -5)?C at up to 2?Kmin-1, and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: measurements of hydrate formation at 700 rpm mass transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14 to 26. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of two. For submission to LangmuirIntroductionAs the use of subsea oil and gas flowlines moves toward increasingly deeper water, the risk of gas hydrate formation during both steady-state and transient operations grows accordingly ADDIN EN.CITE <EndNote><Cite><Author>Sloan</Author><Year>2005</Year><RecNum>90</RecNum><DisplayText><style face="superscript">1</style></DisplayText><record><rec-number>90</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497936810">90</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sloan, E. D.</author></authors></contributors><auth-address>Colorado Sch Mines, Ctr Hydrate Res, Golden, CO 80401 USA</auth-address><titles><title>A changing hydrate paradigm - from apprehension to avoidance to risk management</title><secondary-title>Fluid Phase Equilibria</secondary-title><alt-title>Fluid Phase Equilibr</alt-title></titles><periodical><full-title>Fluid Phase Equilibria</full-title><abbr-1>Fluid Phase Equilibr</abbr-1></periodical><alt-periodical><full-title>Fluid Phase Equilibria</full-title><abbr-1>Fluid Phase Equilibr</abbr-1></alt-periodical><pages>67-74</pages><volume>228</volume><keywords><keyword>phase equilibria</keyword><keyword>flow assurance</keyword><keyword>hydrates</keyword></keywords><dates><year>2005</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0378-3812</isbn><accession-num>WOS:000229584900010</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000229584900010</url></related-urls></urls><electronic-resource-num>10.1016/j.fluid.2004.08.009</electronic-resource-num><language>English</language></record></Cite></EndNote>1. While much effort has been expended in the last four decades to improve hydrate phase boundary predictions for a wide range of gas and aqueous phase compositions, only limited data are available to describe the stochastic nature of hydrate formation once a system enters the hydrate stability regionPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWtvZ29uPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48

UmVjTnVtPjEwNzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjItNDwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjEwNzwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3

dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNTAzMjkzNzU5Ij4xMDc8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPk1ha29nb24sIFl1cmkgRi48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SHlkcmF0ZXMgb2YgSHlkcm9jYXJib25zPC90aXRs

ZT48L3RpdGxlcz48cGFnZXM+NDgyPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NzwveWVhcj48L2Rh

dGVzPjxwdWItbG9jYXRpb24+VHVsc2EsIE9LLCBVU0E8L3B1Yi1sb2NhdGlvbj48cHVibGlzaGVy

PlBlbm5XZWxsIFB1Ymxpc2hpbmcgQ29tcGFueTwvcHVibGlzaGVyPjx1cmxzPjwvdXJscz48L3Jl

Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+

PFJlY051bT4xNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTU8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVhd3ZhNXRlYXdw

OXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg2OTY2MyI+MTU8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjxhdXRob3I+V2VsbHMs

IERhcnJlbGw8L2F1dGhvcj48YXV0aG9yPkhhcnRsZXksIFBhdHJpY2sgRy48L2F1dGhvcj48YXV0

aG9yPktvemllbHNraSwgS2FyZW4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PHRpdGxlcz48dGl0bGU+U3RhdGlzdGljYWwgQW5hbHlzaXMgb2YgU3VwZXJjb29saW5nIGluIEZ1

ZWwgR2FzIEh5ZHJhdGUgU3lzdGVtczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbmVyZ3kgJmFt

cDsgRnVlbHM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FbmVyZ3kgJmFtcDsgRnVlbHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xODIw

LTE4Mjc8L3BhZ2VzPjx2b2x1bWU+MjY8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxpc2JuPjA4ODctMDYyNCYjeEQ7MTUyMC01MDI5PC9p

c2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9lZjIwMTk2

NXo8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PkFiYXk8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MjA8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjIwPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0

OTYzODQyNjgiPjIwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwg

QXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5BYmF5

LCBILiBLLjwvYXV0aG9yPjxhdXRob3I+U3ZhcnRhYXMsIFQuIE0uPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+VW5pdiBTdGF2YW5nZXIsIEZhYyBTY2kgJmFt

cDsgVGVjaG5vbCwgRGVwdCBQZXRyIEVuZ24sIE4tNDAzNiBTdGF2YW5nZXIsIE5vcndheTwvYXV0

aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkVmZmVjdCBvZiBVbHRyYWxvdyBDb25jZW50cmF0aW9u

IG9mIE1ldGhhbm9sIG9uIE1ldGhhbmUgSHlkcmF0ZSBGb3JtYXRpb248L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+RW5lcmd5ICZhbXA7IEZ1ZWxzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5F

bmVyZyBGdWVsPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW5l

cmd5ICZhbXA7IEZ1ZWxzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NzUyLTc1Nzwv

cGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxrZXl3b3Jkcz48a2V5d29yZD5udWNsZWF0aW9uPC9r

ZXl3b3JkPjxrZXl3b3JkPnN1cmZhY3RhbnRzPC9rZXl3b3JkPjxrZXl3b3JkPmluaGliaXRvcjwv

a2V5d29yZD48a2V5d29yZD5pbnRlcmZhY2U8L2tleXdvcmQ+PGtleXdvcmQ+a2luZXRpY3M8L2tl

eXdvcmQ+PGtleXdvcmQ+d2F0ZXI8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAx

MDwveWVhcj48cHViLWRhdGVzPjxkYXRlPkZlYjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp

c2JuPjA4ODctMDYyNDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjc0NTE0NDAwMDAzPC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0Ozov

L1dPUzowMDAyNzQ1MTQ0MDAwMDM8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvZWY5MDA5NDIyPC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWtvZ29uPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48

UmVjTnVtPjEwNzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjItNDwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjEwNzwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3

dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNTAzMjkzNzU5Ij4xMDc8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPk1ha29nb24sIFl1cmkgRi48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SHlkcmF0ZXMgb2YgSHlkcm9jYXJib25zPC90aXRs

ZT48L3RpdGxlcz48cGFnZXM+NDgyPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NzwveWVhcj48L2Rh

dGVzPjxwdWItbG9jYXRpb24+VHVsc2EsIE9LLCBVU0E8L3B1Yi1sb2NhdGlvbj48cHVibGlzaGVy

PlBlbm5XZWxsIFB1Ymxpc2hpbmcgQ29tcGFueTwvcHVibGlzaGVyPjx1cmxzPjwvdXJscz48L3Jl

Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+

PFJlY051bT4xNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTU8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVhd3ZhNXRlYXdw

OXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg2OTY2MyI+MTU8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjxhdXRob3I+V2VsbHMs

IERhcnJlbGw8L2F1dGhvcj48YXV0aG9yPkhhcnRsZXksIFBhdHJpY2sgRy48L2F1dGhvcj48YXV0

aG9yPktvemllbHNraSwgS2FyZW4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PHRpdGxlcz48dGl0bGU+U3RhdGlzdGljYWwgQW5hbHlzaXMgb2YgU3VwZXJjb29saW5nIGluIEZ1

ZWwgR2FzIEh5ZHJhdGUgU3lzdGVtczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbmVyZ3kgJmFt

cDsgRnVlbHM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FbmVyZ3kgJmFtcDsgRnVlbHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xODIw

LTE4Mjc8L3BhZ2VzPjx2b2x1bWU+MjY8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxpc2JuPjA4ODctMDYyNCYjeEQ7MTUyMC01MDI5PC9p

c2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9lZjIwMTk2

NXo8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PkFiYXk8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MjA8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjIwPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0

OTYzODQyNjgiPjIwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwg

QXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5BYmF5

LCBILiBLLjwvYXV0aG9yPjxhdXRob3I+U3ZhcnRhYXMsIFQuIE0uPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+VW5pdiBTdGF2YW5nZXIsIEZhYyBTY2kgJmFt

cDsgVGVjaG5vbCwgRGVwdCBQZXRyIEVuZ24sIE4tNDAzNiBTdGF2YW5nZXIsIE5vcndheTwvYXV0

aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkVmZmVjdCBvZiBVbHRyYWxvdyBDb25jZW50cmF0aW9u

IG9mIE1ldGhhbm9sIG9uIE1ldGhhbmUgSHlkcmF0ZSBGb3JtYXRpb248L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+RW5lcmd5ICZhbXA7IEZ1ZWxzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5F

bmVyZyBGdWVsPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW5l

cmd5ICZhbXA7IEZ1ZWxzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NzUyLTc1Nzwv

cGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxrZXl3b3Jkcz48a2V5d29yZD5udWNsZWF0aW9uPC9r

ZXl3b3JkPjxrZXl3b3JkPnN1cmZhY3RhbnRzPC9rZXl3b3JkPjxrZXl3b3JkPmluaGliaXRvcjwv

a2V5d29yZD48a2V5d29yZD5pbnRlcmZhY2U8L2tleXdvcmQ+PGtleXdvcmQ+a2luZXRpY3M8L2tl

eXdvcmQ+PGtleXdvcmQ+d2F0ZXI8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAx

MDwveWVhcj48cHViLWRhdGVzPjxkYXRlPkZlYjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp

c2JuPjA4ODctMDYyNDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjc0NTE0NDAwMDAzPC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0Ozov

L1dPUzowMDAyNzQ1MTQ0MDAwMDM8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvZWY5MDA5NDIyPC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 2-4. The probability of hydrate formation increases with both the subcooling below the equilibrium temperature, and the induction time that the system has spent inside the hydrate stability region. However, most engineering tools available for assessing the blockage risk in production systems rely on highly simplified heuristics for estimating whether hydrates will form. For example, the flow assurance software tool, OLGA-CSMHyk ADDIN EN.CITE <EndNote><Cite><Author>Turner</Author><Year>2005</Year><RecNum>105</RecNum><DisplayText><style face="superscript">5</style></DisplayText><record><rec-number>105</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1503285603">105</key></foreign-keys><ref-type name="Conference Paper">47</ref-type><contributors><authors><author>Turner, D.</author><author>Boxall, J.</author><author>Yang, S.</author><author>Kleehamer, D.</author><author>Koh, C.</author><author>Miller, K.</author><author>Sloan, E. D.</author><author>Xu, Z.</author><author>Mathews, P.</author><author>Talley, L.</author></authors></contributors><titles><title>Development of a hydrate kinetic model and its incorporation into the OLGA2000 transient multi-phase flow simulator</title><secondary-title>Fifth International Conference on Gas Hydrates</secondary-title></titles><dates><year>2005</year></dates><pub-location>Trondheim, Noway</pub-location><urls></urls></record></Cite></EndNote>5, uses a widely accepted industry heuristic based on the average of five field tests conducted on the Werner Bolley well ADDIN EN.CITE <EndNote><Cite><Author>Matthews</Author><Year>2006</Year><RecNum>14</RecNum><DisplayText><style face="superscript">6</style></DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1488868008">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Matthews, Patrick N.</author><author>Notz, Phil K.</author><author>Widener, Mark W.</author><author>Prukop, Gabriel</author></authors></contributors><titles><title>Flow Loop Experiments Determine Hydrate Plugging Tendencies in the Field</title><secondary-title>Annals of the New York Academy of Sciences</secondary-title></titles><periodical><full-title>Annals of the New York Academy of Sciences</full-title></periodical><pages>330-338</pages><volume>912</volume><number>1</number><dates><year>2006</year></dates><isbn>00778923&#xD;17496632</isbn><urls></urls><electronic-resource-num>10.1111/j.1749-6632.2000.tb06787.x</electronic-resource-num></record></Cite></EndNote>6, which simply assumes that hydrates will nucleate when the subcooling exceeds 3.6?K (6.5?°F). While such an approach may be useful as a first approximation, the use of a single subcooling without reference to induction time clearly precludes precise quantification of hydrate formation risk in system design. Operational flow assurance strategies based on low-dose kinetic hydrate inhibitors (KHIs) are increasingly being deployedPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Bc2t2aWs8L0F1dGhvcj48WWVhcj4yMDE3PC9ZZWFyPjxS

ZWNOdW0+MTAxPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

Ny0xMDwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjEwMTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3

dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNTAyODY0MDQ2Ij4xMDE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQ29uZmVyZW5jZSBQYXBlciI+NDc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Bc2t2aWssIEtqZWxsIE1hZ25lPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk5hdHVyYWwgS2luZXRp

YyBJbmhpYml0aW9uIG9mIEdhcyBIeWRyYXRlcyBpbiBPaWwgYW5kIEdhcyBQcm9kdWN0aW9uPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPjl0aCBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gZ2Fz

IEh5ZHJhdGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTc8L3ll

YXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPkRlbnZlciwgQ08sIFVTQTwvcHViLWxvY2F0aW9uPjx1

cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5HbGVuYXQ8L0F1dGhvcj48

WWVhcj4yMDE3PC9ZZWFyPjxSZWNOdW0+MTAyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4x

MDI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0

dmtmdmRwNWVhd3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTUwMjg2NDUzNiI+MTAy

PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkNvbmZlcmVuY2UgUGFwZXIiPjQ3

PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2xlbmF0LCBQaGlsaXBw

ZTwvYXV0aG9yPjxhdXRob3I+RGV2b2lzc2VsbGUsIFJvbWFpbjwvYXV0aG9yPjxhdXRob3I+UGVn

YXp5LCBMdWRvdmljPC9hdXRob3I+PGF1dGhvcj5Cb3VyZywgUGF0cmljazwvYXV0aG9yPjxhdXRo

b3I+UGVyZSwgTWF0aGlldTwvYXV0aG9yPjxhdXRob3I+QXJuYXVsdCwgUnVkeTwvYXV0aG9yPjwv

YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5OYXR1cmFsIEtpbmV0aWMgSHlk

cmF0ZXMgSW5oaWJpdG9ycyBvZiBDcnVkZSBPaWxzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPjl0

aCBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gR2FzIEh5ZHJhdGVzPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTc8L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9u

PkRlbnZlciwgQ08sIFVTQTwvcHViLWxvY2F0aW9uPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0Np

dGU+PENpdGU+PEF1dGhvcj5OYWdhcHBheXlhPC9BdXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVj

TnVtPjEwMzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTAzPC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlz

cmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE1MDI4NjQ2MzgiPjEwMzwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJDb25mZXJlbmNlIFBhcGVyIj40NzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPk5hZ2FwcGF5eWEsIFNhaGFuYSBHLjwvYXV0aG9yPjxhdXRo

b3I+QmFydGVscywgSi5XLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5PbGQgVGVjaG5vbG9neSwgTmV3IE1hcmtldCAtIExvdyBEb3NhZ2UgSHlkcmF0ZSBJ

bmhpYml0b3IgaW4gVVMgT25zaG9yZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT45dGggSW50ZXJu

YXRpb25hbCBDb25mZXJlbmNlIG9uIEdhcyBIeWRyYXRlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxkYXRlcz48eWVhcj4yMDE3PC95ZWFyPjwvZGF0ZXM+PHB1Yi1sb2NhdGlvbj5EZW52ZXIs

IENPLCBVU0E8L3B1Yi1sb2NhdGlvbj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+U2lucXVpbjwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+PFJlY051bT4xMDQ8L1Jl

Y051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEwNDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxr

ZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIg

dGltZXN0YW1wPSIxNTAyODY0NzQyIj4xMDQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iQ29uZmVyZW5jZSBQYXBlciI+NDc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5TaW5xdWluLCBBLjwvYXV0aG9yPjxhdXRob3I+T3JhbCwgTy48L2F1dGhvcj48

YXV0aG9yPlJpdmVyZWF1LCBBLjwvYXV0aG9yPjxhdXRob3I+R2xlbnRhLCBQLjwvYXV0aG9yPjxh

dXRob3I+RGV2b2lzc2VsbGUsIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0

aXRsZXM+PHRpdGxlPkNvbW1lcmNpYWwgQW50aS1BZ2dsb21lcmF0ZXMgV2F5cyBvZiBBY3Rpb24g

aW4gU2ltcGxlIEdhcy9Db25kZW5zYXRlL1dhdGVyIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRhcnkt

dGl0bGU+OXRoIEludGVybmF0aW9uYWwgQ29uZmVyZW5jZSBvbiBHYXMgSHlkcmF0ZXM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxNzwveWVhcj48L2RhdGVzPjxwdWIt

bG9jYXRpb24+RGVudmVyLCBDTywgVVNBPC9wdWItbG9jYXRpb24+PHVybHM+PC91cmxzPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Bc2t2aWs8L0F1dGhvcj48WWVhcj4yMDE3PC9ZZWFyPjxS

ZWNOdW0+MTAxPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

Ny0xMDwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjEwMTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3

dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNTAyODY0MDQ2Ij4xMDE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQ29uZmVyZW5jZSBQYXBlciI+NDc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Bc2t2aWssIEtqZWxsIE1hZ25lPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk5hdHVyYWwgS2luZXRp

YyBJbmhpYml0aW9uIG9mIEdhcyBIeWRyYXRlcyBpbiBPaWwgYW5kIEdhcyBQcm9kdWN0aW9uPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPjl0aCBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gZ2Fz

IEh5ZHJhdGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTc8L3ll

YXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPkRlbnZlciwgQ08sIFVTQTwvcHViLWxvY2F0aW9uPjx1

cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5HbGVuYXQ8L0F1dGhvcj48

WWVhcj4yMDE3PC9ZZWFyPjxSZWNOdW0+MTAyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4x

MDI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0

dmtmdmRwNWVhd3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTUwMjg2NDUzNiI+MTAy

PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkNvbmZlcmVuY2UgUGFwZXIiPjQ3

PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2xlbmF0LCBQaGlsaXBw

ZTwvYXV0aG9yPjxhdXRob3I+RGV2b2lzc2VsbGUsIFJvbWFpbjwvYXV0aG9yPjxhdXRob3I+UGVn

YXp5LCBMdWRvdmljPC9hdXRob3I+PGF1dGhvcj5Cb3VyZywgUGF0cmljazwvYXV0aG9yPjxhdXRo

b3I+UGVyZSwgTWF0aGlldTwvYXV0aG9yPjxhdXRob3I+QXJuYXVsdCwgUnVkeTwvYXV0aG9yPjwv

YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5OYXR1cmFsIEtpbmV0aWMgSHlk

cmF0ZXMgSW5oaWJpdG9ycyBvZiBDcnVkZSBPaWxzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPjl0

aCBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gR2FzIEh5ZHJhdGVzPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTc8L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9u

PkRlbnZlciwgQ08sIFVTQTwvcHViLWxvY2F0aW9uPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0Np

dGU+PENpdGU+PEF1dGhvcj5OYWdhcHBheXlhPC9BdXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVj

TnVtPjEwMzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTAzPC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlz

cmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE1MDI4NjQ2MzgiPjEwMzwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJDb25mZXJlbmNlIFBhcGVyIj40NzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPk5hZ2FwcGF5eWEsIFNhaGFuYSBHLjwvYXV0aG9yPjxhdXRo

b3I+QmFydGVscywgSi5XLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5PbGQgVGVjaG5vbG9neSwgTmV3IE1hcmtldCAtIExvdyBEb3NhZ2UgSHlkcmF0ZSBJ

bmhpYml0b3IgaW4gVVMgT25zaG9yZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT45dGggSW50ZXJu

YXRpb25hbCBDb25mZXJlbmNlIG9uIEdhcyBIeWRyYXRlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxkYXRlcz48eWVhcj4yMDE3PC95ZWFyPjwvZGF0ZXM+PHB1Yi1sb2NhdGlvbj5EZW52ZXIs

IENPLCBVU0E8L3B1Yi1sb2NhdGlvbj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+U2lucXVpbjwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+PFJlY051bT4xMDQ8L1Jl

Y051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEwNDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxr

ZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIg

dGltZXN0YW1wPSIxNTAyODY0NzQyIj4xMDQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iQ29uZmVyZW5jZSBQYXBlciI+NDc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5TaW5xdWluLCBBLjwvYXV0aG9yPjxhdXRob3I+T3JhbCwgTy48L2F1dGhvcj48

YXV0aG9yPlJpdmVyZWF1LCBBLjwvYXV0aG9yPjxhdXRob3I+R2xlbnRhLCBQLjwvYXV0aG9yPjxh

dXRob3I+RGV2b2lzc2VsbGUsIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0

aXRsZXM+PHRpdGxlPkNvbW1lcmNpYWwgQW50aS1BZ2dsb21lcmF0ZXMgV2F5cyBvZiBBY3Rpb24g

aW4gU2ltcGxlIEdhcy9Db25kZW5zYXRlL1dhdGVyIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRhcnkt

dGl0bGU+OXRoIEludGVybmF0aW9uYWwgQ29uZmVyZW5jZSBvbiBHYXMgSHlkcmF0ZXM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxNzwveWVhcj48L2RhdGVzPjxwdWIt

bG9jYXRpb24+RGVudmVyLCBDTywgVVNBPC9wdWItbG9jYXRpb24+PHVybHM+PC91cmxzPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 7-10. These strategies rely on delaying hydrate formation beyond both a subcooling threshold (e.g. 10 K) and a minimum induction time (e.g. 120 hours) ADDIN EN.CITE <EndNote><Cite><Author>May</Author><Year>2014</Year><RecNum>95</RecNum><DisplayText><style face="superscript">11</style></DisplayText><record><rec-number>95</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1502761868">95</key></foreign-keys><ref-type name="Book Section">5</ref-type><contributors><authors><author>May, E. F.</author><author>Marsh, Kenneth N.</author><author>Goodwin, Anthony R.H.</author></authors><secondary-authors><author>Trevor Letcher</author></secondary-authors></contributors><titles><title>Frontier Oil and Gas: Deep-Water and the Arctic</title><secondary-title>Future Energy (Second Edition): Improved, Sustainable and Clean Options for our Planet</secondary-title></titles><pages>75-93</pages><dates><year>2014</year></dates><urls></urls></record></Cite></EndNote>11. While experiments with rocking cells and autoclaves can be used to performance test and rank potential KHI chemicals and concentrations ADDIN EN.CITE <EndNote><Cite><Author>Ke</Author><Year>2016</Year><RecNum>21</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>21</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1496384355">21</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ke, W.</author><author>Kelland, M. A.</author></authors></contributors><auth-address>Univ Stavanger, Fac Sci &amp; Technol, Dept Petr Engn, NO-4036 Stavanger, Norway&#xD;Univ Stavanger, Fac Sci &amp; Technol, Dept Math &amp; Nat Sci, NO-4036 Stavanger, Norway</auth-address><titles><title>Kinetic Hydrate Inhibitor Studies for Gas Hydrate Systems: A Review of Experimental Equipment and Test Methods</title><secondary-title>Energy &amp; Fuels</secondary-title><alt-title>Energ Fuel</alt-title></titles><periodical><full-title>Energy &amp; Fuels</full-title></periodical><pages>10015-10028</pages><volume>30</volume><number>12</number><keywords><keyword>molecular-dynamics simulations</keyword><keyword>crystal-growth inhibition</keyword><keyword>mini-loop apparatus</keyword><keyword>polyvinylpyrrolidone pvp concentration</keyword><keyword>water drilling-fluids</keyword><keyword>methane hydrate</keyword><keyword>clathrate-hydrate</keyword><keyword>antifreeze proteins</keyword><keyword>ionic liquids</keyword><keyword>laboratory evaluation</keyword></keywords><dates><year>2016</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>0887-0624</isbn><accession-num>WOS:000390072900002</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000390072900002</url></related-urls></urls><electronic-resource-num>10.1021/acs.energyfuels.6b02739</electronic-resource-num><language>English</language></record></Cite></EndNote>12, the application of results obtained in such laboratory experiments to operations in the field currently relies on company- and/or vendor-specific heuristics. As a consequence, this limits the generality and extent to which KHI-based operating strategies can be assessed and systematically applied. Advancing this state of affairs requires an improvement in the ability to describe fundamentally hydrate formation probability. Nucleation theory ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2000</Year><RecNum>78</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>78</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497334005">78</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Kashchiev, D.</author></authors></contributors><titles><title>Nucleation: Basic Theory with Applications</title></titles><dates><year>2000</year></dates><pub-location>UK</pub-location><publisher>Butterworth-Heinemann</publisher><urls></urls></record></Cite></EndNote>13 offers the framework necessary for such a general quantitative description and, potentially, could be used to predict hydrate formation probability as a function of induction time, subcooling and KHI concentration within a flowline. Starting in 2002, Kashchiev and Firoozabadi published three seminal papersPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LYXNoY2hpZXY8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+NDg8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xNC0xNjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ4PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVl

YXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0OTczMzM1MDQiPjQ4PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LYXNoY2hpZXYsIEQuPC9hdXRob3I+PGF1

dGhvcj5GaXJvb3phYmFkaSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1

dGgtYWRkcmVzcz5SZXNlcnZvaXIgRW5nbiBSZXMgSW5zdCwgUGFsbyBBbHRvLCBDQSA5NDMwNiBV

U0EmI3hEO0J1bGdhcmlhbiBBY2FkIFNjaSwgSW5zdCBQaHlzIENoZW0sIEJVLTExMTMgU29maWEs

IEJ1bGdhcmlhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TnVjbGVhdGlvbiBvZiBnYXMg

aHlkcmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0

aDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+SiBDcnlzdCBHcm93dGg8L2FsdC10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3Ro

PC9mdWxsLXRpdGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93dGg8L2FiYnItMT48L3BlcmlvZGljYWw+

PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1

bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdyb3d0aDwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+

PHBhZ2VzPjQ3Ni00ODk8L3BhZ2VzPjx2b2x1bWU+MjQzPC92b2x1bWU+PG51bWJlcj4zLTQ8L251

bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+YXF1ZW91cyBzb2x1dGlvbnM8L2tleXdvcmQ+PGtleXdv

cmQ+bnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5nYXMgaHlkcmF0ZXM8L2tleXdvcmQ+PGtl

eXdvcmQ+a2luZXRpYyBpbmhpYml0b3JzPC9rZXl3b3JkPjxrZXl3b3JkPm1ldGhhbmUgaHlkcmF0

ZTwva2V5d29yZD48a2V5d29yZD5jcnlzdGFsLWdyb3d0aDwva2V5d29yZD48a2V5d29yZD5pbmR1

Y3Rpb24gdGltZTwva2V5d29yZD48a2V5d29yZD5wcmVjaXBpdGF0aW9uPC9rZXl3b3JkPjxrZXl3

b3JkPm1lY2hhbmlzbXM8L2tleXdvcmQ+PGtleXdvcmQ+ZWZmaWNpZW5jeTwva2V5d29yZD48a2V5

d29yZD5hZGRpdGl2ZXM8L2tleXdvcmQ+PGtleXdvcmQ+ZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3Jk

PnRlc3RzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5TZXA8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDIyLTAyNDg8

L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDE3NzY4NTAwMDAxNjwvYWNjZXNzaW9uLW51bT48

dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMTc3Njg1

MDAwMDE2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT5QaWkgUzAwMjItMDI0OCgwMikwMTU3Ni0yJiN4RDtEb2kgMTAuMTAxNi9TMDAyMi0wMjQ4KDAy

KTAxNTc2LTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNoPC9sYW5n

dWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5LYXNoY2hpZXY8L0F1dGhvcj48WWVh

cj4yMDAzPC9ZZWFyPjxSZWNOdW0+NzU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc1PC9y

ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZk

cDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0OTczMzM1MjYiPjc1PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LYXNoY2hpZXYsIEQuPC9hdXRob3I+

PGF1dGhvcj5GaXJvb3phYmFkaSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5CdWxnYXJpYW4gQWNhZCBTY2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEz

IFNvZmlhLCBCdWxnYXJpYSYjeEQ7UmVzZXJ2b2lyIEVuZ24gUmVzIEluc3QsIFBhbG8gQWx0bywg

Q0EgOTQzMDYgVVNBPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+SW5kdWN0aW9uIHRpbWUg

aW4gY3J5c3RhbGxpemF0aW9uIG9mIGdhcyBoeWRyYXRlczwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3RoPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5K

IENyeXN0IEdyb3d0aDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdy

b3d0aDwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91

cm5hbCBvZiBDcnlzdGFsIEdyb3d0aDwvZnVsbC10aXRsZT48YWJici0xPkogQ3J5c3QgR3Jvd3Ro

PC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+NDk5LTUxNTwvcGFnZXM+PHZvbHVtZT4y

NTA8L3ZvbHVtZT48bnVtYmVyPjMtNDwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5jcnlzdGFs

bGl6YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Z3Jvd3RoIHJhdGU8L2tleXdvcmQ+PGtleXdvcmQ+

aW5kdWN0aW9uIHRpbWU8L2tleXdvcmQ+PGtleXdvcmQ+bnVjbGVhdGlvbjwva2V5d29yZD48a2V5

d29yZD5nYXMgaHlkcmF0ZXM8L2tleXdvcmQ+PGtleXdvcmQ+a2luZXRpYyBpbmhpYml0b3JzPC9r

ZXl3b3JkPjxrZXl3b3JkPmxpZ2h0LXNjYXR0ZXJpbmcgdGVjaG5pcXVlPC9rZXl3b3JkPjxrZXl3

b3JkPmtpbmV0aWMgaW5oaWJpdG9yczwva2V5d29yZD48a2V5d29yZD5jbzIgaHlkcmF0ZTwva2V5

d29yZD48a2V5d29yZD5udWNsZWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPm1ldGhhbmU8L2tleXdv

cmQ+PGtleXdvcmQ+Z3Jvd3RoPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZTwva2V5d29yZD48a2V5

d29yZD5wcmVjaXBpdGF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPm1lY2hhbmlzbXM8L2tleXdvcmQ+

PGtleXdvcmQ+c3RhdGU8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMzwveWVh

cj48cHViLWRhdGVzPjxkYXRlPkFwcjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAw

MjItMDI0ODwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMTgxNTE3OTAwMDMzPC9hY2Nlc3Np

b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzow

MDAxODE1MTc5MDAwMzM8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVz

b3VyY2UtbnVtPjEwLjEwMTYvUzAwMjItMDI0OCgwMikwMjQ2MS0yPC9lbGVjdHJvbmljLXJlc291

cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+S2FzaGNoaWV2PC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjc3PC9S

ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxr

ZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIg

dGltZXN0YW1wPSIxNDk3MzMzNTI4Ij43Nzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+S2FzaGNoaWV2LCBELjwvYXV0aG9yPjxhdXRob3I+Rmlyb296YWJhZGksIEEuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+UmVzZXJ2b2lyIEVu

Z24gUmVzIEluc3QsIFBhbG8gQWx0bywgQ0EgOTQzMDYgVVNBJiN4RDtCdWxnYXJpYW4gQWNhZCBT

Y2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEzIFNvZmlhLCBCdWxnYXJpYTwvYXV0aC1hZGRyZXNz

Pjx0aXRsZXM+PHRpdGxlPkRyaXZpbmcgZm9yY2UgZm9yIGNyeXN0YWxsaXphdGlvbiBvZiBnYXMg

aHlkcmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0

aDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+SiBDcnlzdCBHcm93dGg8L2FsdC10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3Ro

PC9mdWxsLXRpdGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93dGg8L2FiYnItMT48L3BlcmlvZGljYWw+

PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1

bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdyb3d0aDwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+

PHBhZ2VzPjIyMC0yMzA8L3BhZ2VzPjx2b2x1bWU+MjQxPC92b2x1bWU+PG51bWJlcj4xLTI8L251

bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+YXF1ZW91cyBzb2x1dGlvbjwva2V5d29yZD48a2V5d29y

ZD5jcnlzdGFsbGl6YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+c3VwZXJzYXR1cmF0ZWQgc29sdXRp

b25zPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZSBoeWRyYXRlPC9rZXl3b3JkPjxrZXl3b3JkPm1l

dGhhbmUgaHlkcmF0ZTwva2V5d29yZD48a2V5d29yZD5tZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3Jk

PmV0aGFuZTwva2V5d29yZD48a2V5d29yZD5udWNsZWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmtp

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPmdyb3d0aDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRl

cz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+TWF5PC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDAyMi0wMjQ4PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAxNzYx

NDM4MDAwMzI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0

byBJU0kmZ3Q7Oi8vV09TOjAwMDE3NjE0MzgwMDAzMjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UGlpIFMwMDIyLTAyNDgoMDIpMDExMzQtWCYjeEQ7

RG9pIDEwLjEwMTYvUzAwMjItMDI0OCgwMikwMTEzNC1YPC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LYXNoY2hpZXY8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+NDg8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xNC0xNjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ4PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVl

YXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0OTczMzM1MDQiPjQ4PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LYXNoY2hpZXYsIEQuPC9hdXRob3I+PGF1

dGhvcj5GaXJvb3phYmFkaSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1

dGgtYWRkcmVzcz5SZXNlcnZvaXIgRW5nbiBSZXMgSW5zdCwgUGFsbyBBbHRvLCBDQSA5NDMwNiBV

U0EmI3hEO0J1bGdhcmlhbiBBY2FkIFNjaSwgSW5zdCBQaHlzIENoZW0sIEJVLTExMTMgU29maWEs

IEJ1bGdhcmlhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TnVjbGVhdGlvbiBvZiBnYXMg

aHlkcmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0

aDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+SiBDcnlzdCBHcm93dGg8L2FsdC10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3Ro

PC9mdWxsLXRpdGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93dGg8L2FiYnItMT48L3BlcmlvZGljYWw+

PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1

bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdyb3d0aDwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+

PHBhZ2VzPjQ3Ni00ODk8L3BhZ2VzPjx2b2x1bWU+MjQzPC92b2x1bWU+PG51bWJlcj4zLTQ8L251

bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+YXF1ZW91cyBzb2x1dGlvbnM8L2tleXdvcmQ+PGtleXdv

cmQ+bnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5nYXMgaHlkcmF0ZXM8L2tleXdvcmQ+PGtl

eXdvcmQ+a2luZXRpYyBpbmhpYml0b3JzPC9rZXl3b3JkPjxrZXl3b3JkPm1ldGhhbmUgaHlkcmF0

ZTwva2V5d29yZD48a2V5d29yZD5jcnlzdGFsLWdyb3d0aDwva2V5d29yZD48a2V5d29yZD5pbmR1

Y3Rpb24gdGltZTwva2V5d29yZD48a2V5d29yZD5wcmVjaXBpdGF0aW9uPC9rZXl3b3JkPjxrZXl3

b3JkPm1lY2hhbmlzbXM8L2tleXdvcmQ+PGtleXdvcmQ+ZWZmaWNpZW5jeTwva2V5d29yZD48a2V5

d29yZD5hZGRpdGl2ZXM8L2tleXdvcmQ+PGtleXdvcmQ+ZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3Jk

PnRlc3RzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5TZXA8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDIyLTAyNDg8

L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDE3NzY4NTAwMDAxNjwvYWNjZXNzaW9uLW51bT48

dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMTc3Njg1

MDAwMDE2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT5QaWkgUzAwMjItMDI0OCgwMikwMTU3Ni0yJiN4RDtEb2kgMTAuMTAxNi9TMDAyMi0wMjQ4KDAy

KTAxNTc2LTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNoPC9sYW5n

dWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5LYXNoY2hpZXY8L0F1dGhvcj48WWVh

cj4yMDAzPC9ZZWFyPjxSZWNOdW0+NzU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc1PC9y

ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZk

cDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0OTczMzM1MjYiPjc1PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LYXNoY2hpZXYsIEQuPC9hdXRob3I+

PGF1dGhvcj5GaXJvb3phYmFkaSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5CdWxnYXJpYW4gQWNhZCBTY2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEz

IFNvZmlhLCBCdWxnYXJpYSYjeEQ7UmVzZXJ2b2lyIEVuZ24gUmVzIEluc3QsIFBhbG8gQWx0bywg

Q0EgOTQzMDYgVVNBPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+SW5kdWN0aW9uIHRpbWUg

aW4gY3J5c3RhbGxpemF0aW9uIG9mIGdhcyBoeWRyYXRlczwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3RoPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5K

IENyeXN0IEdyb3d0aDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdy

b3d0aDwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91

cm5hbCBvZiBDcnlzdGFsIEdyb3d0aDwvZnVsbC10aXRsZT48YWJici0xPkogQ3J5c3QgR3Jvd3Ro

PC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+NDk5LTUxNTwvcGFnZXM+PHZvbHVtZT4y

NTA8L3ZvbHVtZT48bnVtYmVyPjMtNDwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5jcnlzdGFs

bGl6YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Z3Jvd3RoIHJhdGU8L2tleXdvcmQ+PGtleXdvcmQ+

aW5kdWN0aW9uIHRpbWU8L2tleXdvcmQ+PGtleXdvcmQ+bnVjbGVhdGlvbjwva2V5d29yZD48a2V5

d29yZD5nYXMgaHlkcmF0ZXM8L2tleXdvcmQ+PGtleXdvcmQ+a2luZXRpYyBpbmhpYml0b3JzPC9r

ZXl3b3JkPjxrZXl3b3JkPmxpZ2h0LXNjYXR0ZXJpbmcgdGVjaG5pcXVlPC9rZXl3b3JkPjxrZXl3

b3JkPmtpbmV0aWMgaW5oaWJpdG9yczwva2V5d29yZD48a2V5d29yZD5jbzIgaHlkcmF0ZTwva2V5

d29yZD48a2V5d29yZD5udWNsZWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPm1ldGhhbmU8L2tleXdv

cmQ+PGtleXdvcmQ+Z3Jvd3RoPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZTwva2V5d29yZD48a2V5

d29yZD5wcmVjaXBpdGF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPm1lY2hhbmlzbXM8L2tleXdvcmQ+

PGtleXdvcmQ+c3RhdGU8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMzwveWVh

cj48cHViLWRhdGVzPjxkYXRlPkFwcjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAw

MjItMDI0ODwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMTgxNTE3OTAwMDMzPC9hY2Nlc3Np

b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzow

MDAxODE1MTc5MDAwMzM8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVz

b3VyY2UtbnVtPjEwLjEwMTYvUzAwMjItMDI0OCgwMikwMjQ2MS0yPC9lbGVjdHJvbmljLXJlc291

cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+S2FzaGNoaWV2PC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjc3PC9S

ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxr

ZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIg

dGltZXN0YW1wPSIxNDk3MzMzNTI4Ij43Nzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+S2FzaGNoaWV2LCBELjwvYXV0aG9yPjxhdXRob3I+Rmlyb296YWJhZGksIEEuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+UmVzZXJ2b2lyIEVu

Z24gUmVzIEluc3QsIFBhbG8gQWx0bywgQ0EgOTQzMDYgVVNBJiN4RDtCdWxnYXJpYW4gQWNhZCBT

Y2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEzIFNvZmlhLCBCdWxnYXJpYTwvYXV0aC1hZGRyZXNz

Pjx0aXRsZXM+PHRpdGxlPkRyaXZpbmcgZm9yY2UgZm9yIGNyeXN0YWxsaXphdGlvbiBvZiBnYXMg

aHlkcmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0

aDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+SiBDcnlzdCBHcm93dGg8L2FsdC10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3Ro

PC9mdWxsLXRpdGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93dGg8L2FiYnItMT48L3BlcmlvZGljYWw+

PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1

bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdyb3d0aDwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+

PHBhZ2VzPjIyMC0yMzA8L3BhZ2VzPjx2b2x1bWU+MjQxPC92b2x1bWU+PG51bWJlcj4xLTI8L251

bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+YXF1ZW91cyBzb2x1dGlvbjwva2V5d29yZD48a2V5d29y

ZD5jcnlzdGFsbGl6YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+c3VwZXJzYXR1cmF0ZWQgc29sdXRp

b25zPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZSBoeWRyYXRlPC9rZXl3b3JkPjxrZXl3b3JkPm1l

dGhhbmUgaHlkcmF0ZTwva2V5d29yZD48a2V5d29yZD5tZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3Jk

PmV0aGFuZTwva2V5d29yZD48a2V5d29yZD5udWNsZWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmtp

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPmdyb3d0aDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRl

cz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+TWF5PC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDAyMi0wMjQ4PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAxNzYx

NDM4MDAwMzI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0

byBJU0kmZ3Q7Oi8vV09TOjAwMDE3NjE0MzgwMDAzMjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UGlpIFMwMDIyLTAyNDgoMDIpMDExMzQtWCYjeEQ7

RG9pIDEwLjEwMTYvUzAwMjItMDI0OCgwMikwMTEzNC1YPC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 14-16 in which nucleation theory was used to provide quantitative expressions for the driving force, nucleation rate and induction time of methane hydrates under various scenarios, including the influence of KHI concentration. However, despite the extensive framework presented, there have been few applications of the theoretical models presented by Kashchiev and Firoozabadi in the subsequent 15 yearsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TdmFydGFhczwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+

PFJlY051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjE3LTE5PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ5NzMzNDc2MiI+Nzk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlN2YXJ0YWFzLCBULiBNLjwvYXV0aG9yPjxh

dXRob3I+S2UsIFcuPC9hdXRob3I+PGF1dGhvcj5UYW50Y2l1cmEsIFMuPC9hdXRob3I+PGF1dGhv

cj5CcmF0bGFuZCwgQS4gVS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5Vbml2IFN0YXZhbmdlciwgRGVwdCBQZXRyIEVuZ24sIEZhYyBTY2kgJmFtcDsgVGVj

aG5vbCwgTi00MDM2IFN0YXZhbmdlciwgTm9yd2F5PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+TWF4aW11bSBMaWtlbGlob29kIEVzdGltYXRpb24tQSBSZWxpYWJsZSBTdGF0aXN0aWNhbCBN

ZXRob2QgZm9yIEh5ZHJhdGUgTnVjbGVhdGlvbiBEYXRhIEFuYWx5c2lzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVuZXJneSAmYW1wOyBGdWVsczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+

RW5lcmcgRnVlbDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVu

ZXJneSAmYW1wOyBGdWVsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjgxOTUtODIw

NzwvcGFnZXM+PHZvbHVtZT4yOTwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48a2V5d29yZHM+

PGtleXdvcmQ+bW9sZWN1bGFyLWR5bmFtaWNzIHNpbXVsYXRpb25zPC9rZXl3b3JkPjxrZXl3b3Jk

Pm1ldGhhbmUgaHlkcmF0ZTwva2V5d29yZD48a2V5d29yZD5leHBvbmVudGlhbC1kaXN0cmlidXRp

b248L2tleXdvcmQ+PGtleXdvcmQ+ZHJpdmluZy1mb3JjZTwva2V5d29yZD48a2V5d29yZD5wcm9i

YWJpbGl0eS1kaXN0cmlidXRpb25zPC9rZXl3b3JkPjxrZXl3b3JkPmhldGVyb2dlbmVvdXMgbnVj

bGVhdGlvbjwva2V5d29yZD48a2V5d29yZD53YXRlci9tZXRoYW5lIGludGVyZmFjZTwva2V5d29y

ZD48a2V5d29yZD5raW5ldGljIGluaGliaXRpb248L2tleXdvcmQ+PGtleXdvcmQ+c2FsaW5lIHNv

bHV0aW9uczwva2V5d29yZD48a2V5d29yZD5pbmR1Y3Rpb24gdGltZXM8L2tleXdvcmQ+PC9rZXl3

b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48

L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA4ODctMDYyNDwvaXNibj48YWNjZXNzaW9uLW51bT5X

T1M6MDAwMzY2ODc4MDAwMDUyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVy

bD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNjY4NzgwMDAwNTI8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvYWNzLmVuZXJneWZ1

ZWxzLjViMDIwNTY8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNoPC9s

YW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5LZTwvQXV0aG9yPjxZZWFyPjIw

MTE8L1llYXI+PFJlY051bT4yMzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ5NzMyNDI5NSI+MjM8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQ29uZmVyZW5jZSBQcm9jZWVkaW5ncyI+MTA8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LZSwgVy48L2F1dGhvcj48YXV0

aG9yPlN2YXJ0YWFzLCBULiBNLjwvYXV0aG9yPjxhdXRob3I+QWJheSwgSC4gSy48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW4gZXhwZXJpbWVudGFsIHN0

dWR5IG9uIFNJIGh5ZHJhdGUgZm9ybWF0aW9uIGluIHByZXNlbmNlIG9mIG1ldGhhbm9sLCBQVlAg

YW5kIFBWQ0FQIGluIGFuIGlzb2Nob3JpYyBjZWxsPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPjd0

aCBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gR2FzIEh5ZHJhdGVzIChJQ0dIIDIwMTEpPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTE8L3llYXI+PC9kYXRlcz48

cHViLWxvY2F0aW9uPkVkaW5idXJnaCwgU2NvdGxhbmQsIFVuaXRlZCBLaW5nZG9tPC9wdWItbG9j

YXRpb24+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPktlPC9BdXRo

b3I+PFllYXI+MjAxMTwvWWVhcj48UmVjTnVtPjIyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj4yMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoy

YXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk3MzIzNjQwIj4y

Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJDb25mZXJlbmNlIFByb2NlZWRp

bmdzIj4xMDwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktlLCBXLjwv

YXV0aG9yPjxhdXRob3I+U3ZhcnRhYXMsIFQuIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVmZmVjdHMgb2Ygc3RpcnJpbmcgYW5kIGNvb2xpbmcgb24g

bWV0aGFuZSBoeWRyYXRlIGZvcm1hdGlvbiBpbiBhIGhpZ2gtcHJlc3N1cmUgaXNvY2hvcmljIGNl

bGw8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+N3RoIEludGVybmF0aW9uYWwgQ29uZmVyZW5jZSBv

biBHYXMgSHlkcmF0ZXMgKElDR0ggMjAxMSk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48ZGF0

ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjxwdWItbG9jYXRpb24+RWRpbmJ1cmdoLCBTY290

bGFuZCwgVW5pdGVkIEtpbmdkb208L3B1Yi1sb2NhdGlvbj48dXJscz48L3VybHM+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TdmFydGFhczwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+

PFJlY051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjE3LTE5PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ5NzMzNDc2MiI+Nzk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlN2YXJ0YWFzLCBULiBNLjwvYXV0aG9yPjxh

dXRob3I+S2UsIFcuPC9hdXRob3I+PGF1dGhvcj5UYW50Y2l1cmEsIFMuPC9hdXRob3I+PGF1dGhv

cj5CcmF0bGFuZCwgQS4gVS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5Vbml2IFN0YXZhbmdlciwgRGVwdCBQZXRyIEVuZ24sIEZhYyBTY2kgJmFtcDsgVGVj

aG5vbCwgTi00MDM2IFN0YXZhbmdlciwgTm9yd2F5PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+TWF4aW11bSBMaWtlbGlob29kIEVzdGltYXRpb24tQSBSZWxpYWJsZSBTdGF0aXN0aWNhbCBN

