Sheryl Hoffmann - Home



CHOOSING THE RIGHT GLOVEby Sheryl Hoffmann BSc, Grad Dip Occ Healthc/o Concrodia College45 Cheltenham StHighgate 5062Phone: 8272 0444Email: shoffmann@concordiua.sa.edu.au? Sheryl Hoffmann, 2010INTRODUCTIONChoosing the right glove for the school Science laboratory area is a complicated job due to the variety in the task performed. No one glove will be suitable for all tasks so a decision must be made on what glove is the most appropriate for each task. The decision will be based on the hazards of the tasks, both physical and chemical, and the style and characteristics of gloves available for purchase. First all hazards that may impact on hands is listed, followed by problems with wearing gloves, then all the factors that need to be considered when deciding on which glove to wear. Next, terms like penetration, permeation and breakthrough time are explained to help understand the physical characteristics of gloves materials when in contact with chemicals. This understanding is needed to understand issues of wearing, cleaning and disposal of gloves and when alternatives are a better option. The paper finishes with a discussion on how gloves are characterized and labeled, to assist in purchasing. This paper looks focuses on the Science area but the principles can be used in any area.WHY DO WE WEAR GLOVES?Gloves are worn to protect the hands against a wide range of hazards. Including:Mechanical hazardsCutsPunctures including needles and broken glassFriction / AbrasionThermalContact with extreme coldContact with extreme heatFlameRadiant heatMolten metalsBiologicalMicrogiological OrganismsEnzymesIrritatant plantsSensitisersVibrationElectric ShockRadiationChemicalsCorrosive eg acidsToxic eg pesticides, laboratory chemicalsProvoke allergic reactions / sensitisers eg latexProlonged contact with waterContact with dirt, oil and greaseWHEN SHOULD GLOVES BE WORN?Protective gloves should be worn when a risk assessment of the task to be performed, has identify hazards that can be minimised by the wearing of gloves. The wearing of gloves is the least desirable alternative when selecting a control measure using the Hierarchy of Controls. Often they are worn if other more preferred measures do not sufficiently minimise the risks.PROBLEMS WITH GLOVESGloves can cause problems which should be addressed or they may reduce the likeihood of gloves being worn when they should be. These problems including:Reduced dexterityReduced tactile sensationAccumulation of sweat under the gloveAllergic reactionsTime to put on and take offPoor fit or comfortCostMaintenance and cleaningInconvienentInterfer with the workWorkplace conditions – heat, wet work, repetitive movementWHAT NEEDS TO BE CONSIDERED WHEN SELECTING GLOVES?Hazards to be protected againstThe main issue in selecting a glove is the hazards encountered while performing the task. The risk assessment is a vital process to help identify all the hazards likely to be encountered.SizeThe sizing of gloves can be found in the following table: Glove sizesSymbolSizeXS7 inchesS7 - 8 inchesM8 - 9 inchesL9 - 10 inchesXL10 inchesThe size of the hand is taken 20mm above the outstretched thumb, across the knuckles, as indicated in the diagramm below. The measure in inches gives the standard size of the glove. The length of the hand is also standardised.2089458-310187Comfort and fitComfort and fit are important. An ill fitted or uncomfortabel glove is less likely to be worn. Glove construction Gloves may be supported or unsupported. Supported gloves have a cotton backing that gives extra thickness and stability to the glove. This reduced the dexterity somewhat but is generally able to withstand a higher level of abrasion and chemical attack.Some gloves have seams but many people prefer the knitted style of gloves that do not have seams. (pictured below) This type of glove is often a knitted glove that has the palm and finger areas dipped in a protective coating such as latex. This partical covering also allow the hand to breathe more easily. The protective coating may also be textured to provide extra grip for wet or oily situations.Gauntlet style gloves provide protection to the forearms as well as the hands. This may be useful when taking hot items out of an oven or to prevent liquids slopping over the top of gloves for example when washing glassware.5.5LinersSeparate liners may also be worn under gloves. Cotton liners absorb sweat and increase the thermal properties of the glove. Other liners may increase the level of protection from cuts and abrasions.Disposable or reusableDisposable gloves are thin. This allows good dexterity and tactile sensation but they have little chemical or abrasion resistants. They are designed for incidental chemical contact such as splashes or spills, not intentional contact such as