University of Manchester



Ring Puckering Landscapes of Glycosaminoglycan-related Monosaccharides from Molecular Dynamics SimulationsIrfan Alibay?,? and Richard A. Bryce?*? Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, M13 9PL, UK? Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UKCorresponding Author*Richard Bryce, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, M13 9PT, U.K. Email: R.A.Bryce@manchester.ac.uk, Tel: (0)161-275-8345, Fax: (0)161-275-2481; ORCID 0000-0002-8145-2345AbstractThe conformational flexibility of the glycosaminoglycans (GAGs) are known to be key in their binding and biological function, for example in regulating coagulation and cell growth. In this work, we employ enhanced sampling molecular dynamics simulations to probe the ring conformations of GAG-related monosaccharides, including a range of acetylated and sulfated GAG residues. We first perform unbiased MD simulations of glucose anomers and the epimers glucoronate and iduronate. These calculations indicate that in some cases, an excess of 15 ?s are required for adequate sampling of ring pucker due to the high energy barriers between states. However, by applying our recently developed msesMD simulation method (multidimensional swarm enhanced sampling molecular dynamics), we were able to quantitatively and rapidly reproduce these ring pucker landscapes. From msesMD simulations, the puckering free energy profiles were then compared for fifteen further monosaccharides related to GAGs; this includes to our knowledge the first simulation study of sulfation effects on ?-GalNAc ring puckering. For the force field employed, we find that in general the calculated pucker free energy profiles for sulfated sugars were similar to the corresponding unsulfated profiles. This accords with recent experimental studies suggesting that variation in ring pucker of sulfated GAG residues is primarily dictated by interactions with surrounding residues rather than by intrinsic conformational preference. As an exception to this, however, we predict that 4-O-sulfation of ?-GalNAc leads to reduced ring rigidity, with a significant lowering in energy of the 1C4 ring conformation; this observation may have implications for understanding the structural basis of the biological function of ?-GalNAc-containing glycosaminoglycans such as dermatan sulfate.1. IntroductionCarbohydrates are ubiquitous biopolymers that fulfil a wide range of key functions in nature, from energy sources and structural units to mediators of biomolecular recognition. ADDIN REFMGR.CITE <Refman><Cite><Author>Dwek</Author><Year>1996</Year><RecNum>981</RecNum><IDText>Glycobiology: Toward Understanding the Function of Sugars</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>981</Ref_ID><Title_Primary>Glycobiology:<f name="Symbol"> </f>Toward Understanding the Function of Sugars</Title_Primary><Authors_Primary>Dwek,Raymond A.</Authors_Primary><Date_Primary>1996/1/1</Date_Primary><Reprint>Not in File</Reprint><Start_Page>683</Start_Page><End_Page>720</End_Page><Periodical>Chem.Rev.</Periodical><Volume>96</Volume><Issue>2</Issue><Web_URL> name="System">Chemical Reviews</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">Chem.Rev.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>1 Carbohydrates are linear or branched polymers, comprised of monosaccharide residues connected by glycosidic linkages. These monosaccharide units are typically hexopyranoses, ie. six-membered rings decorated by a variety of pendant functional groups, including hydroxyl, hydroxymethyl, carboxylate, aminoacyl and sulfate groups (Figure 1a). For example, glycosaminoglycans (GAGs) are heteropolysaccharides that often include sulfated residues, forming negatively charged polymers that interact in a specific way with the basic residues of receptor proteins linked to cell adhesion and profileration. ADDIN REFMGR.CITE <Refman><Cite><Author>Jackson</Author><Year>1991</Year><RecNum>1154</RecNum><IDText>Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1154</Ref_ID><Title_Primary>Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes</Title_Primary><Authors_Primary>Jackson,Richard L.</Authors_Primary><Authors_Primary>Busch,Steven J.</Authors_Primary><Authors_Primary>Cardin,Alan D.</Authors_Primary><Date_Primary>1991</Date_Primary><Keywords>Property</Keywords><Keywords>PROTEIN</Keywords><Reprint>Not in File</Reprint><Start_Page>481</Start_Page><End_Page>539</End_Page><Periodical>Physiolog.Rev.</Periodical><Volume>71</Volume><Issue>2</Issue><ZZ_JournalStdAbbrev><f name="System">Physiolog.Rev.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Bishop</Author><Year>2007</Year><RecNum>1155</RecNum><IDText>Heparan sulphate proteoglycans fine-tune mammalian physiology</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1155</Ref_ID><Title_Primary>Heparan sulphate proteoglycans fine-tune mammalian physiology</Title_Primary><Authors_Primary>Bishop,Joseph R.</Authors_Primary><Authors_Primary>Schuksz,Manuela</Authors_Primary><Authors_Primary>Esko,Jeffrey D.</Authors_Primary><Date_Primary>2007</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1030</Start_Page><Periodical>Nature</Periodical><Volume>446</Volume><Issue>7139</Issue><ZZ_JournalFull><f name="System">Nature</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>2,3,PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkdhbWE8L0F1dGhvcj48WWVhcj4yMDA2PC9ZZWFyPjxSZWNO