ZXRob2QgZm9yIEh5ZHJhdGUgTnVjbGVhdGlvbiBEYXRhIEFuYWx5c2lzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVuZXJneSAmYW1wOyBGdWVsczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+

RW5lcmcgRnVlbDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVu

ZXJneSAmYW1wOyBGdWVsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjgxOTUtODIw

NzwvcGFnZXM+PHZvbHVtZT4yOTwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48a2V5d29yZHM+

PGtleXdvcmQ+bW9sZWN1bGFyLWR5bmFtaWNzIHNpbXVsYXRpb25zPC9rZXl3b3JkPjxrZXl3b3Jk

Pm1ldGhhbmUgaHlkcmF0ZTwva2V5d29yZD48a2V5d29yZD5leHBvbmVudGlhbC1kaXN0cmlidXRp

b248L2tleXdvcmQ+PGtleXdvcmQ+ZHJpdmluZy1mb3JjZTwva2V5d29yZD48a2V5d29yZD5wcm9i

YWJpbGl0eS1kaXN0cmlidXRpb25zPC9rZXl3b3JkPjxrZXl3b3JkPmhldGVyb2dlbmVvdXMgbnVj

bGVhdGlvbjwva2V5d29yZD48a2V5d29yZD53YXRlci9tZXRoYW5lIGludGVyZmFjZTwva2V5d29y

ZD48a2V5d29yZD5raW5ldGljIGluaGliaXRpb248L2tleXdvcmQ+PGtleXdvcmQ+c2FsaW5lIHNv

bHV0aW9uczwva2V5d29yZD48a2V5d29yZD5pbmR1Y3Rpb24gdGltZXM8L2tleXdvcmQ+PC9rZXl3

b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48

L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA4ODctMDYyNDwvaXNibj48YWNjZXNzaW9uLW51bT5X

T1M6MDAwMzY2ODc4MDAwMDUyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVy

bD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNjY4NzgwMDAwNTI8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvYWNzLmVuZXJneWZ1

ZWxzLjViMDIwNTY8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNoPC9s

YW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5LZTwvQXV0aG9yPjxZZWFyPjIw

MTE8L1llYXI+PFJlY051bT4yMzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ5NzMyNDI5NSI+MjM8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQ29uZmVyZW5jZSBQcm9jZWVkaW5ncyI+MTA8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LZSwgVy48L2F1dGhvcj48YXV0

aG9yPlN2YXJ0YWFzLCBULiBNLjwvYXV0aG9yPjxhdXRob3I+QWJheSwgSC4gSy48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW4gZXhwZXJpbWVudGFsIHN0

dWR5IG9uIFNJIGh5ZHJhdGUgZm9ybWF0aW9uIGluIHByZXNlbmNlIG9mIG1ldGhhbm9sLCBQVlAg

YW5kIFBWQ0FQIGluIGFuIGlzb2Nob3JpYyBjZWxsPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPjd0

aCBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gR2FzIEh5ZHJhdGVzIChJQ0dIIDIwMTEpPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTE8L3llYXI+PC9kYXRlcz48

cHViLWxvY2F0aW9uPkVkaW5idXJnaCwgU2NvdGxhbmQsIFVuaXRlZCBLaW5nZG9tPC9wdWItbG9j

YXRpb24+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPktlPC9BdXRo

b3I+PFllYXI+MjAxMTwvWWVhcj48UmVjTnVtPjIyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj4yMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoy

YXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk3MzIzNjQwIj4y

Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJDb25mZXJlbmNlIFByb2NlZWRp

bmdzIj4xMDwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktlLCBXLjwv

YXV0aG9yPjxhdXRob3I+U3ZhcnRhYXMsIFQuIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVmZmVjdHMgb2Ygc3RpcnJpbmcgYW5kIGNvb2xpbmcgb24g

bWV0aGFuZSBoeWRyYXRlIGZvcm1hdGlvbiBpbiBhIGhpZ2gtcHJlc3N1cmUgaXNvY2hvcmljIGNl

bGw8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+N3RoIEludGVybmF0aW9uYWwgQ29uZmVyZW5jZSBv

biBHYXMgSHlkcmF0ZXMgKElDR0ggMjAxMSk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48ZGF0

ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjxwdWItbG9jYXRpb24+RWRpbmJ1cmdoLCBTY290

bGFuZCwgVW5pdGVkIEtpbmdkb208L3B1Yi1sb2NhdGlvbj48dXJscz48L3VybHM+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 17-19.One possible reason for the limited use of these models may be the difficulty of producing experimental hydrate formation data with uncertainties small enough to allow for meaningful comparisons with theory. A particular challenge is the generation of statistically significant numbers of hydrate formation events within a practical time frame. This challenge is linked with the need to cycle pressure vessels over a temperature range of around (10 to 30) K as the system under study is moved from outside the hydrate stability region to a target subcooling condition and then back. Typical cooling rates for the most commonly-used apparatus for studying hydrate formation and qualifying KHIs, namely high-pressure rocking cells and stirred autoclavesPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BYmF5PC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjIwPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+NCwg

MjA8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yMDwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1

dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk2Mzg0MjY4Ij4yMDwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QWJheSwgSC4gSy48L2F1dGhvcj48YXV0aG9yPlN2

YXJ0YWFzLCBULiBNLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRy

ZXNzPlVuaXYgU3RhdmFuZ2VyLCBGYWMgU2NpICZhbXA7IFRlY2hub2wsIERlcHQgUGV0ciBFbmdu

LCBOLTQwMzYgU3RhdmFuZ2VyLCBOb3J3YXk8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5F

ZmZlY3Qgb2YgVWx0cmFsb3cgQ29uY2VudHJhdGlvbiBvZiBNZXRoYW5vbCBvbiBNZXRoYW5lIEh5

ZHJhdGUgRm9ybWF0aW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVuZXJneSAmYW1wOyBGdWVs

czwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+RW5lcmcgRnVlbDwvYWx0LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVuZXJneSAmYW1wOyBGdWVsczwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc1Mi03NTc8L3BhZ2VzPjx2b2x1bWU+MjQ8L3ZvbHVtZT48

a2V5d29yZHM+PGtleXdvcmQ+bnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5zdXJmYWN0YW50

czwva2V5d29yZD48a2V5d29yZD5pbmhpYml0b3I8L2tleXdvcmQ+PGtleXdvcmQ+aW50ZXJmYWNl

PC9rZXl3b3JkPjxrZXl3b3JkPmtpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyPC9rZXl3

b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5G

ZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wODg3LTA2MjQ8L2lzYm4+PGFjY2Vz

c2lvbi1udW0+V09TOjAwMDI3NDUxNDQwMDAwMzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjc0NTE0NDAwMDAzPC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Vm

OTAwOTQyMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1

YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxvbmU8L0F1dGhvcj48WWVhcj4yMDEz

PC9ZZWFyPjxSZWNOdW0+MTEzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMTM8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTUwMzQ3NzQ4MSI+MTEzPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Mb25lLCBBLjwvYXV0aG9yPjxhdXRob3I+

S2VsbGFuZCwgTS4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRk

cmVzcz5Vbml2IFN0YXZhbmdlciwgRmFjIFNjaSAmYW1wOyBUZWNobm9sLCBEZXB0IE1hdGggJmFt

cDsgTmF0IFNjaSwgTi00MDM2IFN0YXZhbmdlciwgTm9yd2F5JiN4RDtNSSBTd2FjbyBQcm9kIENo

ZW0sIE4tNDA2NyBTdGF2YW5nZXIsIE5vcndheTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxl

PkV4cGxvcmluZyBLaW5ldGljIEh5ZHJhdGUgSW5oaWJpdG9yIFRlc3QgTWV0aG9kcyBhbmQgQ29u

ZGl0aW9ucyBVc2luZyBhIE11bHRpY2VsbCBTdGVlbCBSb2NrZXIgUmlnPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVuZXJneSAmYW1wOyBGdWVsczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+

RW5lcmcgRnVlbDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVu

ZXJneSAmYW1wOyBGdWVsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI1MzYtMjU0

NzwvcGFnZXM+PHZvbHVtZT4yNzwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxrZXl3b3Jkcz48

a2V5d29yZD5wb2x5KG4tdmlueWwgY2Fwcm9sYWN0YW0pPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh

dGVzPjx5ZWFyPjIwMTM8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXk8L2RhdGU+PC9wdWItZGF0

ZXM+PC9kYXRlcz48aXNibj4wODg3LTA2MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMy

MDkxMDgwMDAxOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dv

IHRvIElTSSZndDs6Ly9XT1M6MDAwMzIwOTEwODAwMDE5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2VmNDAwMzIxejwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BYmF5PC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjIwPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+NCwg

MjA8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yMDwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1

dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk2Mzg0MjY4Ij4yMDwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QWJheSwgSC4gSy48L2F1dGhvcj48YXV0aG9yPlN2

YXJ0YWFzLCBULiBNLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRy

ZXNzPlVuaXYgU3RhdmFuZ2VyLCBGYWMgU2NpICZhbXA7IFRlY2hub2wsIERlcHQgUGV0ciBFbmdu

LCBOLTQwMzYgU3RhdmFuZ2VyLCBOb3J3YXk8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5F

ZmZlY3Qgb2YgVWx0cmFsb3cgQ29uY2VudHJhdGlvbiBvZiBNZXRoYW5vbCBvbiBNZXRoYW5lIEh5

ZHJhdGUgRm9ybWF0aW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVuZXJneSAmYW1wOyBGdWVs

czwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+RW5lcmcgRnVlbDwvYWx0LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVuZXJneSAmYW1wOyBGdWVsczwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc1Mi03NTc8L3BhZ2VzPjx2b2x1bWU+MjQ8L3ZvbHVtZT48

a2V5d29yZHM+PGtleXdvcmQ+bnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5zdXJmYWN0YW50

czwva2V5d29yZD48a2V5d29yZD5pbmhpYml0b3I8L2tleXdvcmQ+PGtleXdvcmQ+aW50ZXJmYWNl

PC9rZXl3b3JkPjxrZXl3b3JkPmtpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyPC9rZXl3

b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5G

ZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wODg3LTA2MjQ8L2lzYm4+PGFjY2Vz

c2lvbi1udW0+V09TOjAwMDI3NDUxNDQwMDAwMzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjc0NTE0NDAwMDAzPC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Vm

OTAwOTQyMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1

YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxvbmU8L0F1dGhvcj48WWVhcj4yMDEz

PC9ZZWFyPjxSZWNOdW0+MTEzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMTM8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTUwMzQ3NzQ4MSI+MTEzPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Mb25lLCBBLjwvYXV0aG9yPjxhdXRob3I+

S2VsbGFuZCwgTS4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRk

cmVzcz5Vbml2IFN0YXZhbmdlciwgRmFjIFNjaSAmYW1wOyBUZWNobm9sLCBEZXB0IE1hdGggJmFt

cDsgTmF0IFNjaSwgTi00MDM2IFN0YXZhbmdlciwgTm9yd2F5JiN4RDtNSSBTd2FjbyBQcm9kIENo

ZW0sIE4tNDA2NyBTdGF2YW5nZXIsIE5vcndheTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxl

PkV4cGxvcmluZyBLaW5ldGljIEh5ZHJhdGUgSW5oaWJpdG9yIFRlc3QgTWV0aG9kcyBhbmQgQ29u

ZGl0aW9ucyBVc2luZyBhIE11bHRpY2VsbCBTdGVlbCBSb2NrZXIgUmlnPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVuZXJneSAmYW1wOyBGdWVsczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+

RW5lcmcgRnVlbDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVu

ZXJneSAmYW1wOyBGdWVsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI1MzYtMjU0

NzwvcGFnZXM+PHZvbHVtZT4yNzwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxrZXl3b3Jkcz48

a2V5d29yZD5wb2x5KG4tdmlueWwgY2Fwcm9sYWN0YW0pPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh

dGVzPjx5ZWFyPjIwMTM8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXk8L2RhdGU+PC9wdWItZGF0

ZXM+PC9kYXRlcz48aXNibj4wODg3LTA2MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMy

MDkxMDgwMDAxOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dv

IHRvIElTSSZndDs6Ly9XT1M6MDAwMzIwOTEwODAwMDE5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2VmNDAwMzIxejwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 4, 20, are limited to between (1 and 6) Kh-1. Consequently, the time frame for a single formation cycle generally is on the order of hours. As a result, formation distributions reported in the literature typically consist of only 10 to 40 points. The fractional statistical uncertainties arising solely from distributions with this number of points will be in the range of (30 to 15)?%.To address this issue, Haymet, Wilson and co-workersPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxzb248L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxS

ZWNOdW0+ODk8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

MS0yMjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjg5PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2

YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0OTc5MzU4NzkiPjg5PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XaWxzb24sIFAuIFcuPC9hdXRob3I+PGF1dGhv

cj5MZXN0ZXIsIEQuPC9hdXRob3I+PGF1dGhvcj5IYXltZXQsIEEuIEQuIEouPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+VW5pdiBUYXNtYW5pYSwgU2NoIENo

ZW0sIEhvYmFydCwgVGFzIDcwMDEsIEF1c3RyYWxpYSYjeEQ7VW5pdiBPdGFnbyBTY2ggTWVkLCBE

ZXB0IFBoeXNpb2wsIER1bmVkaW4sIE5ldyBaZWFsYW5kJiN4RDtDU0lSTywgTWFyaW5lIFJlcywg

SG9iYXJ0LCBUYXMgNzAwMCwgQXVzdHJhbGlhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+

SGV0ZXJvZ2VuZW91cyBudWNsZWF0aW9uIG9mIGNsYXRocmF0ZXMgZnJvbSBzdXBlcmNvb2xlZCB0

ZXRyYWh5ZHJvZnVyYW4gKFRIRikvd2F0ZXIgbWl4dHVyZXMsIGFuZCB0aGUgZWZmZWN0IG9mIGFu

IGFkZGVkIGNhdGFseXN0PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVy

aW5nIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkNoZW0gRW5nIFNjaTwvYWx0

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVy

aW5nIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yOTM3LTI5NDE8L3Bh

Z2VzPjx2b2x1bWU+NjA8L3ZvbHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGtleXdvcmRzPjxrZXl3

b3JkPmh5ZHJhdGU8L2tleXdvcmQ+PGtleXdvcmQ+Y2xhdGhyYXRlPC9rZXl3b3JkPjxrZXl3b3Jk

PnRoZjwva2V5d29yZD48a2V5d29yZD5udWNsZWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmFsdGE8

L2tleXdvcmQ+PGtleXdvcmQ+bGFnLXRpbWUgYXBwYXJhdHVzPC9rZXl3b3JkPjxrZXl3b3JkPnRv

LWNyeXN0YWwgbnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5oeWRyYXRlPC9rZXl3b3JkPjxr

ZXl3b3JkPndhdGVyPC9rZXl3b3JkPjxrZXl3b3JkPmNyeXN0YWxsaXphdGlvbjwva2V5d29yZD48

a2V5d29yZD5pbmhpYml0aW9uPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDU8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdW48L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wMDA5LTI1MDk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDIyODU5NjUwMDAwOTwvYWNj

ZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9X

T1M6MDAwMjI4NTk2NTAwMDA5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmlj

LXJlc291cmNlLW51bT4xMC4xMDE2L2ouY2VzLjIwMDQuMTIuMDQ3PC9lbGVjdHJvbmljLXJlc291

cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+QmFybG93PC9BdXRob3I+PFllYXI+MTk5NTwvWWVhcj48UmVjTnVtPjExODwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTE4PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtl

eSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0

aW1lc3RhbXA9IjE1MDY5OTgxNDEiPjExODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+QmFybG93LCBULiBXLjwvYXV0aG9yPjxhdXRob3I+SGF5bWV0LCBBLiBELiBKLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlVuaXYgU3lkbmV5

LFNjaCBDaGVtLFN5ZG5leSxOc3cgMjAwNixBdXN0cmFsaWE8L2F1dGgtYWRkcmVzcz48dGl0bGVz

Pjx0aXRsZT5BbHRhIC0gYW4gQXV0b21hdGVkIExhZy1UaW1lIEFwcGFyYXR1cyBmb3IgU3R1ZHlp

bmcgdGhlIE51Y2xlYXRpb24gb2YgU3VwZXJjb29sZWQgTGlxdWlkczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5SZXZpZXcgb2YgU2NpZW50aWZpYyBJbnN0cnVtZW50czwvc2Vjb25kYXJ5LXRpdGxl

PjxhbHQtdGl0bGU+UmV2IFNjaSBJbnN0cnVtPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+UmV2aWV3IG9mIFNjaWVudGlmaWMgSW5zdHJ1bWVudHM8L2Z1bGwtdGl0

bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yOTk2LTMwMDc8L3BhZ2VzPjx2b2x1bWU+NjY8L3ZvbHVt

ZT48bnVtYmVyPjQ8L251bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+aG9tb2dlbmVvdXMgbnVjbGVh

dGlvbjwva2V5d29yZD48a2V5d29yZD5jcnlzdGFsIG51Y2xlYXRpb248L2tleXdvcmQ+PGtleXdv

cmQ+bW9sZWN1bGFyLWR5bmFtaWNzPC9rZXl3b3JkPjxrZXl3b3JkPmtpbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPnBoYXNlPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyPC9rZXl3b3JkPjwva2V5d29y

ZHM+PGRhdGVzPjx5ZWFyPjE5OTU8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9w

dWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM0LTY3NDg8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09T

OkExOTk1UVQzMzEwMDAzOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6QTE5OTVRVDMzMTAwMDM5PC91cmw+PC9yZWxhdGVkLXVy

bHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5Eb2kgMTAuMTA2My8xLjExNDU1ODY8

L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNoPC9sYW5ndWFnZT48L3Jl

Y29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxzb248L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxS

ZWNOdW0+ODk8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

MS0yMjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjg5PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2

YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3RhbXA9IjE0OTc5MzU4NzkiPjg5PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XaWxzb24sIFAuIFcuPC9hdXRob3I+PGF1dGhv

cj5MZXN0ZXIsIEQuPC9hdXRob3I+PGF1dGhvcj5IYXltZXQsIEEuIEQuIEouPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+VW5pdiBUYXNtYW5pYSwgU2NoIENo

ZW0sIEhvYmFydCwgVGFzIDcwMDEsIEF1c3RyYWxpYSYjeEQ7VW5pdiBPdGFnbyBTY2ggTWVkLCBE

ZXB0IFBoeXNpb2wsIER1bmVkaW4sIE5ldyBaZWFsYW5kJiN4RDtDU0lSTywgTWFyaW5lIFJlcywg

SG9iYXJ0LCBUYXMgNzAwMCwgQXVzdHJhbGlhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+

SGV0ZXJvZ2VuZW91cyBudWNsZWF0aW9uIG9mIGNsYXRocmF0ZXMgZnJvbSBzdXBlcmNvb2xlZCB0

ZXRyYWh5ZHJvZnVyYW4gKFRIRikvd2F0ZXIgbWl4dHVyZXMsIGFuZCB0aGUgZWZmZWN0IG9mIGFu

IGFkZGVkIGNhdGFseXN0PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVy

aW5nIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkNoZW0gRW5nIFNjaTwvYWx0

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVy

aW5nIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yOTM3LTI5NDE8L3Bh

Z2VzPjx2b2x1bWU+NjA8L3ZvbHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGtleXdvcmRzPjxrZXl3

b3JkPmh5ZHJhdGU8L2tleXdvcmQ+PGtleXdvcmQ+Y2xhdGhyYXRlPC9rZXl3b3JkPjxrZXl3b3Jk

PnRoZjwva2V5d29yZD48a2V5d29yZD5udWNsZWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmFsdGE8

L2tleXdvcmQ+PGtleXdvcmQ+bGFnLXRpbWUgYXBwYXJhdHVzPC9rZXl3b3JkPjxrZXl3b3JkPnRv

LWNyeXN0YWwgbnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5oeWRyYXRlPC9rZXl3b3JkPjxr

ZXl3b3JkPndhdGVyPC9rZXl3b3JkPjxrZXl3b3JkPmNyeXN0YWxsaXphdGlvbjwva2V5d29yZD48

a2V5d29yZD5pbmhpYml0aW9uPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDU8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdW48L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wMDA5LTI1MDk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDIyODU5NjUwMDAwOTwvYWNj

ZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9X

T1M6MDAwMjI4NTk2NTAwMDA5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmlj

LXJlc291cmNlLW51bT4xMC4xMDE2L2ouY2VzLjIwMDQuMTIuMDQ3PC9lbGVjdHJvbmljLXJlc291

cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+QmFybG93PC9BdXRob3I+PFllYXI+MTk5NTwvWWVhcj48UmVjTnVtPjExODwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTE4PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtl

eSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0

aW1lc3RhbXA9IjE1MDY5OTgxNDEiPjExODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+QmFybG93LCBULiBXLjwvYXV0aG9yPjxhdXRob3I+SGF5bWV0LCBBLiBELiBKLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlVuaXYgU3lkbmV5

LFNjaCBDaGVtLFN5ZG5leSxOc3cgMjAwNixBdXN0cmFsaWE8L2F1dGgtYWRkcmVzcz48dGl0bGVz

Pjx0aXRsZT5BbHRhIC0gYW4gQXV0b21hdGVkIExhZy1UaW1lIEFwcGFyYXR1cyBmb3IgU3R1ZHlp

bmcgdGhlIE51Y2xlYXRpb24gb2YgU3VwZXJjb29sZWQgTGlxdWlkczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5SZXZpZXcgb2YgU2NpZW50aWZpYyBJbnN0cnVtZW50czwvc2Vjb25kYXJ5LXRpdGxl

PjxhbHQtdGl0bGU+UmV2IFNjaSBJbnN0cnVtPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+UmV2aWV3IG9mIFNjaWVudGlmaWMgSW5zdHJ1bWVudHM8L2Z1bGwtdGl0

bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yOTk2LTMwMDc8L3BhZ2VzPjx2b2x1bWU+NjY8L3ZvbHVt

ZT48bnVtYmVyPjQ8L251bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+aG9tb2dlbmVvdXMgbnVjbGVh

dGlvbjwva2V5d29yZD48a2V5d29yZD5jcnlzdGFsIG51Y2xlYXRpb248L2tleXdvcmQ+PGtleXdv

cmQ+bW9sZWN1bGFyLWR5bmFtaWNzPC9rZXl3b3JkPjxrZXl3b3JkPmtpbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPnBoYXNlPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyPC9rZXl3b3JkPjwva2V5d29y

ZHM+PGRhdGVzPjx5ZWFyPjE5OTU8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9w

dWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM0LTY3NDg8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09T

OkExOTk1UVQzMzEwMDAzOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6QTE5OTVRVDMzMTAwMDM5PC91cmw+PC9yZWxhdGVkLXVy

bHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5Eb2kgMTAuMTA2My8xLjExNDU1ODY8

L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNoPC9sYW5ndWFnZT48L3Jl

Y29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA 21-22 developed the automated lag time apparatus (ALTA) to study ice and hydrate nucleation at ambient pressure, which was capable of cooling at rates up to 4.5 Kmin-1, thereby enabling the acquisition of large numbers of formation events in a practical time frame ( 100 in 30 hours). Subsequently, Maeda and co-workersPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJl

Y051bT4xNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjMs

IDIzLTI0PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTY8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg2OTc5NSI+MTY8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NZWFzdXJlbWVudHMgb2YgZ2FzIGh5

ZHJhdGUgZm9ybWF0aW9uIHByb2JhYmlsaXR5IGRpc3RyaWJ1dGlvbnMgb24gYSBxdWFzaS1mcmVl

IHdhdGVyIGRyb3BsZXQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UmV2aWV3IG9mIFNjaWVudGlm

aWMgSW5zdHJ1bWVudHM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5SZXZpZXcgb2YgU2NpZW50aWZpYyBJbnN0cnVtZW50czwvZnVsbC10aXRsZT48L3Bl

cmlvZGljYWw+PHBhZ2VzPjA2NTExNTwvcGFnZXM+PHZvbHVtZT44NTwvdm9sdW1lPjxudW1iZXI+

NjwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAzNC02NzQ4

JiN4RDsxMDg5LTc2MjM8L2lzYm4+PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDYzLzEuNDg4NDc5NDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+TWFlZGE8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxSZWNOdW0+

MTU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6

cmQ5IiB0aW1lc3RhbXA9IjE0ODg4Njk2NjMiPjE1PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5NYWVkYSwgTm9idW88L2F1dGhvcj48YXV0aG9yPldlbGxzLCBEYXJyZWxs

PC9hdXRob3I+PGF1dGhvcj5IYXJ0bGV5LCBQYXRyaWNrIEcuPC9hdXRob3I+PGF1dGhvcj5Lb3pp

ZWxza2ksIEthcmVuIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPlN0YXRpc3RpY2FsIEFuYWx5c2lzIG9mIFN1cGVyY29vbGluZyBpbiBGdWVsIEdhcyBI

eWRyYXRlIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW5lcmd5ICZhbXA7IEZ1ZWxz

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW5lcmd5

ICZhbXA7IEZ1ZWxzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTgyMC0xODI3PC9w

YWdlcz48dm9sdW1lPjI2PC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIw

MTI8L3llYXI+PC9kYXRlcz48aXNibj4wODg3LTA2MjQmI3hEOzE1MjAtNTAyOTwvaXNibj48dXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvZWYyMDE5NjV6PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Tb3dhPC9B

dXRob3I+PFllYXI+MjAxNTwvWWVhcj48UmVjTnVtPjExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj4xMTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1

MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDg4ODUyMTM4

Ij4xMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U293YSwgQmFyYmFy

YTwvYXV0aG9yPjxhdXRob3I+TWFlZGEsIE5vYnVvPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjx0aXRsZXM+PHRpdGxlPlN0YXRpc3RpY2FsIFN0dWR5IG9mIHRoZSBNZW1vcnkgRWZm

ZWN0IGluIE1vZGVsIE5hdHVyYWwgR2FzIEh5ZHJhdGUgU3lzdGVtczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5UaGUgSm91cm5hbCBvZiBQaHlzaWNhbCBDaGVtaXN0cnkgQTwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRoZSBKb3VybmFsIG9mIFBoeXNp

Y2FsIENoZW1pc3RyeSBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTA3ODQtMTA3

OTA8L3BhZ2VzPjx2b2x1bWU+MTE5PC92b2x1bWU+PG51bWJlcj40NDwvbnVtYmVyPjxkYXRlcz48

eWVhcj4yMDE1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MjAxNS8xMS8wNTwvZGF0ZT48L3B1Yi1k

YXRlcz48L2RhdGVzPjxwdWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlz

aGVyPjxpc2JuPjEwODktNTYzOTwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L2R4LmRvaS5vcmcvMTAuMTAyMS9hY3MuanBjYS41YjA3MzA4PC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjcy5qcGNhLjViMDczMDg8

L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJl

Y051bT4xNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjMs

IDIzLTI0PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTY8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg2OTc5NSI+MTY8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NZWFzdXJlbWVudHMgb2YgZ2FzIGh5

ZHJhdGUgZm9ybWF0aW9uIHByb2JhYmlsaXR5IGRpc3RyaWJ1dGlvbnMgb24gYSBxdWFzaS1mcmVl

IHdhdGVyIGRyb3BsZXQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UmV2aWV3IG9mIFNjaWVudGlm

aWMgSW5zdHJ1bWVudHM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5SZXZpZXcgb2YgU2NpZW50aWZpYyBJbnN0cnVtZW50czwvZnVsbC10aXRsZT48L3Bl

cmlvZGljYWw+PHBhZ2VzPjA2NTExNTwvcGFnZXM+PHZvbHVtZT44NTwvdm9sdW1lPjxudW1iZXI+

NjwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAzNC02NzQ4

JiN4RDsxMDg5LTc2MjM8L2lzYm4+PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDYzLzEuNDg4NDc5NDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+TWFlZGE8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxSZWNOdW0+

MTU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6

cmQ5IiB0aW1lc3RhbXA9IjE0ODg4Njk2NjMiPjE1PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5NYWVkYSwgTm9idW88L2F1dGhvcj48YXV0aG9yPldlbGxzLCBEYXJyZWxs

PC9hdXRob3I+PGF1dGhvcj5IYXJ0bGV5LCBQYXRyaWNrIEcuPC9hdXRob3I+PGF1dGhvcj5Lb3pp

ZWxza2ksIEthcmVuIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPlN0YXRpc3RpY2FsIEFuYWx5c2lzIG9mIFN1cGVyY29vbGluZyBpbiBGdWVsIEdhcyBI

eWRyYXRlIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW5lcmd5ICZhbXA7IEZ1ZWxz

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW5lcmd5

ICZhbXA7IEZ1ZWxzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTgyMC0xODI3PC9w

YWdlcz48dm9sdW1lPjI2PC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIw

MTI8L3llYXI+PC9kYXRlcz48aXNibj4wODg3LTA2MjQmI3hEOzE1MjAtNTAyOTwvaXNibj48dXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvZWYyMDE5NjV6PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Tb3dhPC9B

dXRob3I+PFllYXI+MjAxNTwvWWVhcj48UmVjTnVtPjExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj4xMTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1

MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDg4ODUyMTM4

Ij4xMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U293YSwgQmFyYmFy

YTwvYXV0aG9yPjxhdXRob3I+TWFlZGEsIE5vYnVvPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjx0aXRsZXM+PHRpdGxlPlN0YXRpc3RpY2FsIFN0dWR5IG9mIHRoZSBNZW1vcnkgRWZm

ZWN0IGluIE1vZGVsIE5hdHVyYWwgR2FzIEh5ZHJhdGUgU3lzdGVtczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5UaGUgSm91cm5hbCBvZiBQaHlzaWNhbCBDaGVtaXN0cnkgQTwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRoZSBKb3VybmFsIG9mIFBoeXNp

Y2FsIENoZW1pc3RyeSBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTA3ODQtMTA3

OTA8L3BhZ2VzPjx2b2x1bWU+MTE5PC92b2x1bWU+PG51bWJlcj40NDwvbnVtYmVyPjxkYXRlcz48

eWVhcj4yMDE1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MjAxNS8xMS8wNTwvZGF0ZT48L3B1Yi1k

YXRlcz48L2RhdGVzPjxwdWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlz

aGVyPjxpc2JuPjEwODktNTYzOTwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L2R4LmRvaS5vcmcvMTAuMTAyMS9hY3MuanBjYS41YjA3MzA4PC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjcy5qcGNhLjViMDczMDg8

L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 3, 23-24 developed a high-pressure (HP)ALTA to study the kinetics of hydrate formation from methane + propane gas mixtures. May et al. ADDIN EN.CITE <EndNote><Cite><Author>May</Author><Year>2014</Year><RecNum>1</RecNum><DisplayText><style face="superscript">25</style></DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1488852136">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>May, Eric F.</author><author>Wu, Reuben</author><author>Kelland, Malcolm A.</author><author>Aman, Zachary M.</author><author>Kozielski, Karen A.</author><author>Hartley, Patrick G.</author><author>Maeda, Nobuo</author></authors></contributors><titles><title>Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions</title><secondary-title>Chemical Engineering Science</secondary-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>1-12</pages><volume>107</volume><keywords><keyword>Gas hydrate</keyword><keyword>Nucleation</keyword><keyword>Growth</keyword><keyword>Probability distribution</keyword><keyword>Kinetics</keyword><keyword>Inhibitor</keyword></keywords><dates><year>2014</year><pub-dates><date>4/7/</date></pub-dates></dates><isbn>0009-2509</isbn><urls><related-urls><url> used this HP-ALTA to study the memory effect and rank the performance of six KHIs; the results of the inhibitor testing with the HP-ALTA matched the ranking determined using rocking cells but with additional insights derived from the more detailed formation probability distributions. However, the samples under study in the HP-ALTA were quiescent and, consequently, large subcoolings of (10 to 30)?K were observed with the distributions that were obtained being particularly susceptible to inadvertent influence by the memory effect. Moreover, the detection of hydrate formation was based on monitoring changes in the optical transmissivity of the sample. Such an approach makes estimating the minimum detectable amount of hydrate difficult, limits the ability to conduct studies of growth, and prevents any ability to discriminate between ice and hydrate formation, which is particularly important at high subcoolings. Maeda and co-workersPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl

Y051bT45NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI2

LTI3PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+OTc8L3JlYy1udW1i

ZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVhd3Zh

NXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTUwMjc2OTUyOCI+OTc8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOLjwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkNTSVJPIE1hdCBTY2kgJmFtcDsgRW5nbiwgSWFu

IFdhcmsgTGFiLCBDbGF5dG9uLCBWaWMgMzE2OCwgQXVzdHJhbGlhPC9hdXRoLWFkZHJlc3M+PHRp

dGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgb2YgYSBoaWdoIHByZXNzdXJlIGVsZWN0cmljYWwgY29u

ZHVjdGl2aXR5IHByb2JlIGZvciBleHBlcmltZW50YWwgc3R1ZGllcyBvZiBnYXMgaHlkcmF0ZXMg

aW4gZWxlY3Ryb2x5dGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlJldmlldyBvZiBTY2llbnRp

ZmljIEluc3RydW1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5SZXYgU2NpIEluc3Ry

dW08L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5SZXZpZXcgb2Yg

U2NpZW50aWZpYyBJbnN0cnVtZW50czwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHZvbHVtZT44

NDwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5pbmhpYml0b3Jz

PC9rZXl3b3JkPjxrZXl3b3JkPmljZTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4y

MDEzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+

PGlzYm4+MDAzNC02NzQ4PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMTQ3MjkxMDAwNjk8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7

Oi8vV09TOjAwMDMxNDcyOTEwMDA2OTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+QXJ0biAwMTUxMTAmI3hEOzEwLjEwNjMvMS40Nzc0MDUxPC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+U293YTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051

bT45NjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+OTY8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVhd3ZhNXRlYXdwOXNyZjVw

ZHpyZDkiIHRpbWVzdGFtcD0iMTUwMjc2OTQ5MSI+OTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm

LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48

YXV0aG9ycz48YXV0aG9yPlNvd2EsIEIuPC9hdXRob3I+PGF1dGhvcj5aaGFuZywgWC4gSC48L2F1

dGhvcj48YXV0aG9yPktvemllbHNraSwgSy4gQS48L2F1dGhvcj48YXV0aG9yPkR1bnN0YW4sIEQu

IEUuPC9hdXRob3I+PGF1dGhvcj5IYXJ0bGV5LCBQLiBHLjwvYXV0aG9yPjxhdXRob3I+TWFlZGEs

IE4uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+Q1NJUk8g

TWF0IFNjaSAmYW1wOyBFbmduLCBJYW4gV2FyayBMYWIsIENsYXl0b24sIFZpYyAzMTY4LCBBdXN0

cmFsaWEmI3hEO1VuaXYgTWVsYm91cm5lLCBTY2ggRW5nbiwgRGVwdCBDaGVtICZhbXA7IEJpb21v

bCBFbmduLCBNZWxib3VybmUsIFZpYyAzMDEwLCBBdXN0cmFsaWEmI3hEO1JNSVQgVW5pdiwgU2No

IENpdmlsIEVudmlyb25tICZhbXA7IENoZW0gRW5nbiwgTWVsYm91cm5lLCBWaWMgMzAwMSwgQXVz

dHJhbGlhJiN4RDtDU0lSTyBFYXJ0aCBTY2kgJmFtcDsgUmVzb3VyY2UgRW5nbiwgSWFuIFdhcmsg

TGFiLCBDbGF5dG9uLCBWaWMgMzE2OCwgQXVzdHJhbGlhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+U3R1ZHkgb2YgZWxlY3RyaWNhbCBjb25kdWN0aXZpdHkgcmVzcG9uc2UgdXBvbiBmb3Jt

YXRpb24gb2YgaWNlIGFuZCBnYXMgaHlkcmF0ZXMgZnJvbSBzYWx0IHNvbHV0aW9ucyBieSBhIHNl

Y29uZCBnZW5lcmF0aW9uIGhpZ2ggcHJlc3N1cmUgZWxlY3RyaWNhbCBjb25kdWN0aXZpdHkgcHJv

YmU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UmV2aWV3IG9mIFNjaWVudGlmaWMgSW5zdHJ1bWVu

dHM8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPlJldiBTY2kgSW5zdHJ1bTwvYWx0LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlJldmlldyBvZiBTY2llbnRpZmljIElu

c3RydW1lbnRzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48dm9sdW1lPjg1PC92b2x1bWU+PG51

bWJlcj4xMTwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD51bnN0aXJyZWQgZ2FzL2xpcXVpZCBz

eXN0ZW08L2tleXdvcmQ+PGtleXdvcmQ+ZWxlY3Ryb2x5dGljIGNvbmR1Y3Rpdml0eTwva2V5d29y

ZD48a2V5d29yZD5tZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyPC9rZXl3b3JkPjwva2V5

d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5Ob3Y8L2RhdGU+

PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM0LTY3NDg8L2lzYm4+PGFjY2Vzc2lvbi1udW0+

V09TOjAwMDM0NTY0NjAwMDI5MjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMzQ1NjQ2MDAwMjkyPC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5BcnRuIDExNTEwMSYjeEQ7MTAu

MTA2My8xLjQ5MDA2NTg8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNo

PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl

Y051bT45NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI2

LTI3PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+OTc8L3JlYy1udW1i

ZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVhd3Zh

NXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTUwMjc2OTUyOCI+OTc8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOLjwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkNTSVJPIE1hdCBTY2kgJmFtcDsgRW5nbiwgSWFu

IFdhcmsgTGFiLCBDbGF5dG9uLCBWaWMgMzE2OCwgQXVzdHJhbGlhPC9hdXRoLWFkZHJlc3M+PHRp

dGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgb2YgYSBoaWdoIHByZXNzdXJlIGVsZWN0cmljYWwgY29u

ZHVjdGl2aXR5IHByb2JlIGZvciBleHBlcmltZW50YWwgc3R1ZGllcyBvZiBnYXMgaHlkcmF0ZXMg

aW4gZWxlY3Ryb2x5dGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlJldmlldyBvZiBTY2llbnRp

ZmljIEluc3RydW1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5SZXYgU2NpIEluc3Ry

dW08L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5SZXZpZXcgb2Yg

U2NpZW50aWZpYyBJbnN0cnVtZW50czwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHZvbHVtZT44

NDwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5pbmhpYml0b3Jz

PC9rZXl3b3JkPjxrZXl3b3JkPmljZTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4y

MDEzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+

PGlzYm4+MDAzNC02NzQ4PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMTQ3MjkxMDAwNjk8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7

Oi8vV09TOjAwMDMxNDcyOTEwMDA2OTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+QXJ0biAwMTUxMTAmI3hEOzEwLjEwNjMvMS40Nzc0MDUxPC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+U293YTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051

bT45NjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+OTY8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVhd3ZhNXRlYXdwOXNyZjVw

ZHpyZDkiIHRpbWVzdGFtcD0iMTUwMjc2OTQ5MSI+OTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm

LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48

YXV0aG9ycz48YXV0aG9yPlNvd2EsIEIuPC9hdXRob3I+PGF1dGhvcj5aaGFuZywgWC4gSC48L2F1

dGhvcj48YXV0aG9yPktvemllbHNraSwgSy4gQS48L2F1dGhvcj48YXV0aG9yPkR1bnN0YW4sIEQu

IEUuPC9hdXRob3I+PGF1dGhvcj5IYXJ0bGV5LCBQLiBHLjwvYXV0aG9yPjxhdXRob3I+TWFlZGEs

IE4uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+Q1NJUk8g

TWF0IFNjaSAmYW1wOyBFbmduLCBJYW4gV2FyayBMYWIsIENsYXl0b24sIFZpYyAzMTY4LCBBdXN0

cmFsaWEmI3hEO1VuaXYgTWVsYm91cm5lLCBTY2ggRW5nbiwgRGVwdCBDaGVtICZhbXA7IEJpb21v

bCBFbmduLCBNZWxib3VybmUsIFZpYyAzMDEwLCBBdXN0cmFsaWEmI3hEO1JNSVQgVW5pdiwgU2No

IENpdmlsIEVudmlyb25tICZhbXA7IENoZW0gRW5nbiwgTWVsYm91cm5lLCBWaWMgMzAwMSwgQXVz

dHJhbGlhJiN4RDtDU0lSTyBFYXJ0aCBTY2kgJmFtcDsgUmVzb3VyY2UgRW5nbiwgSWFuIFdhcmsg

TGFiLCBDbGF5dG9uLCBWaWMgMzE2OCwgQXVzdHJhbGlhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+U3R1ZHkgb2YgZWxlY3RyaWNhbCBjb25kdWN0aXZpdHkgcmVzcG9uc2UgdXBvbiBmb3Jt

YXRpb24gb2YgaWNlIGFuZCBnYXMgaHlkcmF0ZXMgZnJvbSBzYWx0IHNvbHV0aW9ucyBieSBhIHNl

Y29uZCBnZW5lcmF0aW9uIGhpZ2ggcHJlc3N1cmUgZWxlY3RyaWNhbCBjb25kdWN0aXZpdHkgcHJv

YmU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UmV2aWV3IG9mIFNjaWVudGlmaWMgSW5zdHJ1bWVu

dHM8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPlJldiBTY2kgSW5zdHJ1bTwvYWx0LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlJldmlldyBvZiBTY2llbnRpZmljIElu

c3RydW1lbnRzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48dm9sdW1lPjg1PC92b2x1bWU+PG51

bWJlcj4xMTwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD51bnN0aXJyZWQgZ2FzL2xpcXVpZCBz

eXN0ZW08L2tleXdvcmQ+PGtleXdvcmQ+ZWxlY3Ryb2x5dGljIGNvbmR1Y3Rpdml0eTwva2V5d29y

ZD48a2V5d29yZD5tZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyPC9rZXl3b3JkPjwva2V5

d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5Ob3Y8L2RhdGU+

PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM0LTY3NDg8L2lzYm4+PGFjY2Vzc2lvbi1udW0+

V09TOjAwMDM0NTY0NjAwMDI5MjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMzQ1NjQ2MDAwMjkyPC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5BcnRuIDExNTEwMSYjeEQ7MTAu

MTA2My8xLjQ5MDA2NTg8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5FbmdsaXNo

PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA 26-27 also developed a version of the HP-ALTA in which hydrate formation was inferred from changes in the electrical conductivity of a saline aqueous phase; however, this approach does not really address the above limitations, which are caused by the difficulty of quantitatively linking the detection method to the type or amount of solid phase formed. Here we report the development of a high pressure, stirred, automated lag time apparatus, (HPS-ALTA), which overcomes both of these key limitations. It combines the advantages of autoclaves and rocking cells, namely the ability to apply shear and use of a pressure-based detection system, with the rapidity of temperature cycling that enables the automated measurement of formation probability distributions with statistical significance in practical time frames. This HPS-ALTA, when combined with an automated data-processing algorithm, enables the probability of gas hydrate formation to be efficiently determined as a function of key operational parameters such as system temperature, sub-cooling, shear rate, gas composition, and liquid composition, with the latter including inhibitors at various concentrations. In addition, the measured hydrate formation probability distributions are analyzed using the theoretical framework of Kashchiev and FiroozabadiPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LYXNoY2hpZXY8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+Nzc8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xNCwgMTY8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj43NzwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1

ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk3MzMzNTI4Ij43Nzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S2FzaGNoaWV2LCBELjwvYXV0aG9yPjxh

dXRob3I+Rmlyb296YWJhZGksIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxh

dXRoLWFkZHJlc3M+UmVzZXJ2b2lyIEVuZ24gUmVzIEluc3QsIFBhbG8gQWx0bywgQ0EgOTQzMDYg

VVNBJiN4RDtCdWxnYXJpYW4gQWNhZCBTY2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEzIFNvZmlh

LCBCdWxnYXJpYTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkRyaXZpbmcgZm9yY2UgZm9y

IGNyeXN0YWxsaXphdGlvbiBvZiBnYXMgaHlkcmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0aDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+SiBD

cnlzdCBHcm93dGg8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K

b3VybmFsIG9mIENyeXN0YWwgR3Jvd3RoPC9mdWxsLXRpdGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93

dGg8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJu

YWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdyb3d0aDwv

YWJici0xPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjIyMC0yMzA8L3BhZ2VzPjx2b2x1bWU+MjQx

PC92b2x1bWU+PG51bWJlcj4xLTI8L251bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+YXF1ZW91cyBz

b2x1dGlvbjwva2V5d29yZD48a2V5d29yZD5jcnlzdGFsbGl6YXRpb248L2tleXdvcmQ+PGtleXdv

cmQ+c3VwZXJzYXR1cmF0ZWQgc29sdXRpb25zPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZSBoeWRy

YXRlPC9rZXl3b3JkPjxrZXl3b3JkPm1ldGhhbmUgaHlkcmF0ZTwva2V5d29yZD48a2V5d29yZD5t

ZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZTwva2V5d29yZD48a2V5d29yZD5udWNsZWF0

aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmtpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPmdyb3d0aDwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWF5PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyMi0wMjQ4PC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPldPUzowMDAxNzYxNDM4MDAwMzI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDE3NjE0MzgwMDAzMjwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UGlpIFMw

MDIyLTAyNDgoMDIpMDExMzQtWCYjeEQ7RG9pIDEwLjEwMTYvUzAwMjItMDI0OCgwMikwMTEzNC1Y

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+S2FzaGNoaWV2PC9BdXRob3I+PFllYXI+MjAwMjwv

WWVhcj48UmVjTnVtPjQ4PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40ODwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1

dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk3MzMzNTA0Ij40ODwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S2FzaGNoaWV2LCBELjwvYXV0aG9yPjxhdXRob3I+

Rmlyb296YWJhZGksIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFk

ZHJlc3M+UmVzZXJ2b2lyIEVuZ24gUmVzIEluc3QsIFBhbG8gQWx0bywgQ0EgOTQzMDYgVVNBJiN4

RDtCdWxnYXJpYW4gQWNhZCBTY2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEzIFNvZmlhLCBCdWxn

YXJpYTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXRpb24gb2YgZ2FzIGh5ZHJh

dGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L3Nl

Y29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkogQ3J5c3QgR3Jvd3RoPC9hbHQtdGl0bGU+PC90aXRs

ZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0aDwvZnVs

bC10aXRsZT48YWJici0xPkogQ3J5c3QgR3Jvd3RoPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQt

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3RoPC9mdWxsLXRp

dGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93dGg8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdl

cz40NzYtNDg5PC9wYWdlcz48dm9sdW1lPjI0Mzwvdm9sdW1lPjxudW1iZXI+My00PC9udW1iZXI+

PGtleXdvcmRzPjxrZXl3b3JkPmFxdWVvdXMgc29sdXRpb25zPC9rZXl3b3JkPjxrZXl3b3JkPm51

Y2xlYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Z2FzIGh5ZHJhdGVzPC9rZXl3b3JkPjxrZXl3b3Jk

PmtpbmV0aWMgaW5oaWJpdG9yczwva2V5d29yZD48a2V5d29yZD5tZXRoYW5lIGh5ZHJhdGU8L2tl

eXdvcmQ+PGtleXdvcmQ+Y3J5c3RhbC1ncm93dGg8L2tleXdvcmQ+PGtleXdvcmQ+aW5kdWN0aW9u

IHRpbWU8L2tleXdvcmQ+PGtleXdvcmQ+cHJlY2lwaXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5t

ZWNoYW5pc21zPC9rZXl3b3JkPjxrZXl3b3JkPmVmZmljaWVuY3k8L2tleXdvcmQ+PGtleXdvcmQ+

YWRkaXRpdmVzPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZTwva2V5d29yZD48a2V5d29yZD50ZXN0

czwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+U2VwPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyMi0wMjQ4PC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPldPUzowMDAxNzc2ODUwMDAwMTY8L2FjY2Vzc2lvbi1udW0+PHVybHM+

PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDE3NzY4NTAwMDAx

NjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UGlp

IFMwMDIyLTAyNDgoMDIpMDE1NzYtMiYjeEQ7RG9pIDEwLjEwMTYvUzAwMjItMDI0OCgwMikwMTU3

Ni0yPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LYXNoY2hpZXY8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+Nzc8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xNCwgMTY8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj43NzwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1

ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk3MzMzNTI4Ij43Nzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S2FzaGNoaWV2LCBELjwvYXV0aG9yPjxh

dXRob3I+Rmlyb296YWJhZGksIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxh

dXRoLWFkZHJlc3M+UmVzZXJ2b2lyIEVuZ24gUmVzIEluc3QsIFBhbG8gQWx0bywgQ0EgOTQzMDYg

VVNBJiN4RDtCdWxnYXJpYW4gQWNhZCBTY2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEzIFNvZmlh

LCBCdWxnYXJpYTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkRyaXZpbmcgZm9yY2UgZm9y

IGNyeXN0YWxsaXphdGlvbiBvZiBnYXMgaHlkcmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0aDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+SiBD

cnlzdCBHcm93dGg8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K

b3VybmFsIG9mIENyeXN0YWwgR3Jvd3RoPC9mdWxsLXRpdGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93

dGg8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJu

YWwgb2YgQ3J5c3RhbCBHcm93dGg8L2Z1bGwtdGl0bGU+PGFiYnItMT5KIENyeXN0IEdyb3d0aDwv

YWJici0xPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjIyMC0yMzA8L3BhZ2VzPjx2b2x1bWU+MjQx

PC92b2x1bWU+PG51bWJlcj4xLTI8L251bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+YXF1ZW91cyBz

b2x1dGlvbjwva2V5d29yZD48a2V5d29yZD5jcnlzdGFsbGl6YXRpb248L2tleXdvcmQ+PGtleXdv

cmQ+c3VwZXJzYXR1cmF0ZWQgc29sdXRpb25zPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZSBoeWRy

YXRlPC9rZXl3b3JkPjxrZXl3b3JkPm1ldGhhbmUgaHlkcmF0ZTwva2V5d29yZD48a2V5d29yZD5t

ZXRoYW5lPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZTwva2V5d29yZD48a2V5d29yZD5udWNsZWF0

aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmtpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPmdyb3d0aDwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWF5PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyMi0wMjQ4PC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPldPUzowMDAxNzYxNDM4MDAwMzI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDE3NjE0MzgwMDAzMjwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UGlpIFMw

MDIyLTAyNDgoMDIpMDExMzQtWCYjeEQ7RG9pIDEwLjEwMTYvUzAwMjItMDI0OCgwMikwMTEzNC1Y

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+S2FzaGNoaWV2PC9BdXRob3I+PFllYXI+MjAwMjwv

WWVhcj48UmVjTnVtPjQ4PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40ODwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1

dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNDk3MzMzNTA0Ij40ODwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S2FzaGNoaWV2LCBELjwvYXV0aG9yPjxhdXRob3I+

Rmlyb296YWJhZGksIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFk

ZHJlc3M+UmVzZXJ2b2lyIEVuZ24gUmVzIEluc3QsIFBhbG8gQWx0bywgQ0EgOTQzMDYgVVNBJiN4

RDtCdWxnYXJpYW4gQWNhZCBTY2ksIEluc3QgUGh5cyBDaGVtLCBCVS0xMTEzIFNvZmlhLCBCdWxn

YXJpYTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXRpb24gb2YgZ2FzIGh5ZHJh

dGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgQ3J5c3RhbCBHcm93dGg8L3Nl

Y29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkogQ3J5c3QgR3Jvd3RoPC9hbHQtdGl0bGU+PC90aXRs

ZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBDcnlzdGFsIEdyb3d0aDwvZnVs

bC10aXRsZT48YWJici0xPkogQ3J5c3QgR3Jvd3RoPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQt

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIENyeXN0YWwgR3Jvd3RoPC9mdWxsLXRp

dGxlPjxhYmJyLTE+SiBDcnlzdCBHcm93dGg8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdl

cz40NzYtNDg5PC9wYWdlcz48dm9sdW1lPjI0Mzwvdm9sdW1lPjxudW1iZXI+My00PC9udW1iZXI+

PGtleXdvcmRzPjxrZXl3b3JkPmFxdWVvdXMgc29sdXRpb25zPC9rZXl3b3JkPjxrZXl3b3JkPm51

Y2xlYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Z2FzIGh5ZHJhdGVzPC9rZXl3b3JkPjxrZXl3b3Jk

PmtpbmV0aWMgaW5oaWJpdG9yczwva2V5d29yZD48a2V5d29yZD5tZXRoYW5lIGh5ZHJhdGU8L2tl

eXdvcmQ+PGtleXdvcmQ+Y3J5c3RhbC1ncm93dGg8L2tleXdvcmQ+PGtleXdvcmQ+aW5kdWN0aW9u

IHRpbWU8L2tleXdvcmQ+PGtleXdvcmQ+cHJlY2lwaXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5t

ZWNoYW5pc21zPC9rZXl3b3JkPjxrZXl3b3JkPmVmZmljaWVuY3k8L2tleXdvcmQ+PGtleXdvcmQ+

YWRkaXRpdmVzPC9rZXl3b3JkPjxrZXl3b3JkPmV0aGFuZTwva2V5d29yZD48a2V5d29yZD50ZXN0

czwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+U2VwPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyMi0wMjQ4PC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPldPUzowMDAxNzc2ODUwMDAwMTY8L2FjY2Vzc2lvbi1udW0+PHVybHM+

PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDE3NzY4NTAwMDAx

NjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UGlp

IFMwMDIyLTAyNDgoMDIpMDE1NzYtMiYjeEQ7RG9pIDEwLjEwMTYvUzAwMjItMDI0OCgwMikwMTU3

Ni0yPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 14, 16 as a first step towards generalizing what may conventionally be considered as apparatus-specific data into results of more fundamental significance and/or industrial relevance. Experimental SectionApparatus and methodA schematic and photo of the HPS-ALTA is shown in REF _Ref485123014 \h Figure 1. Each of the two cells within the system consists of a machined, cylindrical, stainless steel well of volume 4.63 mL, diameter 20.1?mm and depth 14.6 mm, sealed with a nitrile O-ring (Ludowici Sealing Solutions) by an upper plate containing a sapphire window (WG31050, Thorlabs, Inc.; visible in Figure 1b). A PTFE-GF O-ring is used to make a seal between the upper surface of the sapphire window and the steel lid. Magnetic stirrers (AREX, Velp Scientifica Srl) drive a PTFE-coated, cylindrical magnetic stirring bar (13 mm long, 6 mm wide; Cowie Technology Group Ltd.) within each cell at a specified rate, enabling shear to be applied continuously to the fluid during the experiment. The actual rotational speed achieved for a given setting between 100 and 700 rpm was confirmed with a laser-based tachometer (DT-2236B, Lutron Electronic Enterprise Co., Ltd.). The energy delivered to the aqueous phase as a result of viscous dissipation by the stirrer at 700 rpm was estimated to be less than 66 mW, which is negligible in comparison to the cooling power applied to the cell by the Peltier element (10 to 20 W).Figure SEQ Figure \* ARABIC 1 HPS-ALTA system. (a) System schematic (RTD: resistance temperature detector; PT: pressure transducer). The gray rectangle within the cell represents the stirring bar. The RTD, PT and Peltier power supply (marked in blue) are interfaced with a computer for temperature control and data acquisition. (b) Top-down view of one of the HPS-ALTA cells. The stirrer, PT, part of the RTD (top of the image) and the wires that provide power to the Peltier element are also visible.In each cell, a Peltier element was situated between the cell’s outer bottom surface and a coolant block through which chilled ethylene glycol or water was circulated via a LAUDA Alpha RA8 cooling thermostat. The Peltier elements (ET-161-12-14-E, Adaptive Thermal Management) were driven by programmable power supplies (E3648A, Agilent Technologies), enabling independent control of each cell’s temperature. To achieve this control, the temperature of the liquid within each cell was measured using a Pt-100 resistance temperature detector (RTD) (Omega Engineering Limited, uncertainty: 0.1?K). The RTD reading was used in a digital feedback loop to set the output voltage of the Peltier power supplies. The gas phase pressure within each cell was also continuously monitored using a pressure transducer with a full-scale of 23.5?MPa (MM Series, Omega Engineering Limited; relative uncertainty 0.08% of full-scale). Both pressure and temperature transducer signals were monitored using a National Instruments data acquisition system connected to a computer running the LabVIEW software package ADDIN EN.CITE <EndNote><Cite><Author>Elliott</Author><Year>2007</Year><RecNum>94</RecNum><DisplayText><style face="superscript">28</style></DisplayText><record><rec-number>94</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1502700130">94</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Elliott, C</author><author>Vijayakumar, V</author><author>Zink, W</author><author>Hansen, R</author></authors></contributors><titles><title>National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement</title><secondary-title>SLAS TECHNOLOGY: Translating Life Sciences Innovation</secondary-title></titles><periodical><full-title>SLAS TECHNOLOGY: Translating Life Sciences Innovation</full-title></periodical><pages>17-24</pages><volume>12</volume><number>1</number><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>28.Measurements were conducted by first loading each of the open cells with 1 mL of deionized water. The cells were then sealed and pressurized using a syringe pump (Teledyne Isco) to a specified initial pressure at 20?C with either methane (99.995% purity) at 8.5 MPa or a gas mixture (0.9036CH4 + 0.0571C2H6 + 0.019C3H8 + 0.02CO2, where the fractions are on a molar basis) at 13 or 8.5 MPa. Unlike in the atmospheric pressure ALTA studies by Wilson et al. ADDIN EN.CITE <EndNote><Cite><Author>Wilson</Author><Year>2005</Year><RecNum>89</RecNum><DisplayText><style face="superscript">21</style></DisplayText><record><rec-number>89</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497935879">89</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wilson, P. W.</author><author>Lester, D.</author><author>Haymet, A. D. J.</author></authors></contributors><auth-address>Univ Tasmania, Sch Chem, Hobart, Tas 7001, Australia&#xD;Univ Otago Sch Med, Dept Physiol, Dunedin, New Zealand&#xD;CSIRO, Marine Res, Hobart, Tas 7000, Australia</auth-address><titles><title>Heterogeneous nucleation of clathrates from supercooled tetrahydrofuran (THF)/water mixtures, and the effect of an added catalyst</title><secondary-title>Chemical Engineering Science</secondary-title><alt-title>Chem Eng Sci</alt-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>2937-2941</pages><volume>60</volume><number>11</number><keywords><keyword>hydrate</keyword><keyword>clathrate</keyword><keyword>thf</keyword><keyword>nucleation</keyword><keyword>alta</keyword><keyword>lag-time apparatus</keyword><keyword>to-crystal nucleation</keyword><keyword>hydrate</keyword><keyword>water</keyword><keyword>crystallization</keyword><keyword>inhibition</keyword></keywords><dates><year>2005</year><pub-dates><date>Jun</date></pub-dates></dates><isbn>0009-2509</isbn><accession-num>WOS:000228596500009</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000228596500009</url></related-urls></urls><electronic-resource-num>10.1016/j.ces.2004.12.047</electronic-resource-num><language>English</language></record></Cite></EndNote>21 no catalysts were used to promote nucleation. Following pressurization, the cells were then isolated from each other, enabling the simultaneous collection of two independent data sets. The cell contents were stirred continuously at the specified shear rate throughout the experiment. Initially, the cell was heated to a specified regeneration temperature, Tregen, where it was maintained for a period of 5 minutes, which was more than sufficient for the pressure to stabilize. The cells were then cooled at a fixed rate before being held at the target minimum temperature (typically –5 °C) for 5 minutes. Finally, the cell was heated at a rate of 8.5?Kmin1 back to Tregen where it was maintained for a specified hold time, thold, (typically 5 minutes) before the cooling ramp was repeated. Between each ramp, the pressure at which the cell stabilized during thold at Tregen allowed confirmation that no leaks had developed over the course of the experiment’s duration. These cooling/heating cycles were repeated continuously for a period of between 24 and 48 hours until a statistically significant number of hydrate formation events had occurred (typically on the order of 100).Formation and growth-rate probability distributionsHydrate formation was detected via analysis of the temperature- and pressure-time series data recorded for each cooling ramp. REF _Ref485716398 \h Figure 2 shows an example of these temperature and pressure data, as obtained for the gas mixture under a 100 rpm shear for a cooling rate of 2 Kmin-1. Three full hydrate formation-dissociation cycles are shown, with each temperature-time series clearly separated into the stages described above (heating and cooling ramps separated by nearly isothermal waiting periods). Hydrate formation events during the cooling ramp can be identified in REF _Ref485716398 \h Figure 2(b) from changes in the slope of the pressure time series data. Figure SEQ Figure \* ARABIC 2 (a) Temperature and (b) pressure time series data from the HPS-ALTA for three complete hydrate formation-dissociation cycles (gas mixture, 100 rpm, 2 K.min-1 cooling rate; initial conditions: 13 MPa at 20°C). Hydrate formation can be identified in (b) from the resulting increased pressure drop, which occurs towards the end of the cooling ramp. (c,d) Result of automated analysis of the (p,T) time series data obtained during a single cooling ramp for the gas mixture. The red line in (c) shows the calculated (p/T)local values whereas the blue line in (d) correspond to the p?= p?–?pisochor values. The solid green line (which for clarity is only shown in (c)) corresponds to the mean value of that quantity above Teq* whereas the dashed green lines show the (mean ± 3) boundaries. In this dataset, Tf was determined using the (p/T)local data, yielding a value of 8.7 °C which matches well with the onset of unambiguous gas consumption that can be seen in (d). The blue shaded regions in (c,d) correspond to those temperatures for which the system was outside of the hydrate equilibrium region of the p-T phase space. The p?data within the black outlined box were used to calculate the initial gas consumption rate due to hydrate formation (0.6 kPas-1). To construct a formation probability distribution, the temperature at which the formation event occurred was identified for every one of the 100 or so cycles that comprised a single experiment. A hydrate formation detection algorithm was developed to minimize subjectivity and reduce analysis time and implemented using the Python language using the pandas ADDIN EN.CITE <EndNote><Cite><Author>McKinney</Author><Year>2010</Year><RecNum>98</RecNum><DisplayText><style face="superscript">29</style></DisplayText><record><rec-number>98</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1502776748">98</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>McKinney, Wes</author></authors><secondary-authors><author>van der Walt, Stefan</author><author>Millman, Jarrod</author></secondary-authors></contributors><titles><title>Data Structures for Statistical Computing in Python</title><secondary-title>Proceedings of the 9th Python in Science Conference</secondary-title></titles><pages>51-56</pages><dates><year>2010</year></dates><pub-location>Austin, TX, USA</pub-location><urls></urls></record></Cite></EndNote>29, matplotlib ADDIN EN.CITE <EndNote><Cite><Author>Hunter</Author><Year>2007</Year><RecNum>100</RecNum><DisplayText><style face="superscript">30</style></DisplayText><record><rec-number>100</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1502776817">100</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hunter, J. D.</author></authors></contributors><titles><title>Matplotlib: A 2D graphics environment</title><secondary-title>Computing in Science &amp; Engineering</secondary-title><alt-title>Comput Sci Eng</alt-title></titles><periodical><full-title>Computing in Science &amp; Engineering</full-title><abbr-1>Comput Sci Eng</abbr-1></periodical><alt-periodical><full-title>Computing in Science &amp; Engineering</full-title><abbr-1>Comput Sci Eng</abbr-1></alt-periodical><pages>90-95</pages><volume>9</volume><number>3</number><dates><year>2007</year><pub-dates><date>May-Jun</date></pub-dates></dates><isbn>1521-9615</isbn><accession-num>WOS:000245668100019</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000245668100019</url></related-urls></urls><electronic-resource-num>Doi 10.1109/Mcse.2007.55</electronic-resource-num><language>English</language></record></Cite></EndNote>30 and numpy ADDIN EN.CITE <EndNote><Cite><Author>van der Walt</Author><Year>2011</Year><RecNum>99</RecNum><DisplayText><style face="superscript">31</style></DisplayText><record><rec-number>99</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1502776797">99</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>van der Walt, S.</author><author>Colbert, S. C.</author><author>Varoquaux, G.</author></authors></contributors><auth-address>Univ Stellenbosch, ZA-7600 Stellenbosch, South Africa&#xD;Enthought Inc, Austin, TX USA&#xD;INRIA, Le Chesnay, France</auth-address><titles><title>The NumPy Array: A Structure for Efficient Numerical Computation</title><secondary-title>Computing in Science &amp; Engineering</secondary-title><alt-title>Comput Sci Eng</alt-title></titles><periodical><full-title>Computing in Science &amp; Engineering</full-title><abbr-1>Comput Sci Eng</abbr-1></periodical><alt-periodical><full-title>Computing in Science &amp; Engineering</full-title><abbr-1>Comput Sci Eng</abbr-1></alt-periodical><pages>22-30</pages><volume>13</volume><number>2</number><dates><year>2011</year><pub-dates><date>Mar-Apr</date></pub-dates></dates><isbn>1521-9615</isbn><accession-num>WOS:000288053300003</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000288053300003</url></related-urls></urls><language>English</language></record></Cite></EndNote>31 packages. An example of the analysis conducted using the automated detection algorithm is shown in REF _Ref485716398 \h Figure 2(c,d). As a first step, the measured pressure was used to assess whether the system was inside the hydrate stability region by calculating the corresponding equilibrium temperature, Teq, using the Cubic Plus Association (CPA) model implemented in the software package Multiflash 4.4, and comparing it with the measured temperature at that point on the cooling ramp. (The CPA model predictions of the gas mixture’s hydrate equilibrium temperature were verified within 0.2?K in separate experiments using a sapphire autoclave in our laboratory following the method detailed by Akhfash et al. ADDIN EN.CITE <EndNote><Cite><Author>Akhfash</Author><Year>2017</Year><RecNum>117</RecNum><DisplayText><style face="superscript">32</style></DisplayText><record><rec-number>117</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1506428695">117</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Akhfash, M.</author><author>Arjmandi, M.</author><author>Aman, Z. M.</author><author>Boxall, J.</author><author>May, E. F.</author></authors></contributors><titles><title>Gas Hydrate Thermodynamic Inhibition with MDEA for Reduced MEG Circulation</title><secondary-title>Journal of Chemical and Engineering Data</secondary-title></titles><periodical><full-title>Journal of Chemical and Engineering Data</full-title><abbr-1>J Chem Eng Data</abbr-1></periodical><pages>2578-2583</pages><volume>62</volume><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>32.) The isochoric measurement pathway meant that once the system had been cooled to a temperature equal to the value of Teq calculated from the measured pressure, the system would be within the hydrate stability region at any lower temperature. This condition, identified as Teq*, was common to all cooling ramps measured with the same overall density (i.e. for cells with no leaks). The pressure-temperature data measured for the cooling ramp outside the hydrate stability zone were used to determine a baseline slope, (p/T)isochor, characteristic of the isochoric cooling of the system. Hydrate formation was then determined by identifying the condition at which the (p, T) series data measured within the equilibrium region (i.e. T?< Teq*) exhibited a statistically significant deviation (99.7?% confidence interval or three standard deviations) from the trend extrapolated using (p/T)isochor. Two methods were used to detect local deviations of the (p, T) series data from the baseline trend extrapolated using (p/T)isochor. The first method used a numerical calculation of the local slope, (p/T)local, at every 0.05 K along the cooling ramp via linear regression of the (p, T) series data within a 0.5 K window ( REF _Ref485716398 \h Figure 2(c)). The second method calculated the deviation in pressure, p?= p?–?pisochor, of each measured (p, T) data point from the linearly-extrapolated pressure pisochor at the same temperature estimated using (p/T)isochor and the data measured above Teq* ( REF _Ref485716398 \h Figure 2(d)). Standard deviations for both of these quantities, pT and p, were calculated from the data acquired on the section of the cooling ramp measured outside the hydrate stability region. In both methods, the formation condition was identified as being the first point on the cooling ramp where 20 consecutive values of that quantity ((p/T)local or p) differed by more than 3 standard deviations from the baseline trend extrapolated using (p/T)isochor. In general, the first method tends to produce a leading estimate of the formation temperature, Tf, (i.e. one which is too high) because of the finite-width fitting window used to evaluate (p/T)local (the calculated local slope at a given temperature is influenced by data obtained at slightly lower temperatures). In contrast, the second method tends to produce a lagging estimate of the formation temperature (i.e. one which is too low) because of the requirement for p to become larger than 3p. Detection via the second method can also be less reliable as a result of the cumulative drift in p resulting from small but consistent incremental deviations, which cause the signal to move slightly outside the extrapolated baseline trend, resulting in an erroneous identification of hydrate formation. Each data set was analysed using both methods; in general, we found Method 1 to be more reliable in comparison with a manual assessment of the same data set to identify the formation point (as is the case for the data shown in Figure 2). Accordingly, we used the first method but reviewed manually all instances where a discrepancy of more than 0.2 K existed between the formation points determined by each method. In those cases, the manual review usually identified one or other method as giving a better identification of the formation point, although in some instances an arithmetic average of the values determined via each of the methods was used. To facilitate this inspection, the code was written to enable live visualization of the p-T data around the extracted formation temperature for each cooling ramp during the automated analysis.On occasion the formation of hydrates was also indicated by a spike in the reading of the temperature sensor in contact with the water at the same time or shortly after they were detected from the pressure signal. However, this did not prove to be a reliable indicator because the response of the thermometer was dominated by the smoothly ramped temperature of the cell wall (a further indication of efficient stirring). Additionally, the magnitude of any temperature rise depended on the proximity of the sensor to the location of the hydrate formation.For each formation event, the subcooling, T, was calculated by subtracting the formation temperature away from the calculated equilibrium temperature at the formation pressure, i.e. T = Te – Tf. Subcooling probability distributions were then constructed using the method detailed by May et al. ADDIN EN.CITE <EndNote><Cite><Author>May</Author><Year>2014</Year><RecNum>1</RecNum><DisplayText><style face="superscript">25</style></DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1488852136">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>May, Eric F.</author><author>Wu, Reuben</author><author>Kelland, Malcolm A.</author><author>Aman, Zachary M.</author><author>Kozielski, Karen A.</author><author>Hartley, Patrick G.</author><author>Maeda, Nobuo</author></authors></contributors><titles><title>Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions</title><secondary-title>Chemical Engineering Science</secondary-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>1-12</pages><volume>107</volume><keywords><keyword>Gas hydrate</keyword><keyword>Nucleation</keyword><keyword>Growth</keyword><keyword>Probability distribution</keyword><keyword>Kinetics</keyword><keyword>Inhibitor</keyword></keywords><dates><year>2014</year><pub-dates><date>4/7/</date></pub-dates></dates><isbn>0009-2509</isbn><urls><related-urls><url>, by first constructing a histogram with a bin width of 0.1 K (equal to the temperature sensor uncertainty). An upper limit for the subcooling achieved across all experiments was chosen, so that the histograms constructed for different experiments could be represented as arrays of the same length, with the same spacing. This allows subsequent numerical operations on the histograms, such as integration or subtraction to be performed in a straightforward manner. Cumulative formation probability distributions (CFPDs) were then constructed by numerically integrating the histograms via the trapezoidal rule.The use of the pressure signal enables hydrate formation to be distinguished from ice formation. Despite its exothermic nature, hydrate formation results in a pressure decrease due to gas consumption whereas ice formation results in a small increase in gas phase pressure due to the slightly lower density of ice relative to water and the heating of the gas phase. Distinguishing these two phases can be problematic at temperatures below 0 C for those experimental techniques which rely, for example, upon optical detection of the hydrate phase ADDIN EN.CITE <EndNote><Cite><Author>May</Author><Year>2014</Year><RecNum>1</RecNum><DisplayText><style face="superscript">25</style></DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1488852136">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>May, Eric F.</author><author>Wu, Reuben</author><author>Kelland, Malcolm A.</author><author>Aman, Zachary M.</author><author>Kozielski, Karen A.</author><author>Hartley, Patrick G.</author><author>Maeda, Nobuo</author></authors></contributors><titles><title>Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions</title><secondary-title>Chemical Engineering Science</secondary-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>1-12</pages><volume>107</volume><keywords><keyword>Gas hydrate</keyword><keyword>Nucleation</keyword><keyword>Growth</keyword><keyword>Probability distribution</keyword><keyword>Kinetics</keyword><keyword>Inhibitor</keyword></keywords><dates><year>2014</year><pub-dates><date>4/7/</date></pub-dates></dates><isbn>0009-2509</isbn><urls><related-urls><url>. The minimum detectable amount of hydrate can be estimated from the noise floor of the pressure transducer which was 0.001?MPa at a constant temperature and 8 MPa with a data acquisition rate of 1?Hz (the response time of the pressure transducer was much shorter than the data acquisition rate). During a cooling ramp, the standard deviation, p, was usually slightly larger than this noise floor at about 0.002 MPa (e.g. as in REF _Ref485716398 \h Figure 2(d)). Given that the volume of the gas phase in the system was approximately 3.5?mL (accounting for the volume of the water, stirrer and gas-containing tubing), the minimum detectable amount of gas consumption corresponding to 3p (0.005 MPa) was about 9?mol at 283?K. Assuming 8 guest molecules per unit cell of sI hydrates ADDIN EN.CITE <EndNote><Cite><Author>Makogon</Author><Year>1997</Year><RecNum>107</RecNum><DisplayText><style face="superscript">2, 33</style></DisplayText><record><rec-number>107</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1503293759">107</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Makogon, Yuri F.</author></authors></contributors><titles><title>Hydrates of Hydrocarbons</title></titles><pages>482</pages><dates><year>1997</year></dates><pub-location>Tulsa, OK, USA</pub-location><publisher>PennWell Publishing Company</publisher><urls></urls></record></Cite><Cite><Author>Sloan</Author><Year>2008</Year><RecNum>18</RecNum><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1489552441">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sloan, E. D.</author><author>Koh, C. A.</author></authors></contributors><titles><title>Clathrate Hydrates of Natural Gases, Third Edition</title><secondary-title>Clathrate Hydrates of Natural Gases, Third Edition</secondary-title><alt-title>Chem Ind-Ser</alt-title></titles><periodical><full-title>Clathrate Hydrates of Natural Gases, Third Edition</full-title><abbr-1>Chem Ind-Ser</abbr-1></periodical><alt-periodical><full-title>Clathrate Hydrates of Natural Gases, Third Edition</full-title><abbr-1>Chem Ind-Ser</abbr-1></alt-periodical><pages>1-701</pages><volume>119</volume><dates><year>2008</year></dates><accession-num>WOS:000269314900010</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000269314900010</url></related-urls></urls><language>English</language></record></Cite></EndNote>2, 33, this corresponds to a minimum detectable amount of hydrate of 1.1 mol, which for CH4 hydrate would have a mass of 19.5 g. If this small amount of hydrate formed at the kinetic rate calculated using the correlation of Turner et al. based on the measurements of Vysniauskas and Bishnoi and Englezos et al.,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5WeXNuaWF1c2thczwvQXV0aG9yPjxZZWFyPjE5ODM8L1ll