immersion. They are designed for single use only and should never be reused. They should be replaced regularly. They should also be replaced immediately if they come in contact with chemicals, including incidental contact such as splashes or spills. They are not suitable for aggressive or highly hazardous chemicals. They are also not suitable for for tasks with significant mechanical stresses, as they easily tear or puncture. Disposable gloves may be powered, low powder or not powdered. Powder assists the wear to put on and take off the glove. Powered latex gloves can increase the liklihood of developing a latex allergy.Reusable Gloves are generally thicker with a lower level of dexterity, but they have greater protection against abrasion, are less likely to tear and will resist chemical attack for longer. They require cleaning and inspection before reuse.5.6Level of DexterityFor many tasks in the Science laboratory a high level of dexterity and tactile sensation is required. Ensure That No Additional Hazards Are IntroducedIt is important to perform a risk assessment on wearing gloves while performing the task. Additional hazards may be introduced. If this is the case an alternative to gloves or a difference type of glove might need to be considered.In all case it is important that the employee who is doing the task and wearing the glove is consulted. They must be acceptable to the wearer or they are unlikely to wear them. Cultural differences may also influence the type of glove, for example cultural differecnce may rule out the use of pigskin.5.8Risks From Chemical ExposureChemical exposure may cause skin damage or the chemical may be absorbed through the skin and cause internal effects. In addition contact with liquid chemicals or solvents may dry the skin causing it to crack, as will prolonged contact with water or excessive or improper skin cleaning.6.0UNDERSTANDING THE PHYSICAL CHARACTERISTICS OF GLOVES MATERIAL WHEN IN CONTACT WITH CHEMICALSGloves are not the impervious barrier that most people think they are. Any chemical will eventually get through any glove. There are three factors that affect the physical characteristics of glove material: degradation, permeation and breakthrough time. Each must be understood so that the correct glove material is selected for a given chemical and application.A glove may be degraded by a chemical. In this case the chemical changes the physical and/or chemical properties of the glove. This is often (but not always) visible to the naked eye. eg latex gloves will disintegrate in acetone. Signs of degradation include swelling, loss of flexibility and tackinessA glove may have seams, pinholes or other imperfections in which a chemical or microorganism may pass through. This is called penetration.PENETRATION OutsideInside(chemical)(hand) Pinhole, seam or other imperfection GloveA chemical will also diffuse through the glove material on a molecular level from the outside to the inside. This process is called permeation. Permeation occurs through an intact glove without damaging the glove material.PERMEATION OutsideInside(chemical)(hand) GloveThere are two factors to consider when looking at permeation of a chemical through a glove. Permeation rate - the rate at which a substance permeates the glove material. Breakthrough time - the time elapsed between initial contact of a chemical with the outside surface of the glove material and the time at which the chemical can be detected at the inside surface of the material.Once breakthrough has occurred the chemical will be in contact with the skin and may cause damage to the skin. Depending on the chemical it may also permeate the skin and be absorbed into the body, and the wearer may be unaware that this is occurring. When selecting a glove both factors must be considered together. A glove with a short breakthrough time may be more suited to an application than another with a longer breakthrough time, if the permeation rate is more favorable. ie less chemical will get through the glove for the duration of the task. This is illustrated below. Less chemical gets through with Glove 1 (5 minute breakthrough time + low permeation rate) than with Glove 2 (15 minute breakthrough time + high permeation), during a 30 minute task.Glove 1Glove 2For permeation rates and breakthrough times for glove materials contact the glove manufacture or consult the MSDS of the chemical. Some manufacturers will just give a rating to the glove rather than specific figures.WEARING, CLEANING AND DISPOSALMake sure hands are clean before putting on gloves. Always inspect the glove prior to use for, wear, seam failure, cracking, bubbling, swelling, cracking, tackiness and any holes or tears. Discard gloves with obvious faults. Great care must be taken to ensure that the inside surface of the glove is