dW0+MTEzODwvUmVjTnVtPjxJRFRleHQ+U3VsZmF0aW9uIHBhdHRlcm5zIG9mIGdseWNvc2FtaW5v

Z2x5Y2FucyBlbmNvZGUgbW9sZWN1bGFyIHJlY29nbml0aW9uIGFuZCBhY3Rpdml0eTwvSURUZXh0

PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVm

X0lEPjExMzg8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5TdWxmYXRpb24gcGF0dGVybnMgb2YgZ2x5

Y29zYW1pbm9nbHljYW5zIGVuY29kZSBtb2xlY3VsYXIgcmVjb2duaXRpb24gYW5kIGFjdGl2aXR5

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R2FtYSxDcmlzdGFsIEkuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UdWxseSxTYXJhaCBFLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U290b2dha3UsTmFva2k8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PkNsYXJrLFBldGVyIE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5SYXdhdCxNYW5pc2g8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZhaWRlaGks

TmFnYXJhamFuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Hb2RkYXJkIElJSSxX

aWxsaWFtIEEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5OaXNoaSxBa2lub3Jp

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Ic2llaC1XaWxzb24sTGluZGEgQy48

L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDYvNy8zMD1vbmxpbmU8L0RhdGVfUHJp

bWFyeT48S2V5d29yZHM+TU9MRUNVTEFSIFJFQ09HTklUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+

UkVDT0dOSVRJT048L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFy

dF9QYWdlPjQ2NzwvU3RhcnRfUGFnZT48UGVyaW9kaWNhbD5OYXR1cmUgQ2hlbS5CaW9sLjwvUGVy

aW9kaWNhbD48Vm9sdW1lPjI8L1ZvbHVtZT48V2ViX1VSTD5odHRwczovL2RvaS5vcmcvMTAuMTAz

OC9uY2hlbWJpbzgxMDwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0

ZW0iPk5hdHVyZSBDaGVtLkJpb2wuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zv

cm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJ1ZGQ8L0F1

dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MTE1NzwvUmVjTnVtPjxJRFRleHQ+VGhlIGNv

bmZvcm1hdGlvbiBhbmQgc3RydWN0dXJlIG9mIEdBR3M6IHJlY2VudCBwcm9ncmVzcyBhbmQgcGVy

c3BlY3RpdmVzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJu

YWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE1NzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlRoZSBjb25m

b3JtYXRpb24gYW5kIHN0cnVjdHVyZSBvZiBHQUdzOiByZWNlbnQgcHJvZ3Jlc3MgYW5kIHBlcnNw

ZWN0aXZlczwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJ1ZGQsVC5SLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2tpZG1vcmUsTS5BLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkhyaWNvdmluaSxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UG93

ZWxsLEEuSy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNpbGlnYXJkaSxHLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WWF0ZXMsRS5BLjwvQXV0aG9yc19Qcmlt

YXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5DT05GT1JNQVRJ

T048L0tleXdvcmRzPjxLZXl3b3Jkcz5TdHJ1Y3R1cmU8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBp

biBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjU2NzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+NTc0

PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5DdXJyLk9waW4uU3RydWN0LkJpb2wuPC9QZXJpb2RpY2Fs

PjxWb2x1bWU+MjA8L1ZvbHVtZT48SXNzdWU+NTwvSXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+

PGYgbmFtZT0iU3lzdGVtIj5DdXJyLk9waW4uU3RydWN0LkJpb2wuPC9mPjwvWlpfSm91cm5hbFN0

ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1Jl

Zm1hbj4A

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkdhbWE8L0F1dGhvcj48WWVhcj4yMDA2PC9ZZWFyPjxSZWNO

dW0+MTEzODwvUmVjTnVtPjxJRFRleHQ+U3VsZmF0aW9uIHBhdHRlcm5zIG9mIGdseWNvc2FtaW5v

Z2x5Y2FucyBlbmNvZGUgbW9sZWN1bGFyIHJlY29nbml0aW9uIGFuZCBhY3Rpdml0eTwvSURUZXh0

PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVm

X0lEPjExMzg8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5TdWxmYXRpb24gcGF0dGVybnMgb2YgZ2x5

Y29zYW1pbm9nbHljYW5zIGVuY29kZSBtb2xlY3VsYXIgcmVjb2duaXRpb24gYW5kIGFjdGl2aXR5

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R2FtYSxDcmlzdGFsIEkuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UdWxseSxTYXJhaCBFLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U290b2dha3UsTmFva2k8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PkNsYXJrLFBldGVyIE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5SYXdhdCxNYW5pc2g8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZhaWRlaGks

TmFnYXJhamFuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Hb2RkYXJkIElJSSxX

aWxsaWFtIEEuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5OaXNoaSxBa2lub3Jp

PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Ic2llaC1XaWxzb24sTGluZGEgQy48

L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMDYvNy8zMD1vbmxpbmU8L0RhdGVfUHJp

bWFyeT48S2V5d29yZHM+TU9MRUNVTEFSIFJFQ09HTklUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+

UkVDT0dOSVRJT048L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFy

dF9QYWdlPjQ2NzwvU3RhcnRfUGFnZT48UGVyaW9kaWNhbD5OYXR1cmUgQ2hlbS5CaW9sLjwvUGVy

aW9kaWNhbD48Vm9sdW1lPjI8L1ZvbHVtZT48V2ViX1VSTD5odHRwczovL2RvaS5vcmcvMTAuMTAz

OC9uY2hlbWJpbzgxMDwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0

ZW0iPk5hdHVyZSBDaGVtLkJpb2wuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zv

cm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJ1ZGQ8L0F1

dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MTE1NzwvUmVjTnVtPjxJRFRleHQ+VGhlIGNv

bmZvcm1hdGlvbiBhbmQgc3RydWN0dXJlIG9mIEdBR3M6IHJlY2VudCBwcm9ncmVzcyBhbmQgcGVy

c3BlY3RpdmVzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJu

YWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE1NzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlRoZSBjb25m

b3JtYXRpb24gYW5kIHN0cnVjdHVyZSBvZiBHQUdzOiByZWNlbnQgcHJvZ3Jlc3MgYW5kIHBlcnNw

ZWN0aXZlczwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJ1ZGQsVC5SLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2tpZG1vcmUsTS5BLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkhyaWNvdmluaSxNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UG93

ZWxsLEEuSy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNpbGlnYXJkaSxHLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+WWF0ZXMsRS5BLjwvQXV0aG9yc19Qcmlt

YXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5DT05GT1JNQVRJ

T048L0tleXdvcmRzPjxLZXl3b3Jkcz5TdHJ1Y3R1cmU8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBp

biBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjU2NzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+NTc0

PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5DdXJyLk9waW4uU3RydWN0LkJpb2wuPC9QZXJpb2RpY2Fs