YXI+PFJlY051bT4xMDg8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2Ny

aXB0Ij41LCAzNC0zNTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjEw

ODwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2

a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNTAzMjk4MTQ0Ij4xMDg8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlZ5c25pYXVza2FzLCBBLjwv

YXV0aG9yPjxhdXRob3I+QmlzaG5vaSwgUC4gUi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2IENhbGdhcnksRGVwdCBDaGVtICZhbXA7IFBldHIgRW5n

bixDYWxnYXJ5IFQybiAxbjQsQWxiZXJ0YSxDYW5hZGE8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0

aXRsZT5BIEtpbmV0aWMtU3R1ZHkgb2YgTWV0aGFuZSBIeWRyYXRlIEZvcm1hdGlvbjwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5DaGVtaWNhbCBFbmdpbmVlcmluZyBTY2llbmNlPC9zZWNvbmRhcnkt

dGl0bGU+PGFsdC10aXRsZT5DaGVtIEVuZyBTY2k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5DaGVtaWNhbCBFbmdpbmVlcmluZyBTY2llbmNlPC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+MTA2MS0xMDcyPC9wYWdlcz48dm9sdW1lPjM4PC92b2x1bWU+

PG51bWJlcj43PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5ODM8L3llYXI+PC9kYXRlcz48aXNibj4w

MDA5LTI1MDk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOkExOTgzUkI1OTcwMDAxMDwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6

QTE5ODNSQjU5NzAwMDEwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT5Eb2kgMTAuMTAxNi8wMDA5LTI1MDkoODMpODAwMjctWDwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48

Q2l0ZT48QXV0aG9yPkVuZ2xlem9zPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVjTnVtPjEx

MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTExPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6

cmQ5IiB0aW1lc3RhbXA9IjE1MDMyOTgzMTEiPjExMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+RW5nbGV6b3MsIFAuPC9hdXRob3I+PGF1dGhvcj5LYWxvZ2VyYWtpcywg

Ti48L2F1dGhvcj48YXV0aG9yPkRob2xhYmhhaSwgUC4gRC48L2F1dGhvcj48YXV0aG9yPkJpc2hu

b2ksIFAuIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+

VW5pdiBDYWxnYXJ5LERlcHQgQ2hlbSAmYW1wOyBQZXRyIEVuZ24sQ2FsZ2FyeSBUMm4gMW40LEFs

YmVydGEsQ2FuYWRhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+S2luZXRpY3Mgb2YgR2Fz

IEh5ZHJhdGUgRm9ybWF0aW9uIGZyb20gTWl4dHVyZXMgb2YgTWV0aGFuZSBhbmQgRXRoYW5lPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVyaW5nIFNjaWVuY2U8L3NlY29u

ZGFyeS10aXRsZT48YWx0LXRpdGxlPkNoZW0gRW5nIFNjaTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxw

ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVyaW5nIFNjaWVuY2U8L2Z1bGwt

dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNjU5LTI2NjY8L3BhZ2VzPjx2b2x1bWU+NDI8L3Zv

bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5ODc8L3llYXI+PC9kYXRlcz48

aXNibj4wMDA5LTI1MDk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOkExOTg3Szk2OTIwMDAxNTwv

YWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6

Ly9XT1M6QTE5ODdLOTY5MjAwMDE1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT5Eb2kgMTAuMTAxNi8wMDA5LTI1MDkoODcpODcwMTYtMTwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPlR1cm5lcjwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJlY051

bT4xMDU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEwNTwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3Jm

NXBkenJkOSIgdGltZXN0YW1wPSIxNTAzMjg1NjAzIj4xMDU8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iQ29uZmVyZW5jZSBQYXBlciI+NDc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5UdXJuZXIsIEQuPC9hdXRob3I+PGF1dGhvcj5Cb3hhbGwsIEou

PC9hdXRob3I+PGF1dGhvcj5ZYW5nLCBTLjwvYXV0aG9yPjxhdXRob3I+S2xlZWhhbWVyLCBELjwv

YXV0aG9yPjxhdXRob3I+S29oLCBDLjwvYXV0aG9yPjxhdXRob3I+TWlsbGVyLCBLLjwvYXV0aG9y

PjxhdXRob3I+U2xvYW4sIEUuIEQuPC9hdXRob3I+PGF1dGhvcj5YdSwgWi48L2F1dGhvcj48YXV0

aG9yPk1hdGhld3MsIFAuPC9hdXRob3I+PGF1dGhvcj5UYWxsZXksIEwuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3BtZW50IG9mIGEgaHlkcmF0

ZSBraW5ldGljIG1vZGVsIGFuZCBpdHMgaW5jb3Jwb3JhdGlvbiBpbnRvIHRoZSBPTEdBMjAwMCB0

cmFuc2llbnQgbXVsdGktcGhhc2UgZmxvdyBzaW11bGF0b3I8L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+RmlmdGggSW50ZXJuYXRpb25hbCBDb25mZXJlbmNlIG9uIEdhcyBIeWRyYXRlczwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjwvZGF0ZXM+PHB1Yi1s

b2NhdGlvbj5Ucm9uZGhlaW0sIE5vd2F5PC9wdWItbG9jYXRpb24+PHVybHM+PC91cmxzPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5WeXNuaWF1c2thczwvQXV0aG9yPjxZZWFyPjE5ODM8L1ll

YXI+PFJlY051bT4xMDg8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2Ny

aXB0Ij41LCAzNC0zNTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjEw

ODwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2

a2Z2ZHA1ZWF3dmE1dGVhd3A5c3JmNXBkenJkOSIgdGltZXN0YW1wPSIxNTAzMjk4MTQ0Ij4xMDg8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlZ5c25pYXVza2FzLCBBLjwv

YXV0aG9yPjxhdXRob3I+QmlzaG5vaSwgUC4gUi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2IENhbGdhcnksRGVwdCBDaGVtICZhbXA7IFBldHIgRW5n

bixDYWxnYXJ5IFQybiAxbjQsQWxiZXJ0YSxDYW5hZGE8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0

aXRsZT5BIEtpbmV0aWMtU3R1ZHkgb2YgTWV0aGFuZSBIeWRyYXRlIEZvcm1hdGlvbjwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5DaGVtaWNhbCBFbmdpbmVlcmluZyBTY2llbmNlPC9zZWNvbmRhcnkt

dGl0bGU+PGFsdC10aXRsZT5DaGVtIEVuZyBTY2k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5DaGVtaWNhbCBFbmdpbmVlcmluZyBTY2llbmNlPC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+MTA2MS0xMDcyPC9wYWdlcz48dm9sdW1lPjM4PC92b2x1bWU+

PG51bWJlcj43PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5ODM8L3llYXI+PC9kYXRlcz48aXNibj4w

MDA5LTI1MDk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOkExOTgzUkI1OTcwMDAxMDwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6

QTE5ODNSQjU5NzAwMDEwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT5Eb2kgMTAuMTAxNi8wMDA5LTI1MDkoODMpODAwMjctWDwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48

Q2l0ZT48QXV0aG9yPkVuZ2xlem9zPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVjTnVtPjEx

MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTExPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6

cmQ5IiB0aW1lc3RhbXA9IjE1MDMyOTgzMTEiPjExMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+RW5nbGV6b3MsIFAuPC9hdXRob3I+PGF1dGhvcj5LYWxvZ2VyYWtpcywg

Ti48L2F1dGhvcj48YXV0aG9yPkRob2xhYmhhaSwgUC4gRC48L2F1dGhvcj48YXV0aG9yPkJpc2hu

b2ksIFAuIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+

VW5pdiBDYWxnYXJ5LERlcHQgQ2hlbSAmYW1wOyBQZXRyIEVuZ24sQ2FsZ2FyeSBUMm4gMW40LEFs

YmVydGEsQ2FuYWRhPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+S2luZXRpY3Mgb2YgR2Fz

IEh5ZHJhdGUgRm9ybWF0aW9uIGZyb20gTWl4dHVyZXMgb2YgTWV0aGFuZSBhbmQgRXRoYW5lPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVyaW5nIFNjaWVuY2U8L3NlY29u

ZGFyeS10aXRsZT48YWx0LXRpdGxlPkNoZW0gRW5nIFNjaTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxw

ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVyaW5nIFNjaWVuY2U8L2Z1bGwt

dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNjU5LTI2NjY8L3BhZ2VzPjx2b2x1bWU+NDI8L3Zv

bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5ODc8L3llYXI+PC9kYXRlcz48

aXNibj4wMDA5LTI1MDk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOkExOTg3Szk2OTIwMDAxNTwv

YWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6

Ly9XT1M6QTE5ODdLOTY5MjAwMDE1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT5Eb2kgMTAuMTAxNi8wMDA5LTI1MDkoODcpODcwMTYtMTwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPlR1cm5lcjwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJlY051

bT4xMDU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEwNTwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImY1MHoyYXR2a2Z2ZHA1ZWF3dmE1dGVhd3A5c3Jm

NXBkenJkOSIgdGltZXN0YW1wPSIxNTAzMjg1NjAzIj4xMDU8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iQ29uZmVyZW5jZSBQYXBlciI+NDc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5UdXJuZXIsIEQuPC9hdXRob3I+PGF1dGhvcj5Cb3hhbGwsIEou

PC9hdXRob3I+PGF1dGhvcj5ZYW5nLCBTLjwvYXV0aG9yPjxhdXRob3I+S2xlZWhhbWVyLCBELjwv

YXV0aG9yPjxhdXRob3I+S29oLCBDLjwvYXV0aG9yPjxhdXRob3I+TWlsbGVyLCBLLjwvYXV0aG9y

PjxhdXRob3I+U2xvYW4sIEUuIEQuPC9hdXRob3I+PGF1dGhvcj5YdSwgWi48L2F1dGhvcj48YXV0

aG9yPk1hdGhld3MsIFAuPC9hdXRob3I+PGF1dGhvcj5UYWxsZXksIEwuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3BtZW50IG9mIGEgaHlkcmF0

ZSBraW5ldGljIG1vZGVsIGFuZCBpdHMgaW5jb3Jwb3JhdGlvbiBpbnRvIHRoZSBPTEdBMjAwMCB0

cmFuc2llbnQgbXVsdGktcGhhc2UgZmxvdyBzaW11bGF0b3I8L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+RmlmdGggSW50ZXJuYXRpb25hbCBDb25mZXJlbmNlIG9uIEdhcyBIeWRyYXRlczwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjwvZGF0ZXM+PHB1Yi1s

b2NhdGlvbj5Ucm9uZGhlaW0sIE5vd2F5PC9wdWItbG9jYXRpb24+PHVybHM+PC91cmxzPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 5, 34-35, the time lag required for detection would be 2.9 s. Another advantage of the present technique is that the recorded pressure time series data can be used to determine the rate of gas consumption immediately following the detected formation event, thus enabling a quantification of the initial hydrate growth rate, G, (e.g. as in ref. ADDIN EN.CITE <EndNote><Cite><Author>Vysniauskas</Author><Year>1983</Year><RecNum>108</RecNum><DisplayText><style face="superscript">34</style></DisplayText><record><rec-number>108</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1503298144">108</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Vysniauskas, A.</author><author>Bishnoi, P. R.</author></authors></contributors><auth-address>Univ Calgary,Dept Chem &amp; Petr Engn,Calgary T2n 1n4,Alberta,Canada</auth-address><titles><title>A Kinetic-Study of Methane Hydrate Formation</title><secondary-title>Chemical Engineering Science</secondary-title><alt-title>Chem Eng Sci</alt-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>1061-1072</pages><volume>38</volume><number>7</number><dates><year>1983</year></dates><isbn>0009-2509</isbn><accession-num>WOS:A1983RB59700010</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:A1983RB59700010</url></related-urls></urls><electronic-resource-num>Doi 10.1016/0009-2509(83)80027-X</electronic-resource-num><language>English</language></record></Cite></EndNote>34). This information is useful, for example, when assessing the ability of KHIs to suppress hydrate growth separately to their ability to delay hydrate formation ADDIN EN.CITE <EndNote><Cite><Author>Ke</Author><Year>2016</Year><RecNum>21</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>21</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1496384355">21</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ke, W.</author><author>Kelland, M. A.</author></authors></contributors><auth-address>Univ Stavanger, Fac Sci &amp; Technol, Dept Petr Engn, NO-4036 Stavanger, Norway&#xD;Univ Stavanger, Fac Sci &amp; Technol, Dept Math &amp; Nat Sci, NO-4036 Stavanger, Norway</auth-address><titles><title>Kinetic Hydrate Inhibitor Studies for Gas Hydrate Systems: A Review of Experimental Equipment and Test Methods</title><secondary-title>Energy &amp; Fuels</secondary-title><alt-title>Energ Fuel</alt-title></titles><periodical><full-title>Energy &amp; Fuels</full-title></periodical><pages>10015-10028</pages><volume>30</volume><number>12</number><keywords><keyword>molecular-dynamics simulations</keyword><keyword>crystal-growth inhibition</keyword><keyword>mini-loop apparatus</keyword><keyword>polyvinylpyrrolidone pvp concentration</keyword><keyword>water drilling-fluids</keyword><keyword>methane hydrate</keyword><keyword>clathrate-hydrate</keyword><keyword>antifreeze proteins</keyword><keyword>ionic liquids</keyword><keyword>laboratory evaluation</keyword></keywords><dates><year>2016</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>0887-0624</isbn><accession-num>WOS:000390072900002</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000390072900002</url></related-urls></urls><electronic-resource-num>10.1021/acs.energyfuels.6b02739</electronic-resource-num><language>English</language></record></Cite></EndNote>12. Such data allow the measured growth rate to become an important, additional performance metric for KHIs, which can be more difficult to quantify with other testing methods. While any apparatus with a pressure gauge, such as rocking cells or an HP-ALTA using optical detection, can in principle determine a rate of gas consumption, accurately determining the initial growth rate requires a precise determination of gas consumption immediately after the start of hydrate formation. The HPS-ALTA described in this work identifies the moment of formation within 3 seconds, while optical HP-ALTA systems reported to date typically require up to 1 minute. In contrast, before a formation event can be determined in a rocking cell, an unknown and variable amount of hydrate must form to prevent the ball within the rocking cell from moving. Moreover, this initial growth rate can be determined with the HPS-ALTA following each event used to construct the formation probability distribution, making construction of a growth rate distribution from the same data set relatively simple. To determine the initial growth rate immediately following each formation point, the p calculated as part of Method 2 above were used to assess the rate at which the decrease in pressure exceeded the baseline trend of the isochor. The initial gas consumption rate was extracted from a linear fit to a subset of the p-t data, shown as a boxed area in REF _Ref485716398 \h Figure 2(d), starting at the formation point and stopping once the p decreased by a specified threshold amount, which in this work was chosen to be 30 kPa. The magnitude of this threshold must be chosen to be significantly larger than the noise floor in the p data but also sufficiently small that (i) it is reached in all cooling ramps and (ii) the observed growth rate is not slowed by the onset of heat and mass transfer limitations. Growth rate probability distributions were then constructed with a similar method to that used for the formation probability distributions: a histogram with a bin width of 0.2 mols-1 was constructed for the gas consumption rate, and a maximum gas consumption rate applicable across all experiments was chosen to ensure uniformly spaced cumulative probability distributions were produced by numerical integration of the histograms.Results and DiscussionThe impact of shear rateThe apparent driving force required for hydrate formation could be expected to increase with decreasing levels of shear, as mass transfer limitations restrict the rate of gas supersaturation in the aqueous phase. Indeed, the formation probability distributions measured by Maeda and co-workers ADDIN EN.CITE <EndNote><Cite><Author>May</Author><Year>2014</Year><RecNum>1</RecNum><DisplayText><style face="superscript">25</style></DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1488852136">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>May, Eric F.</author><author>Wu, Reuben</author><author>Kelland, Malcolm A.</author><author>Aman, Zachary M.</author><author>Kozielski, Karen A.</author><author>Hartley, Patrick G.</author><author>Maeda, Nobuo</author></authors></contributors><titles><title>Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions</title><secondary-title>Chemical Engineering Science</secondary-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>1-12</pages><volume>107</volume><keywords><keyword>Gas hydrate</keyword><keyword>Nucleation</keyword><keyword>Growth</keyword><keyword>Probability distribution</keyword><keyword>Kinetics</keyword><keyword>Inhibitor</keyword></keywords><dates><year>2014</year><pub-dates><date>4/7/</date></pub-dates></dates><isbn>0009-2509</isbn><urls><related-urls><url> using quiescent HP-ALTA experiments with a methane + propane mixture had median subcoolings around 14 K, increasing to 27 K when kinetic hydrate inhibitors were added to the aqueous phase. Ke and Svartaas, (2011) examined the impact of shear using an autoclave and observed that increased shear-rates shifted the average subcooling down; however, the number of data points in those distributions was limited to 10 due to the low achievable cooling rate. Consequently, the three data sets acquired by Ke and Svartaas, (2011) did not exhibit a clear trend, with the average subcooling measured at 440 rpm being smaller than the averages at both 220 and 660 rpm.The HPS-ALTA was used to measure formation probability distributions for the CH4 – water system at three shear rates: 0, 100 and 700 rpm. The resulting formation histograms and cumulative probability distributions are shown in REF _Ref485722953 \h Figure 3. No unambiguous formation events were detected for the quiescent experiment, even at subcoolings as large as 15?K, which represented the limit of the measurement range for methane (around -5?°C). However, with the application of some shear, statistically robust formation probability distributions could be acquired: at 100 rpm, 135 data points were acquired with an average subcooling of (7.94? 0.14)?K, where the error bound denotes the statistical uncertainty of the mean (i.e. ?/?N , where is the standard deviation of a distribution with N points). At 700 rpm, 547 data points were acquired with an average subcooling of (6.44? 0.07)?K. While application of the maximum achievable shear rate (700 rpm) led to the lowest mean subcooling observed in our experiments, the shift caused by increasing the shear rate from 100 to 700 rpm was at least 7 times smaller than the shift caused by increasing the shear rate from 0 to 100 rpm. This substantial reduction in the shift of the subcooling distribution caused by further increases in shear implies that formation probability measurements made with the HPS-ALTA at 700 rpm are approaching those for systems without mass transfer limitations. Thus, our results indicate that the application of even a small amount of shear within the HPS-ALTA cell can strongly reduce the mass transfer limitations that afflict quiescent experiments.Figure SEQ Figure \* ARABIC 3 Hydrate formation and growth rate probability distributions for CH4 under varying levels of shear for an initial condition of 8.5 MPa at 20?°C and a regeneration temperature of 40?°C. (a) Probability density of hydrate formation and (b) calculated cumulative formation probability versus subcooling, T. Note that no hydrate formation was observed during the quiescent (0 rpm) experiment even at subcoolings of 15 K. The distributions were constructed from 135 measurements at 100 rpm and 547 measurements at 700 rpm. (c) Probability densities and (d) calculated cumulative probability functions for initial hydrate growth rates, G, (as quantified by the rate of gas consumption).Figure 3(c) and (d) show the cumulative probability distributions measured for CH4?hydrates and the corresponding histograms for initial growth rate at 100 and 700 rpm, respectively. The measured distributions further demonstrate how the application of shear reduces mass transfer limitations on hydrate growth, with the average of (1.22??0.04) mols-1 observed at 100 rpm increasing to an average of (3.71?0.06) mols-1 at 700 rpm. The initial growth rate at 100 rpm was lower than that at 700 rpm despite the growth occurring at a higher average subcooling; this implies the growth rates observed at 100 rpm were limited by mass transfer limitations. In contrast, the average growth rate measured at 700 rpm is in excellent agreement with the kinetic rate of 3.0?mols-1 predicted at the average subcooling using the correlation of Turner et al. ADDIN EN.CITE <EndNote><Cite><Author>Turner</Author><Year>2005</Year><RecNum>105</RecNum><DisplayText><style face="superscript">5</style></DisplayText><record><rec-number>105</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1503285603">105</key></foreign-keys><ref-type name="Conference Paper">47</ref-type><contributors><authors><author>Turner, D.</author><author>Boxall, J.</author><author>Yang, S.</author><author>Kleehamer, D.</author><author>Koh, C.</author><author>Miller, K.</author><author>Sloan, E. D.</author><author>Xu, Z.</author><author>Mathews, P.</author><author>Talley, L.</author></authors></contributors><titles><title>Development of a hydrate kinetic model and its incorporation into the OLGA2000 transient multi-phase flow simulator</title><secondary-title>Fifth International Conference on Gas Hydrates</secondary-title></titles><dates><year>2005</year></dates><pub-location>Trondheim, Noway</pub-location><urls></urls></record></Cite></EndNote>5 if the available surface area for growth is taken to be 6?cm2 based on the wetted area of the cylindrical cell. Estimating the interfacial area involved in such reactions is always difficult: the steel-water interface was used in this calculation because (i) it is the interface where nucleation is predicted to be most likely? ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14, and (ii) use of the 3.2?cm2 gas-water interfacial area leads to a kinetic growth rate prediction of only 1.6?mols-1, which is far less than that observed. Regardless of which interfacial area is chosen the growth rates observed provide further evidence that hydrate formation measurements made with the HPS-ALTA at shear rates of 700 rpm approached those corresponding to systems without mass transfer limitations. While probability distributions containing 100 to 200 hydrate formation events have been measured previously using ALTA cellsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+PFJl