not contaminated when gloves are put on and taken off. Gloves used for handling chemicals (especially for intentional contact) should only be reused with caution, and where it is within the manufacturer’s guidelines. Prior to the removal of reusable gloves, wash any surface contamination from the glove with warm soapy water and allow to air dry. Gloves may be periodically turned inside out and the inner surface washed. Additional procedures for decontamination of gloves where chemicals have permeated into the glove surface may be required, prior to reuse. Refer to the manufacturer’s instructions.Store gloves away from direct sunlight or extremes of temperatures.Always wash hands after removing gloves, with warm soapy water, rinse thoroughly and dry. Applying a hand moisturiser is also recommended.Gloves used with chemicals may have to be disposed of as hazardous waste, if chemicals have permeated into the glove material. PRE-EXISTING SKIN PROBLEMSSome pre-existing skin conditions can effect the selection or use of gloves. Cuts or abrasions on the hand are more suceptable to chemical attack. Always cover cuts and abrasions with a waterproof plaster prior to putting gloves on and replace after removal of gloves. Note, never use fabric plasters in the laboratory, they are too absorbant.Eczema sufferers may prefer to wear a cotton liner under gloves to avoid irritation from sweat. Wash or replace liners regularly.Anyone with a Latex allery should be provided with a non-latex alternative. Latex allergies may cuase asthma attacks, anaphylatic reactions or a wide spread rash. If someone is highly sensitive then other workers in the area should also avoid the use of latex gloves. The use of powder free gloves is thought to minimise the risk of developing a latex allergy in suseptable people.ALTERNATIVES TO USING GLOVESAs mentioned before, gloves are the least preferred control measure, and should only be considered if other control measures are not suitable or do not minimize the risk sufficiently. Rather than immersing the hands into a chemical consider the use of forceps, crucible tongs, baskets or other means or lowering and retrieving items. A magnetic flea retriever negates the need to retrieve a magnetic flea with hands. Dishwashers are a good alternative to washing glassware by hand. 10EXAMPLES OF GLOVES TO HAVE ON HANDIn the school Science laboratory it is wise to have a variety of gloves on hand. I recommend the following as a minimum requirement:10.1For the laboratory officerNitrile disposable gloves for general chemical handling, where splashes might occurLatex disposable gloves in the first aid kit and for use when cleaning up microbiology practicalsAnsell Super Glove – a latex and neoprene glove for general cleaning and washing of glasswareLeather gauntlets for removing hot items from ovens, incubators and autoclavesPuncture, cut and abrasion resistant gloves for handling sharp metal, broken glass and other sharp objects.10.2For Student classroom useLow powder Latex gloves for student use during dissectionsCheap poly ethylene or poly vinyl gloves for messy task with non-aggressive chemicals eg paint, inkGLOVE MATERIALThe following table is taken from Glove Selection Guidance and lists glove material and their advantages and disadvantages. Always refer to the manufacturer’s specification.-30670590170GLOVE LABELLING AND PURCHASINGThe Australian/New Zealand Standard 2161 describes the general requirements for occupational protective gloves. It also defines the product and packaging labelling requirements. Gloves must have trademark or manufacturer’s name, product code and size. Packaging must also include where information about the product can be obtained, a pictogram denoting performance levels and instructions for use.Only gloves designed and tested for industrial use will have these pictograms. Domestic gloves are generally not made and tested to the same standards and so are not suitable for industrial use. Domestic gloves are often labeled “For minimal risks only”.The following Table of Pictograms is taken from A/NZ 2161.2 The following information gives details about the main pictograms for the Science area:12.1Protection Against Mechanical Risks (AS/NZS 2161.3:2005)The mechanical properties of the glove are shown by the following pictogram, followed by performance level numbers relating to the four tests. There are 4 or 5 levels of performance for each test, Level 5 being the most resistance. 842010441960 Note that gloves meeting the requirements for resistance to puncture may not be suitable for protection against pointed objects such as hypodermic needles.12.2Protection Against the Cold (AS/NZS 2161.5:2005)The cold protective properties of the glove are shown by the following pictogram followed by performance level numbers relating to the three tests. There are four levels of performance for each, Level 4 being the highest. 