PjxWb2x1bWU+MjA8L1ZvbHVtZT48SXNzdWU+NTwvSXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+

PGYgbmFtZT0iU3lzdGVtIj5DdXJyLk9waW4uU3RydWN0LkJpb2wuPC9mPjwvWlpfSm91cm5hbFN0

ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1Jl

Zm1hbj4A

ADDIN EN.CITE.DATA 4,5 In addition to the tuning of carbohydrate conformation and interactions by glycosidic linkage and functionalisation of the pyranose ring, another important degree of freedom in these biopolymers is the conformation of the ring itself: hexopyranose rings can adopt different shapes, called puckers, including most often chair (C) forms but less frequently boat (B), half-chair (H), skew-boat (S) and other forms (Figure 1b). The various puckers can be succinctly described on the puckering conformation hypersurface by two angles, θ and ???according to the scheme of Cremer-Pople (Figure 1b). ADDIN REFMGR.CITE <Refman><Cite><Author>Cremer</Author><Year>1975</Year><RecNum>1134</RecNum><IDText>General definition of ring puckering coordinates</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1134</Ref_ID><Title_Primary>General definition of ring puckering coordinates</Title_Primary><Authors_Primary>Cremer,D.</Authors_Primary><Authors_Primary>Pople,J.A.</Authors_Primary><Date_Primary>1975/3/1</Date_Primary><Keywords>puckering</Keywords><Keywords>RING</Keywords><Reprint>Not in File</Reprint><Start_Page>1354</Start_Page><End_Page>1358</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>97</Volume><Issue>6</Issue><Web_URL> name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>6Interestingly, non-chair ring puckering of carbohydrates has been found to play a role in various processes: this includes the reaction paths of glycoside hydrolases, where carbohydrate substrates exhibit conformational itineraries through a range of non-chair puckered forms. ADDIN REFMGR.CITE <Refman><Cite><Author>Speciale</Author><Year>2014</Year><RecNum>1123</RecNum><IDText>Dissecting conformational contributions to glycosidase catalysis and inhibition</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1123</Ref_ID><Title_Primary>Dissecting conformational contributions to glycosidase catalysis and inhibition</Title_Primary><Authors_Primary>Speciale,Gaetano</Authors_Primary><Authors_Primary>Thompson,Andrew J.</Authors_Primary><Authors_Primary>Davies,Gideon J.</Authors_Primary><Authors_Primary>Williams,Spencer J.</Authors_Primary><Date_Primary>2014</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1</Start_Page><End_Page>13</End_Page><Periodical>Current opinion in structural biology</Periodical><Volume>28</Volume><ZZ_JournalStdAbbrev><f name="System">Current opinion in structural biology</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>7 Similarly, adoption of the skew-boat 2SO ring conformer in L-iduronic residues of the anticoagulant GAG, heparin, is essential in its activation of antithrombin III. ADDIN REFMGR.CITE <Refman><Cite><Author>Das</Author><Year>2001</Year><RecNum>1124</RecNum><IDText>Synthesis of Conformationally Locked lG??Iduronic Acid Derivatives: Direct Evidence for a Critical Role of the SkewG??Boat 2S0 Conformer in the Activation of Antithrombin by Heparin</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1124</Ref_ID><Title_Primary>Synthesis of Conformationally Locked l<f name="Symbol">G</f>&#xC7;&#xC9;Iduronic Acid Derivatives: Direct Evidence for a Critical Role of the Skew<f name="Symbol">G</f>&#xC7;&#xC9;Boat 2S0 Conformer in the Activation of Antithrombin by Heparin</Title_Primary><Authors_Primary>Das,Sanjoy K.</Authors_Primary><Authors_Primary>Mallet,Jean<f name="Symbol">G</f>&#xC7;&#xC9;Maurice</Authors_Primary><Authors_Primary>Esnault,Jacques</Authors_Primary><Authors_Primary>Driguez,Pierre<f name="Symbol">G</f>&#xC7;&#xC9;Alexandre</Authors_Primary><Authors_Primary>Duchaussoy,Philippe</Authors_Primary><Authors_Primary>Sizun,Philippe</Authors_Primary><Authors_Primary>Herault,Jean<f name="Symbol">G</f>&#xC7;&#xC9;Pascal</Authors_Primary><Authors_Primary>Herbert,Jean<f name="Symbol">G</f>&#xC7;&#xC9;Marc</Authors_Primary><Authors_Primary>PETITOU,Maurice</Authors_Primary><Authors_Primary>Sina++,Pierre</Authors_Primary><Date_Primary>2001</Date_Primary><Keywords>ACID</Keywords><Keywords>ACTIVATION</Keywords><Reprint>Not in File</Reprint><Start_Page>4821</Start_Page><End_Page>4834</End_Page><Periodical>Chemistry<f name="Symbol">G</f>&#xC7;&#xF4;A European Journal</Periodical><Volume>7</Volume><Issue>22</Issue><ZZ_JournalStdAbbrev><f name="System">Chemistry</f><f name="Symbol">G</f><f name="System">&#xC7;&#xF4;A European Journal</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>8 As another example, the ?-GlcNAc residue of Lewis X is observed to assume a OS2 pucker on binding to the lectin protein, BambL.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRvcGluPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVj

TnVtPjExMTI8L1JlY051bT48SURUZXh0PkRlY2lwaGVyaW5nIHRoZSBHbHljYW4gUHJlZmVyZW5j

ZSBvZiBCYWN0ZXJpYWwgTGVjdGlucyBieSBHbHljYW4gQXJyYXkgYW5kIE1vbGVjdWxhciBEb2Nr

aW5nIHdpdGggVmFsaWRhdGlvbiBieSBNaWNyb2NhbG9yaW1ldHJ5IGFuZCBDcnlzdGFsbG9ncmFw

aHk8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVm

X1R5cGU+PFJlZl9JRD4xMTEyPC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+RGVjaXBoZXJpbmcgdGhl

IEdseWNhbiBQcmVmZXJlbmNlIG9mIEJhY3RlcmlhbCBMZWN0aW5zIGJ5IEdseWNhbiBBcnJheSBh

bmQgTW9sZWN1bGFyIERvY2tpbmcgd2l0aCBWYWxpZGF0aW9uIGJ5IE1pY3JvY2Fsb3JpbWV0cnkg

YW5kIENyeXN0YWxsb2dyYXBoeTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRvcGlu

LEplcmVtaWU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFybmF1ZCxKdWxpZTwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2Fya2FyLEFuaXRhPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5BdWRmcmF5LEF5bWVyaWM8L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PkdpbGxvbixFbWlsaWU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PlBlcmV6LFNlcmdlPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5KYW1l

dCxIZWxlbmU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZhcnJvdCxBbm5hYmVs

bGU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkltYmVydHksQW5uZTwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGhvbWFzLEFsaW5lPC9BdXRob3JzX1ByaW1hcnk+

PERhdGVfUHJpbWFyeT4yMDEzLzgvMTk8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YW5hbHlzaXM8

L0tleXdvcmRzPjxLZXl3b3Jkcz5CSU5ESU5HPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09NUExFWDwv

S2V5d29yZHM+PEtleXdvcmRzPkNPTVBMRVhFUzwvS2V5d29yZHM+PEtleXdvcmRzPkNPTkZPUk1B

VElPTjwvS2V5d29yZHM+PEtleXdvcmRzPmNyeXN0YWwgc3RydWN0dXJlPC9LZXl3b3Jkcz48S2V5

d29yZHM+Q1JZU1RBTC1TVFJVQ1RVUkU8L0tleXdvcmRzPjxLZXl3b3Jkcz5DUllTVEFMLVNUUlVD

VFVSRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5DUllTVEFMTE9HUkFQSFk8L0tleXdvcmRzPjxLZXl3

b3Jkcz5ESVNDT1ZFUlk8L0tleXdvcmRzPjxLZXl3b3Jkcz5kb2NraW5nPC9LZXl3b3Jkcz48S2V5

d29yZHM+RU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5FTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GUkVFIEVORVJHWTwvS2V5d29yZHM+PEtleXdvcmRzPkZyZWUgZW5lcmd5IGNhbGN1bGF0

aW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRz

PkZSRUUtRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+Z2VuZXJhbGl6ZWQgQm9ybjwvS2V5d29y