Y051bT4xNTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjMs

IDI0LTI1PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg2OTY2MyI+MTU8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjxhdXRo

b3I+V2VsbHMsIERhcnJlbGw8L2F1dGhvcj48YXV0aG9yPkhhcnRsZXksIFBhdHJpY2sgRy48L2F1

dGhvcj48YXV0aG9yPktvemllbHNraSwgS2FyZW4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U3RhdGlzdGljYWwgQW5hbHlzaXMgb2YgU3VwZXJjb29s

aW5nIGluIEZ1ZWwgR2FzIEh5ZHJhdGUgU3lzdGVtczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5F

bmVyZ3kgJmFtcDsgRnVlbHM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5FbmVyZ3kgJmFtcDsgRnVlbHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz4xODIwLTE4Mjc8L3BhZ2VzPjx2b2x1bWU+MjY8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJl

cj48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxpc2JuPjA4ODctMDYyNCYjeEQ7MTUy

MC01MDI5PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAy

MS9lZjIwMTk2NXo8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0

ZT48QXV0aG9yPk1heTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051bT4xPC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9

IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3Rh

bXA9IjE0ODg4NTIxMzYiPjE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

Pk1heSwgRXJpYyBGLjwvYXV0aG9yPjxhdXRob3I+V3UsIFJldWJlbjwvYXV0aG9yPjxhdXRob3I+

S2VsbGFuZCwgTWFsY29sbSBBLjwvYXV0aG9yPjxhdXRob3I+QW1hbiwgWmFjaGFyeSBNLjwvYXV0

aG9yPjxhdXRob3I+S296aWVsc2tpLCBLYXJlbiBBLjwvYXV0aG9yPjxhdXRob3I+SGFydGxleSwg

UGF0cmljayBHLjwvYXV0aG9yPjxhdXRob3I+TWFlZGEsIE5vYnVvPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlF1YW50aXRhdGl2ZSBraW5ldGljIGluaGli

aXRvciBjb21wYXJpc29ucyBhbmQgbWVtb3J5IGVmZmVjdCBtZWFzdXJlbWVudHMgZnJvbSBoeWRy

YXRlIGZvcm1hdGlvbiBwcm9iYWJpbGl0eSBkaXN0cmlidXRpb25zPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVyaW5nIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaWNhbCBFbmdpbmVlcmluZyBTY2llbmNl

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MS0xMjwvcGFnZXM+PHZvbHVtZT4xMDc8

L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+R2FzIGh5ZHJhdGU8L2tleXdvcmQ+PGtleXdvcmQ+

TnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5Hcm93dGg8L2tleXdvcmQ+PGtleXdvcmQ+UHJv

YmFiaWxpdHkgZGlzdHJpYnV0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPktpbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkluaGliaXRvcjwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDE0

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+NC83LzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp

c2JuPjAwMDktMjUwOTwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5z

Y2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2FydGljbGUvcGlpL1MwMDA5MjUwOTEzMDA3ODU5PC91

cmw+PHVybD5odHRwOi8vYWMuZWxzLWNkbi5jb20vUzAwMDkyNTA5MTMwMDc4NTkvMS1zMi4wLVMw

MDA5MjUwOTEzMDA3ODU5LW1haW4ucGRmP190aWQ9ZWUyOWQyMzYtNDU1OC0xMWU1LWFmZGQtMDAw

MDBhYWNiMzYwJmFtcDthY2RuYXQ9MTQzOTg2ODU3Nl8zNjAzZTVhNDQ2YTcyYTQzZjA4Y2UwOTY5

YjQ5MjEzMzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNi9qLmNlcy4yMDEzLjExLjA0ODwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+U293YTwvQXV0aG9y

PjxZZWFyPjIwMTU8L1llYXI+PFJlY051bT4xMTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+

MTE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0

dmtmdmRwNWVhd3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg1MjEzOCI+MTE8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNvd2EsIEJhcmJhcmE8L2F1

dGhvcj48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5TdGF0aXN0aWNhbCBTdHVkeSBvZiB0aGUgTWVtb3J5IEVmZmVjdCBp

biBNb2RlbCBOYXR1cmFsIEdhcyBIeWRyYXRlIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+VGhlIEpvdXJuYWwgb2YgUGh5c2ljYWwgQ2hlbWlzdHJ5IEE8L3NlY29uZGFyeS10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UaGUgSm91cm5hbCBvZiBQaHlzaWNhbCBD

aGVtaXN0cnkgQTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEwNzg0LTEwNzkwPC9w

YWdlcz48dm9sdW1lPjExOTwvdm9sdW1lPjxudW1iZXI+NDQ8L251bWJlcj48ZGF0ZXM+PHllYXI+

MjAxNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTUvMTEvMDU8L2RhdGU+PC9wdWItZGF0ZXM+

PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48

aXNibj4xMDg5LTU2Mzk8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5k

b2kub3JnLzEwLjEwMjEvYWNzLmpwY2EuNWIwNzMwODwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hY3MuanBjYS41YjA3MzA4PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWVkYTwvQXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+PFJl

Y051bT4xNTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjMs

IDI0LTI1PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0dmtmdmRwNWVh

d3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg2OTY2MyI+MTU8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjxhdXRo

b3I+V2VsbHMsIERhcnJlbGw8L2F1dGhvcj48YXV0aG9yPkhhcnRsZXksIFBhdHJpY2sgRy48L2F1

dGhvcj48YXV0aG9yPktvemllbHNraSwgS2FyZW4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U3RhdGlzdGljYWwgQW5hbHlzaXMgb2YgU3VwZXJjb29s

aW5nIGluIEZ1ZWwgR2FzIEh5ZHJhdGUgU3lzdGVtczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5F

bmVyZ3kgJmFtcDsgRnVlbHM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5FbmVyZ3kgJmFtcDsgRnVlbHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz4xODIwLTE4Mjc8L3BhZ2VzPjx2b2x1bWU+MjY8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJl

cj48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxpc2JuPjA4ODctMDYyNCYjeEQ7MTUy

MC01MDI5PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAy

MS9lZjIwMTk2NXo8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0

ZT48QXV0aG9yPk1heTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051bT4xPC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9

IkVOIiBkYi1pZD0iZjUwejJhdHZrZnZkcDVlYXd2YTV0ZWF3cDlzcmY1cGR6cmQ5IiB0aW1lc3Rh

bXA9IjE0ODg4NTIxMzYiPjE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

Pk1heSwgRXJpYyBGLjwvYXV0aG9yPjxhdXRob3I+V3UsIFJldWJlbjwvYXV0aG9yPjxhdXRob3I+

S2VsbGFuZCwgTWFsY29sbSBBLjwvYXV0aG9yPjxhdXRob3I+QW1hbiwgWmFjaGFyeSBNLjwvYXV0

aG9yPjxhdXRob3I+S296aWVsc2tpLCBLYXJlbiBBLjwvYXV0aG9yPjxhdXRob3I+SGFydGxleSwg

UGF0cmljayBHLjwvYXV0aG9yPjxhdXRob3I+TWFlZGEsIE5vYnVvPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlF1YW50aXRhdGl2ZSBraW5ldGljIGluaGli

aXRvciBjb21wYXJpc29ucyBhbmQgbWVtb3J5IGVmZmVjdCBtZWFzdXJlbWVudHMgZnJvbSBoeWRy

YXRlIGZvcm1hdGlvbiBwcm9iYWJpbGl0eSBkaXN0cmlidXRpb25zPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkNoZW1pY2FsIEVuZ2luZWVyaW5nIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaWNhbCBFbmdpbmVlcmluZyBTY2llbmNl

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MS0xMjwvcGFnZXM+PHZvbHVtZT4xMDc8

L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+R2FzIGh5ZHJhdGU8L2tleXdvcmQ+PGtleXdvcmQ+

TnVjbGVhdGlvbjwva2V5d29yZD48a2V5d29yZD5Hcm93dGg8L2tleXdvcmQ+PGtleXdvcmQ+UHJv

YmFiaWxpdHkgZGlzdHJpYnV0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPktpbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkluaGliaXRvcjwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDE0

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+NC83LzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp

c2JuPjAwMDktMjUwOTwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5z

Y2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2FydGljbGUvcGlpL1MwMDA5MjUwOTEzMDA3ODU5PC91

cmw+PHVybD5odHRwOi8vYWMuZWxzLWNkbi5jb20vUzAwMDkyNTA5MTMwMDc4NTkvMS1zMi4wLVMw

MDA5MjUwOTEzMDA3ODU5LW1haW4ucGRmP190aWQ9ZWUyOWQyMzYtNDU1OC0xMWU1LWFmZGQtMDAw

MDBhYWNiMzYwJmFtcDthY2RuYXQ9MTQzOTg2ODU3Nl8zNjAzZTVhNDQ2YTcyYTQzZjA4Y2UwOTY5

YjQ5MjEzMzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNi9qLmNlcy4yMDEzLjExLjA0ODwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+U293YTwvQXV0aG9y

PjxZZWFyPjIwMTU8L1llYXI+PFJlY051bT4xMTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+

MTE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJmNTB6MmF0

dmtmdmRwNWVhd3ZhNXRlYXdwOXNyZjVwZHpyZDkiIHRpbWVzdGFtcD0iMTQ4ODg1MjEzOCI+MTE8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNvd2EsIEJhcmJhcmE8L2F1

dGhvcj48YXV0aG9yPk1hZWRhLCBOb2J1bzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5TdGF0aXN0aWNhbCBTdHVkeSBvZiB0aGUgTWVtb3J5IEVmZmVjdCBp

biBNb2RlbCBOYXR1cmFsIEdhcyBIeWRyYXRlIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+VGhlIEpvdXJuYWwgb2YgUGh5c2ljYWwgQ2hlbWlzdHJ5IEE8L3NlY29uZGFyeS10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UaGUgSm91cm5hbCBvZiBQaHlzaWNhbCBD

aGVtaXN0cnkgQTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEwNzg0LTEwNzkwPC9w

YWdlcz48dm9sdW1lPjExOTwvdm9sdW1lPjxudW1iZXI+NDQ8L251bWJlcj48ZGF0ZXM+PHllYXI+

MjAxNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTUvMTEvMDU8L2RhdGU+PC9wdWItZGF0ZXM+

PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48

aXNibj4xMDg5LTU2Mzk8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5k

b2kub3JnLzEwLjEwMjEvYWNzLmpwY2EuNWIwNzMwODwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hY3MuanBjYS41YjA3MzA4PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 3, 24-25, the repeatability of those measured distributions has generally not been considered. In this work, we attempted to establish the repeatability of measured formation and growth rate probability distributions each containing a similar, statistically significant number of data. REF _Ref491379993 \h \* MERGEFORMAT Figure 4 shows the results of five separate experiments where formation and growth rate probability distributions each containing 67 – 204 data points were measured independently over a 6-month period. Also shown are the cumulative probability distributions produced by combining each of the five independent data sets; these are the same as the 547 point distributions measured for CH4 at 700?rpm shown in REF _Ref485722953 \h Figure 3. The individual formation probability distributions have averages ranging from (5.6 0.2) K to (7.1 0.2) K, with standard deviations ranging from 1.3 to 1.9?K. The growth distributions have mean values in the range (3.2 0.1) mols-1 to (4.3 0.2) mols-1 with standard deviations that range from 1.1 to 1.4 mols-1.While the results shown in REF _Ref491379993 \h \* MERGEFORMAT Figure 4 indicate the level of reproducibility that can be expected for the current HPS-ALTA experiments when maximum shear is applied, they also show that the repeatability of the measured distribution averages is worse than might be expected from purely statistical estimates of its uncertainty. Fluctuations in the mean (derived from about 100 formation measurements) were typically about the same as or slightly smaller than the standard deviation of the underlying distribution (i.e. 1 to 2 K). Experiments conducted with two different HPS-ALTA cells in the same laboratory over several months were observed to produce distributions consistent at the level of 3 K or better if their surface finish, volume, geometry, stirring mechanisms, shear rate, water quality and environmental conditions were similar. Variations in any of these factors were found to produce shifts in the distributions significantly larger than those exhibited in REF _Ref491379993 \h \* MERGEFORMAT Figure 4. Figure SEQ Figure \* ARABIC 4. The repeatability of CH4 hydrate probability distributions measured with the HPS-ALTA for (a) formation (plotted versus subcooling, T) and (b) growth rate, G, as quantified by the rate of gas consumption. The variation of five separate measurements of distributions each containing 67 – 204 points acquired over a 6-month period is shown together with the cumulative distribution produced by combining the separate data sets. Data shown are for an initial condition of 8.5 MPa at 20?°C and a regeneration temperature of 40?°C.Nucleation theory for comparisons with experimentKashchiev and Firoozabadi ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14 analysed hydrate nucleation in binary gas + water systems and presented several key theoretical results. These included expressions for the driving force for nucleation in terms of the supersaturation, , of gas-water solutions along isobaric and isothermal pathways in terms of system over-pressure and subcooling, respectively, as well as the work required to form a cluster of n hydrate ‘building units’ in either the bulk of the aqueous phase (homogeneous nucleation), at the water-gas interface, or at the interface between the water and solid-substrate containing it (heterogeneous nucleation). These expressions indicate that heterogeneous nucleation, as might be expected to occur on the stainless steel cell walls, is more energetically favourable than nucleation either in the bulk solution or on the water-gas interface. This result depends, however, quite sensitively on the hydrate-substrate surface energy which influences both the size and shape of the cluster ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2000</Year><RecNum>78</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>78</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497334005">78</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Kashchiev, D.</author></authors></contributors><titles><title>Nucleation: Basic Theory with Applications</title></titles><dates><year>2000</year></dates><pub-location>UK</pub-location><publisher>Butterworth-Heinemann</publisher><urls></urls></record></Cite></EndNote>13, an effect which is taken into account below via the factor, , which in turn depends on the contact angle, , between the substrate, the hydrate, and the fluid phase.By comparing the work required for the formation of a critically-sized cluster with the available, driving force, seT, where se is the entropy of hydrate dissociation at Te, Kashchiev and Firoozabadi derived expressions for the rate at which critically-sized nuclei will appear. At constant pressure, the nucleation rate, J, is said to be stationary or time-independent if the subcooling (and hence temperature) are constant, and may be calculated using J(?T,T)=Aexp?se?TkBTexp-B'T?T2? ( SEQ Equation \* ARABIC 1)Here A and B' are referred to as the kinetic and thermodynamic parameters, respectively. The kinetic parameter is so named because it accounts for the attachment mechanism of the hydrate building units to the nucleus, and to a first approximation can be taken to be independent of subcooling. The kinetic parameter A has the same dimensions as the nucleation rate (e.g. m-3s-1 for homogenous nucleation in a bulk solution or m-3s-1 for heterogeneous nucleation on a substrate) and is given by the general form:A=z f C0? .( SEQ Equation \* ARABIC 2)Here, f is the attachment frequency of hydrate building units to the hydrate nucleus (~0.5 GHz), C0 is the concentration of nucleation sites and z 0.01 – 1 is the Zeldovich factor ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14. The latter quantifies the reciprocal of the width of the nucleus region. (i.e. the range of cluster sizes for which the formation energy equals that of the critical nucleus within the thermal energy kBT).The thermodynamic parameter, B', is a measure of the work required to form a critical nucleus and is given by the expression:B'=?4c3vh2σef327 kB?se2 ( SEQ Equation \* ARABIC 3)Here c is a shape factor (=?(36)1/3 for spherical, cap or lens-shaped clusters); kB is the Boltzmann constant; vh is the volume of a hydrate building unit containing one gas molecule and nw water molecules, where for sI CH4 hydrates vh = 0.216 nm3 (nw?=?5.75), while for the sII hydrates formed from the gas mixture, vh = 0.647 nm3 (nw?=?5.67); se = 21.1 kB for CH4 hydrates and 17.9 kB for the gas mixture ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>77</RecNum><DisplayText><style face="superscript">16</style></DisplayText><record><rec-number>77</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333528">77</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Driving force for crystallization of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>220-230</pages><volume>241</volume><number>1-2</number><keywords><keyword>aqueous solution</keyword><keyword>crystallization</keyword><keyword>supersaturated solutions</keyword><keyword>ethane hydrate</keyword><keyword>methane hydrate</keyword><keyword>methane</keyword><keyword>ethane</keyword><keyword>nucleation</keyword><keyword>kinetics</keyword><keyword>growth</keyword></keywords><dates><year>2002</year><pub-dates><date>May</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000176143800032</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000176143800032</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01134-X&#xD;Doi 10.1016/S0022-0248(02)01134-X</electronic-resource-num><language>English</language></record></Cite></EndNote>16; and σef= Ψσ is the effective surface free energy of the hydrate-solution interface. Kashchiev and Firoozabadi took = 20 mJm-2 based on estimates of the surface free energy of water-ice interfaces ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14. The quantity is a number between 0 and 1 that can be calculated from the substrate/hydrate/fluid contact angle, , via Ψ=142+cosθ1-cosθ21/3 ( SEQ Equation \* ARABIC 4)The contact angle is set, via Young’s equation, by the differences in the surface free energies of the three interfaces. If the contact angle is 180 (i.e. completely non-wetting), = 1 and ef is equivalent to the surface free energy of the water-hydrate interface as would be applicable to homogeneous nucleation of a spherical cluster. For heterogeneous nucleation, the size and shape of the cluster is affected by the hydrate-substrate interaction, resulting in < 1. For systems in which the time required to detect a new phase is limited only by the nucleation rate, (i.e. subject to the mononuclear nucleation mechanism), the probability of observing hydrate formation as a function of time for a constant driving force is given by ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2000</Year><RecNum>78</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>78</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497334005">78</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Kashchiev, D.</author></authors></contributors><titles><title>Nucleation: Basic Theory with Applications</title></titles><dates><year>2000</year></dates><pub-location>UK</pub-location><publisher>Butterworth-Heinemann</publisher><urls></urls></record></Cite></EndNote>13:Pt=1-exp-J*t? ( SEQ Equation \* ARABIC 5)where J* is the stationary nucleation rate given by eq REF StationaryNucleationRate \h (1) multiplied by either the sample volume V for homogenous nucleation in the bulk, or the interfacial area a for heterogeneous nucleation. Under the assumption that the time lag required to reach the stationary nucleation rate at a given subcooling is negligible compared with the time taken to change the subcooling (i.e. the experimental cooling rate is comparatively slow), eq REF StationaryNucleationRate \h (1) can be substituted into eq REF ExponentialProbabilityDistn \h (5) to provide a functional form to represent the measured cumulative subcooling formation probability distributions. Replacing t in eq REF StationaryNucleationRate \h (1) by ΔT/β, where is the cooling ramp rate gives:P?T=1-exp-a Aexp?se?TkBTexp-B'T?T2?ΔT/β? ( SEQ Equation \* ARABIC 6)for heterogeneous nucleation. If an independent estimate of a is available, regression of the measured subcooling formation probability distributions to this working equation by treating B' and A as adjustable parameters allows direct comparisons of experiment with the predictions of nucleation theory. In the least squares objective function constructed using Eq REF WorkingEqn \h (6), the adjustable parameters B' and A are somewhat orthogonal, with B' principally determining the location of the distribution’s median subcooling and A principally determining the distribution’s width. Tests of theory and kinetic inhibitor performanceThe 542 point subcooling formation probability distribution measured for pure CH4 at 700 rpm was regressed to eq REF WorkingEqn \h \* MERGEFORMAT (6), as were subcooling formation probability distributions measured at 700 rpm for the sII-forming natural gas mixture with varying concentrations of the commercial KHI, Luvicap EG (BASF Global Oilfield Solutions). In the Luvicap EG formulation, the polymer polyvinylcapralactam (PVCap) is delivered in an ethylene glycol solvent at a concentration of 41 wt%. Although ethylene glycol is a thermodynamic hydrate inhibitor ADDIN EN.CITE <EndNote><Cite><Author>Sloan</Author><Year>2008</Year><RecNum>18</RecNum><DisplayText><style face="superscript">33</style></DisplayText><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1489552441">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sloan, E. D.</author><author>Koh, C. A.</author></authors></contributors><titles><title>Clathrate Hydrates of Natural Gases, Third Edition</title><secondary-title>Clathrate Hydrates of Natural Gases, Third Edition</secondary-title><alt-title>Chem Ind-Ser</alt-title></titles><periodical><full-title>Clathrate Hydrates of Natural Gases, Third Edition</full-title><abbr-1>Chem Ind-Ser</abbr-1></periodical><alt-periodical><full-title>Clathrate Hydrates of Natural Gases, Third Edition</full-title><abbr-1>Chem Ind-Ser</abbr-1></alt-periodical><pages>1-701</pages><volume>119</volume><dates><year>2008</year></dates><accession-num>WOS:000269314900010</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000269314900010</url></related-urls></urls><language>English</language></record></Cite></EndNote>33, when the KHI concentration is 1 wt% of the aqueous phase, the ethylene glycol has a negligible effect on the hydrate equilibrium temperature, shifting it by only 0.2 K ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>77</RecNum><DisplayText><style face="superscript">16</style></DisplayText><record><rec-number>77</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333528">77</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Driving force for crystallization of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>220-230</pages><volume>241</volume><number>1-2</number><keywords><keyword>aqueous solution</keyword><keyword>crystallization</keyword><keyword>supersaturated solutions</keyword><keyword>ethane hydrate</keyword><keyword>methane hydrate</keyword><keyword>methane</keyword><keyword>ethane</keyword><keyword>nucleation</keyword><keyword>kinetics</keyword><keyword>growth</keyword></keywords><dates><year>2002</year><pub-dates><date>May</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000176143800032</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000176143800032</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01134-X&#xD;Doi 10.1016/S0022-0248(02)01134-X</electronic-resource-num><language>English</language></record></Cite></EndNote>16. REF _Ref491637849 \h \* MERGEFORMAT Figure 5 shows the formation probability distributions, each with more than 100 data points, measured for the gas mixture in the presence of 0, 0.5 and 1 wt% KHI. Results from the least squares regressions of eq REF WorkingEqn \h \* MERGEFORMAT (6) to the data are listed in REF _Ref491637684 \h \* MERGEFORMAT Table 1. Table SEQ Table \* ARABIC 1. Values of best fit parameters B' and A obtained by regression of eq REF WorkingEqn \h \* MERGEFORMAT (6) to the measured formation probability distributions, with corresponding values of and derived from B'. The values of A* listed were obtained by constraining B'?to a value of?4.4??105 K3 during the regression, which, for the gas mixture, corresponds to a hydrate-substrate contact angle of 25.2. The value of B'?used in the constrained regression is the average of the values obtained from the two-parameter fits to the gas mixture data in the presence of KHI. The fits obtained for the gas mixture are shown in REF _Ref491637849 \h \* MERGEFORMAT Figure 5. GasKHI / wt%B' / K3 / deg.A / m-2s-1A* / m-2s-1Pure CH402.1??1040.3922211 1015Mixture04.3??1040.0914404.1??1011Mixture0.53.9??1050.18249.6??1066.4??107Mixture14.9 ?1050.19261.1??1062.7??105Figure SEQ Figure \* ARABIC 5. Hydrate formation probability distributions for the gas mixture with varying concentrations of the Kinetic Hydrate Inhibitor (KHI), Luvicap EG, in the aqueous phase. (a) Probability density of hydrate formation and (b,c) calculated cumulative formation probability versus subcooling, T. The shear rate and regeneration temperature were, respectively, 700 rpm and 20C. The initial condition was 8.5 MPa at 20°C The solid black lines in (b) are fits of eq REF WorkingEqn \h \* MERGEFORMAT (6) to each dataset. The dashed black lines in (c) are fits of eq REF WorkingEqn \h \* MERGEFORMAT (6) to each dataset while keeping B' fixed at 4.4 105?K3. The best fit parameter values are listed in REF _Ref491637684 \h \* MERGEFORMAT Table 1: these compare reasonably with theoretical expectations of B' based on eq REF BparamEqn \h \* MERGEFORMAT (3) but are quite different to theoretical expectations of A based on eq REF AparamEqn \h \* MERGEFORMAT (2).The formation probability distributions measured at 700 rpm for pure CH4 and the gas mixture in the absence of KHI are quite similar with average subcoolings of (6.45? 0.07)?K and (7.65? 0.12)?K respectively, and standard deviations of?1.6 and 1.3?K, respectively. The addition of the KHI had two primary effects relative to the baseline formation distribution obtained for the gas mixture in the absence of Luvicap EG: it (i) increased the average subcooling (by almost 4?K at 1?wt?%), and (ii) decreased the standard deviation of the hydrate formation probability distribution (by a factor of around 3). Consequently, the KHI can be seen to suppress hydrate formation both by translating the probability distribution to higher subcoolings and by making it more deterministic and less stochastic.These qualitative differences in the distributions are reflected in the numerical best-fit values of A and B when they were both treated as adjustable parameters in the regression of eq REF WorkingEqn \h (6) to the measured cumulative formation probability distributions. These fits, shown as black solid lines in REF _Ref491637849 \h Figure 5(b), reproduced the measured distributions well, with a root mean square deviation of 0.02 or less in all cases. To obtain the fits, we employed the NonlinearModelFit function in Mathematica 10.1 (Wolfram Research Inc.), which used the Levenberg-Marquardt algorithm and was relatively robust with respect to the choice of the initial values of A and B. Based on the nucleation model of Kashchiev and Firoozabadi? ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14 discussed above, the surface area available for nucleation was assumed to be only the water-stainless steel interface, and hence a?was set equal to 6 cm2 in eq REF WorkingEqn \h (6). Nucleation theory can be used to try and interpret the best-fit values of B and A obtained for the regression using eqs REF AparamEqn \h \* MERGEFORMAT (2), REF BparamEqn \h \* MERGEFORMAT (3) and REF PsiEqn \h \* MERGEFORMAT (4). This comparison with theory works best for the thermodynamic parameter. The best-fit values of B obtained for pure CH4 and the gas mixture in the absence of KHI ( REF _Ref491637684 \h Table 1) correspond to contact angles for the hydrate nucleus on the steel-water interface of 22 and 14, respectively.?The factor of ten increase in the best-fit values of B for the gas mixture obtained in the presence of the KHI corresponds to an increase in the contact angle to 24-26. Nevertheless, both of these suggest that hydrate preferentially ‘wets’ steel, which is consistent with the initial assumption that this interface is energetically favorable for nucleation. On the other hand, the best fit values of A ( REF _Ref491637684 \h Table 1) are vastly smaller than the theoretical estimates reported by Kashchiev and Firoozabadi of A = 4 1026?m2s-1 for heterogeneous nucleation ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14. Such a value of A would produce subcooling formation probability distributions that approach step-functions, with virtually no width measurable within the finite temperature resolution of the HPS-ALTA. The fact that much greater distribution widths are observed in these and all other reported experimental hydrate formation probability distributions suggests that some other phenomenon, likely acting on macroscopic length scales and not considered by nucleation theory, is responsible for the stochastic nature of the measurements. Nevertheless, whatever gives rise to this macroscopic stochastic behavior, it is suppressed significantly in the presence of the KHI. This observation implies that the values of Band thus extracted from the KHI-based data are more representative than those obtained from the inhibitor-free distributions because of correlations between the parameters adjusted during the regression; a ten-fold change in B caused by a change in A by a factor of 105 may be considered a relatively weak correlation. Accordingly, we re-fit all the measured high-shear distributions with B constrained at 4.4??105 K3 (?= 25.2 for the gas mixture) and the kinetic parameter as the only adjustable variable (denoted as A* for clarity). The results show that the averages of the observed distributions can be represented by the same thermodynamic parameter, and that the apparent variation in the obtained with and without KHI could well be an artefact of parameter correlation. Furthermore, while not representing the distribution widths measured for systems without KHI, the values of A* do follow a decreasing trend with increasing KHI concentration, which is consistent with the inhibition mechanism discussed by Kashchiev and Firoozabadi ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14, namely the suppression of nucleation sites by adsorption thereon by inhibitor molecules. Finally, we consider the impact of the KHI on the initial growth rate of the hydrate phase. Unlike many current techniques used to qualify KHI performance, the HPS-ALTA can be used to quantify an inhibitor’s suppression of formation probability separately to its suppression of subsequent growth. REF _Ref491729037 \h Figure 6(a) shows the pressure and temperature time series data acquired for two individual formation measurements from systems with either DI water or a 1 wt% KHI solution. All other experimental parameters were the same for the two measurements. The comparison of these two runs shows how the KHI not only retards hydrate formation, forcing it to occur at larger subcoolings, but also inhibits the subsequent hydrate growth. This can be seen most clearly from the difference in the final pressure values measured at the end of the cooling cycle: the pressure remains higher in the system with the KHI due to a reduced gas consumption by the hydrate phase. REF _Ref491729037 \h Figure 6(c) shows the initial growth rate probability distributions for varying concentrations of KHI in the aqueous phase. As with the formation probability distributions, the addition of KHI both shifts and narrows the growth rate distribution: growth is impeded and the growth rate is less stochastic. Interestingly, little difference was observed in the initial growth rates for 0.5 wt% and 1 wt% KHI despite the appreciable further increase in average formation subcooling observed for the 1 wt% KHI solution.Figure SEQ Figure \* ARABIC 6. Example pressure (a) and temperature (b) time series data for the gas mixture obtained in two cooling ramps, one with and one without KHI present in the aqueous phase. The experimental conditions were as follows: 2 Kmin-1 cooling rate, 700 rpm shear rate, regeneration temperature of 20?C, and a 5-minute holding time at the regeneration temperature. (c) Histograms for the initial growth rate, G, for the gas mixture as quantified by the rate of gas consumption, for varying concentrations of Luvicap EG, in the aqueous phase.The data shown in REF _Ref491637849 \h Figure 5 and REF _Ref491729037 \h Figure 6 clearly illustrate the key advantages of the HPS-ALTA in the context of quantitatively assessing the performance of KHIs relative to more conventional methods such as rocking cells and standard autoclaves. First, the resolution with which the shift in mean subcooling caused by a KHI can be determined from a conventional data set consisting of around 10 or so formation events is significantly lower than that afforded by the 100 or more measurements acquired with the HPS-ALTA in a comparable time frame. Second, without this statistically significant number of measurements, a key mechanism by which the KHI reduces the likelihood (and hence risk) of hydrate formation would remain unresolved: the three-fold reduction in the standard deviation of the distribution. Finally, data such as those shown in REF _Ref491729037 \h Figure 6 provide the opportunity to quantify the extent to which the KHI inhibits growth in addition to delaying formation. This last capability is unique to the HPS-ALTA described here, as previous ALTA-type experiments have generally relied on visual detection of hydrate formation, with no ability to quantify the minimum amount of detectable hydrate or the rate of hydrate growth. Summary and ConclusionsA new apparatus and method for experimental studies of gas hydrate formation and growth allows statistically large numbers of hydrate formation events to be measured automatically in reasonably short time frames. The use of gas consumption to infer hydrate formation means the minimum amount of hydrate formation detectable can be quantitatively estimated at around 1 mol (or 17 g), corresponding to a maximum delay of ~3 seconds from the actual nucleation event to experimental detection. Critically, the application of shear during gas hydrate experiments with an ALTA was demonstrated for the first time, allowing the impact of mass transfer limitations on the measured formation distributions to be assessed. For the cell geometry used in this work, shear rates of 700 rpm were shown to effectively eliminate mass transfer limitations, as demonstrated by the consistency of measured growth rates with values predicted using the method of Turner et al. ADDIN EN.CITE <EndNote><Cite><Author>Turner</Author><Year>2005</Year><RecNum>105</RecNum><DisplayText><style face="superscript">5</style></DisplayText><record><rec-number>105</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1503285603">105</key></foreign-keys><ref-type name="Conference Paper">47</ref-type><contributors><authors><author>Turner, D.</author><author>Boxall, J.</author><author>Yang, S.</author><author>Kleehamer, D.</author><author>Koh, C.</author><author>Miller, K.</author><author>Sloan, E. D.</author><author>Xu, Z.</author><author>Mathews, P.</author><author>Talley, L.</author></authors></contributors><titles><title>Development of a hydrate kinetic model and its incorporation into the OLGA2000 transient multi-phase flow simulator</title><secondary-title>Fifth International Conference on Gas Hydrates</secondary-title></titles><dates><year>2005</year></dates><pub-location>Trondheim, Noway</pub-location><urls></urls></record></Cite></EndNote>5.The KHI data acquired provided measures of the chemical’s effect on (i) increase in mean subcooling (ii) reducing the distribution’s width, and (iii) suppressing the initial growth rate. While one or all three of these factors may be central to the selection of a KHI for operational purposes, conventional performance tests with autoclaves or rocking typically provide insight into only one of these attributes or, at best, an amalgam of average delay and growth rate suppression. Additional information about how a particular KHI achieves a given level of performance may facilitate improvements. Comparisons with the predictions of the nucleation theory framework presented by Kashchiev and Firoozabadi ADDIN EN.CITE <EndNote><Cite><Author>Kashchiev</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="f50z2atvkfvdp5eawva5teawp9srf5pdzrd9" timestamp="1497333504">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kashchiev, D.</author><author>Firoozabadi, A.</author></authors></contributors><auth-address>Reservoir Engn Res Inst, Palo Alto, CA 94306 USA&#xD;Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria</auth-address><titles><title>Nucleation of gas hydrates</title><secondary-title>Journal of Crystal Growth</secondary-title><alt-title>J Cryst Growth</alt-title></titles><periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></periodical><alt-periodical><full-title>Journal of Crystal Growth</full-title><abbr-1>J Cryst Growth</abbr-1></alt-periodical><pages>476-489</pages><volume>243</volume><number>3-4</number><keywords><keyword>aqueous solutions</keyword><keyword>nucleation</keyword><keyword>gas hydrates</keyword><keyword>kinetic inhibitors</keyword><keyword>methane hydrate</keyword><keyword>crystal-growth</keyword><keyword>induction time</keyword><keyword>precipitation</keyword><keyword>mechanisms</keyword><keyword>efficiency</keyword><keyword>additives</keyword><keyword>ethane</keyword><keyword>tests</keyword></keywords><dates><year>2002</year><pub-dates><date>Sep</date></pub-dates></dates><isbn>0022-0248</isbn><accession-num>WOS:000177685000016</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000177685000016</url></related-urls></urls><electronic-resource-num>Pii S0022-0248(02)01576-2&#xD;Doi 10.1016/S0022-0248(02)01576-2</electronic-resource-num><language>English</language></record></Cite></EndNote>14 for gas hydrates were made with formation probability distributions measured at the maximum achievable shear rate. Experimental values for the thermodynamic parameter B were consistent with theoretical predictions given steel-hydrate-water contact angles of 14 to 26. In contrast, however, the experimental values of the kinetic parameter A differ significantly from those predicted by theory. This suggests that the observed distribution widths, which are much larger than would be expected based on considerations of microscopic processes, are the result of phenomena acting over macroscopic length scales. Addition of a KHI caused the value of A extracted from the measured distributions to increase towards the theoretical value; potentially such inhibitors could be used to suppress the macroscopic effects that broaden distributions and facilitate further tests of theory. AcknowledgementsThis work was funded by Shell and the Australian Research Council through DP150100341 and also IC15001019 as part of the ARC Training Centre for LNG Futures. The HPS-ALTA was initially designed and constructed by Reuben Wu and David Amm. PLS was the recipient of an Australian Research Council Discovery Early Career Award (project number DE140101094) funded by the Australian Government. We thank Sebastian Schulze, Aslan Goskan and Juwoon Park for their contributions to the experiments and data analysis routines. References ADDIN EN.REFLIST 1.Sloan, E. D., A changing hydrate paradigm - from apprehension to avoidance to risk management. Fluid Phase Equilibr 2005, 228, 67-74.2.Makogon, Y. F., Hydrates of Hydrocarbons. PennWell Publishing Company: Tulsa, OK, USA, 1997; p 482.3.Maeda, N.; Wells, D.; Hartley, P. G.; Kozielski, K. A., Statistical Analysis of Supercooling in Fuel Gas Hydrate Systems. Energy & Fuels 2012, 26 (3), 1820-1827.4.Abay, H. K.; Svartaas, T. M., Effect of Ultralow Concentration of Methanol on Methane Hydrate Formation. Energy & Fuels 2010, 24, 752-757.5.Turner, D.; Boxall, J.; Yang, S.; Kleehamer, D.; Koh, C.; Miller, K.; Sloan, E. D.; Xu, Z.; Mathews, P.; Talley, L., Development of a hydrate kinetic model and its incorporation into the OLGA2000 transient multi-phase flow simulator. In Fifth International Conference on Gas Hydrates, Trondheim, Noway, 2005.6.Matthews, P. N.; Notz, P. K.; Widener, M. W.; Prukop, G., Flow Loop Experiments Determine Hydrate Plugging Tendencies in the Field. Annals of the New York Academy of Sciences 2006, 912 (1), 330-338.7.Askvik, K. M., Natural Kinetic Inhibition of Gas Hydrates in Oil and Gas Production. In 9th International Conference on gas Hydrates, Denver, CO, USA, 2017.8.Glenat, P.; Devoisselle, R.; Pegazy, L.; Bourg, P.; Pere, M.; Arnault, R., Natural Kinetic Hydrates Inhibitors of Crude Oils. In 9th International Conference on Gas Hydrates, Denver, CO, USA, 2017.9.Nagappayya, S. G.; Bartels, J. W., Old Technology, New Market - Low Dosage Hydrate Inhibitor in US Onshore. In 9th International Conference on Gas Hydrates, Denver, CO, USA, 2017.10.Sinquin, A.; Oral, O.; Rivereau, A.; Glenta, P.; Devoisselle, R., Commercial Anti-Agglomerates Ways of Action in Simple Gas/Condensate/Water Systems. In 9th International Conference on Gas Hydrates, Denver, CO, USA, 2017.11.May, E. F.; Marsh, K. N.; Goodwin, A. R. H., Frontier Oil and Gas: Deep-Water and the Arctic. In Future Energy (Second Edition): Improved, Sustainable and Clean Options for our Planet, Letcher, T., Ed. 2014; pp 75-93.12.Ke, W.; Kelland, M. A., Kinetic Hydrate Inhibitor Studies for Gas Hydrate Systems: A Review of Experimental Equipment and Test Methods. Energy & Fuels 2016, 30 (12), 10015-10028.13.Kashchiev, D., Nucleation: Basic Theory with Applications. Butterworth-Heinemann: UK, 2000.14.Kashchiev, D.; Firoozabadi, A., Nucleation of gas hydrates. J Cryst Growth 2002, 243 (3-4), 476-489.15.Kashchiev, D.; Firoozabadi, A., Induction time in crystallization of gas hydrates. J Cryst Growth 2003, 250 (3-4), 499-515.16.Kashchiev, D.; Firoozabadi, A., Driving force for crystallization of gas hydrates. J Cryst Growth 2002, 241 (1-2), 220-230.17.Svartaas, T. M.; Ke, W.; Tantciura, S.; Bratland, A. U., Maximum Likelihood Estimation-A Reliable Statistical Method for Hydrate Nucleation Data Analysis. Energy & Fuels 2015, 29 (12), 8195-8207.18.Ke, W.; Svartaas, T. M.; Abay, H. K. In An experimental study on SI hydrate formation in presence of methanol, PVP and PVCAP in an isochoric cell, 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, Edinburgh, Scotland, United Kingdom, 2011.19.Ke, W.; Svartaas, T. M. In Effects of stirring and cooling on methane hydrate formation in a high-pressure isochoric cell, 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, Edinburgh, Scotland, United Kingdom, 2011.20.Lone, A.; Kelland, M. A., Exploring Kinetic Hydrate Inhibitor Test Methods and Conditions Using a Multicell Steel Rocker Rig. Energy & Fuels 2013, 27 (5), 2536-2547.21.Wilson, P. W.; Lester, D.; Haymet, A. D. J., Heterogeneous nucleation of clathrates from supercooled tetrahydrofuran (THF)/water mixtures, and the effect of an added catalyst. Chemical Engineering Science 2005, 60 (11), 2937-2941.22.Barlow, T. W.; Haymet, A. D. J., Alta - an Automated Lag-Time Apparatus for Studying the Nucleation of Supercooled Liquids. Review of Scientific Instruments 1995, 66 (4), 2996-3007.23.Maeda, N., Measurements of gas hydrate formation probability distributions on a quasi-free water droplet. Review of Scientific Instruments 2014, 85 (6), 065115.24.Sowa, B.; Maeda, N., Statistical Study of the Memory Effect in Model Natural Gas Hydrate Systems. The Journal of Physical Chemistry A 2015, 119 (44), 10784-10790.25.May, E. F.; Wu, R.; Kelland, M. A.; Aman, Z. M.; Kozielski, K. A.; Hartley, P. G.; Maeda, N., Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. Chemical Engineering Science 2014, 107, 1-12.26.Maeda, N., Development of a high pressure electrical conductivity probe for experimental studies of gas hydrates in electrolytes. Review of Scientific Instruments 2013, 84 (1).27.Sowa, B.; Zhang, X. H.; Kozielski, K. A.; Dunstan, D. E.; Hartley, P. G.; Maeda, N., Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe. Review of Scientific Instruments 2014, 85 (11).28.Elliott, C.; Vijayakumar, V.; Zink, W.; Hansen, R., National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement. SLAS TECHNOLOGY: Translating Life Sciences Innovation 2007, 12 (1), 17-24.29.McKinney, W. In Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference, Austin, TX, USA, van der Walt, S.; Millman, J., Eds. Austin, TX, USA, 2010; pp 51-56.30.Hunter, J. D., Matplotlib: A 2D graphics environment. Comput Sci Eng 2007, 9 (3), 90-95.31.van der Walt, S.; Colbert, S. C.; Varoquaux, G., The NumPy Array: A Structure for Efficient Numerical Computation. Comput Sci Eng 2011, 13 (2), 22-30.32.Akhfash, M.; Arjmandi, M.; Aman, Z. M.; Boxall, J.; May, E. F., Gas Hydrate Thermodynamic Inhibition with MDEA for Reduced MEG Circulation. J Chem Eng Data 2017, 62, 2578-2583.33.Sloan, E. D.; Koh, C. A., Clathrate Hydrates of Natural Gases, Third Edition. Chem Ind-Ser 2008, 119, 1-701.34.Vysniauskas, A.; Bishnoi, P. R., A Kinetic-Study of Methane Hydrate Formation. Chemical Engineering Science 1983, 38 (7), 1061-1072.35.Englezos, P.; Kalogerakis, N.; Dholabhai, P. D.; Bishnoi, P. R., Kinetics of Gas Hydrate Formation from Mixtures of Methane and Ethane. Chemical Engineering Science 1987, 42 (11), 2659-2666.Table of contents figure ADDIN ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download

To fulfill the demand for quickly locating and searching documents.

It is intelligent file search solution for home and business.

Literature Lottery

Related searches