1143000165735 Tests Convective ColdContact ColdWater Impermeability12.3Protection Against Thermal Risks (AS/NZS 2161.4:2005)The thermal (heat and/or fire) protective properties of the glove are shown by the following pictogram followed by performance level numbers relating to the six tests. There are four levels of performance for each, Level 4 being the highest. 1172845213995TestsBurning BehaviourContact HeatConvection HeatRadiant HeatSmall Splashes Of Molten MetalLarge Quantities Of Molten MetalThe following table gives temperature that the glove can withstand for Contact Heat.12.4Protection Against Chemical and Microorganisms (AS/NZS 2161.10:2005)The chemical protective properties of the glove are shown by the following pictogram followed relevant code letters. Each letter in the code refers to a particular chemical for which the glove has a breakthrough time of at least 30 minutes. 249936082552416175159385356616067945Waterproof gloves with low level chemical protection (refer to packaging for further details)12.5For Minimal Risks OnlyGloves labelled “Comply with AS/NZS 2161.2”, but marked “for minimal risks only’” have limited application in industrial situations. They should not be used in applications with hazardous chemicals. They tend to give the wearer a false sense of security, when in fact a chemical may quickly permeate the glove material and expose the skin to a high concentration.Definition of “For minimal risks only” from Annex A - AS/NZS 2161.2“This category covers exclusively gloves intended to protect the wearer against one more of:mechanical action whose effects are superficial (gardening gloves etc);cleaning materials of weak action and easily reversible effects (gloves affording protection against diluted detergent solutions etc);risks wncountered in handling of hot components which do not expose the user to a temperature exceeding 50oC or to dangerous impacts;atmospheric agents of a neither exceptional nor extreme nature (seasonal clothing);minor impacts and vibrations which do not affect vital areas of the body and whose effects cannot cause irreversible lesions.”12.6 PurchasingAppendix 1 shows a page from the Protector Alsafe Safety Catalogue showing typical information provided for the purchaser. Note the pictograms and performance level numbers. Additional information is usually available from the manufacturer, who should be consulted prior to purchase.GLOSSARYBreakthrough time – the time elapsed between initial contact of a chemical with the outside surface of the glove material and the time at which the chemical can be detected at the inside surface of the material. Measured breakthrough times are dependent on the sensitivity of the analytical methods used to detect the chemical.Degradation – a deleterious change in the physical and/or chemical properties of a protective glove materialPenetration – the movement of a substance and/or microorganisms through porous materials, seams, pinholes, to other imperfections in a protective glove material on a molecular level.Permeation – the process by which a substance moves through a protective glove material, on a molecular level. Permeation involves the following:absorption of molecules of the substance into the contacted (outside) surface of a materialdiffusion of the absorbed molecules in the materialdesorption of the molecules from the opposite (inside) of the materialPermeation Rate (steady state) – the relative constant rate with which a substance permeates glove material after an initial period, expressed in mass of solvent per unit area of glove per unit time.MSDS – Material Safety Data SheetAppendix 1 – Protector Alsafe CatalogueREFERENCESAS/NZS 2161 - Occupational Protective Gloves Part 1 – Selection, use and maintenancePart 2 – General requirementsPart 3 – Protection against mechanical risksPart 4 - Protection against thermal risks (heat and fire)Part 5 - Protection against coldPart 6 – Protective gloves for fire-fighters Part 7 - Protection against cuts and stabs by hand knives7.1 – Chainmail gloves and arm guards7.2 – Gloves and arm guards made of other materials7.3 – Impact cut test for fabric, leather and other materialsPart 8 - Protection against Ionizing radiation and radioactive contaminationPart 9 – Method of measurement and evaluation of the vibration transmissibility of gloves at the palm of the hand Part 10 – Protective gloves against chemicals and microorganisms10.1 – Terminology and performance requirements10.2 – Determination of resistance to penetration10.3 - Determination of resistance to permeation by chemicalsAnsell Chemsafe Website Selection Guidance, Imperial College London Alsafe, Safety Catalogue, 2008 ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download