ZHM+PEtleXdvcmRzPkdFTkVSQUxJWkVELUJPUk48L0tleXdvcmRzPjxLZXl3b3Jkcz5HTElERTwv

S2V5d29yZHM+PEtleXdvcmRzPkxFQUQgRElTQ09WRVJZPC9LZXl3b3Jkcz48S2V5d29yZHM+TUVD

SEFOSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+TU0tR0JTQTwvS2V5d29yZHM+PEtleXdvcmRzPk1P

TEVDVUxBUiBET0NLSU5HPC9LZXl3b3Jkcz48S2V5d29yZHM+bXVsdGlzY2FsZSBhcHByb2FjaGVz

PC9LZXl3b3Jkcz48S2V5d29yZHM+UFJFRElDVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlBTRVVE

T01PTkFTLUFFUlVHSU5PU0E8L0tleXdvcmRzPjxLZXl3b3Jkcz5SRUNPR05JVElPTjwvS2V5d29y

ZHM+PEtleXdvcmRzPlNFVDwvS2V5d29yZHM+PEtleXdvcmRzPlNQRUNJRklDSVRZPC9LZXl3b3Jk

cz48S2V5d29yZHM+U3RydWN0dXJlPC9LZXl3b3Jkcz48S2V5d29yZHM+U1VSRkFDRTwvS2V5d29y

ZHM+PEtleXdvcmRzPlNVUkZBQ0UtQVJFQTwvS2V5d29yZHM+PEtleXdvcmRzPlZBTElEQVRJT048

L0tleXdvcmRzPjxLZXl3b3Jkcz5YLVJBWTwvS2V5d29yZHM+PEtleXdvcmRzPlgtUkFZIENSWVNU

QUxMT0dSQVBIWTwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0

X1BhZ2U+ZTcxMTQ5PC9TdGFydF9QYWdlPjxQZXJpb2RpY2FsPlBsb1Mgb25lPC9QZXJpb2RpY2Fs

PjxWb2x1bWU+ODwvVm9sdW1lPjxJc3N1ZT44PC9Jc3N1ZT48V2ViX1VSTD5odHRwczovL2RvaS5v

cmcvMTAuMTM3MS9qb3VybmFsLnBvbmUuMDA3MTE0OTwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFi

YnJldj48ZiBuYW1lPSJTeXN0ZW0iPlBsb1Mgb25lPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRvcGluPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVj

TnVtPjExMTI8L1JlY051bT48SURUZXh0PkRlY2lwaGVyaW5nIHRoZSBHbHljYW4gUHJlZmVyZW5j

ZSBvZiBCYWN0ZXJpYWwgTGVjdGlucyBieSBHbHljYW4gQXJyYXkgYW5kIE1vbGVjdWxhciBEb2Nr

aW5nIHdpdGggVmFsaWRhdGlvbiBieSBNaWNyb2NhbG9yaW1ldHJ5IGFuZCBDcnlzdGFsbG9ncmFw

aHk8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVm

X1R5cGU+PFJlZl9JRD4xMTEyPC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+RGVjaXBoZXJpbmcgdGhl

IEdseWNhbiBQcmVmZXJlbmNlIG9mIEJhY3RlcmlhbCBMZWN0aW5zIGJ5IEdseWNhbiBBcnJheSBh

bmQgTW9sZWN1bGFyIERvY2tpbmcgd2l0aCBWYWxpZGF0aW9uIGJ5IE1pY3JvY2Fsb3JpbWV0cnkg

YW5kIENyeXN0YWxsb2dyYXBoeTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRvcGlu

LEplcmVtaWU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFybmF1ZCxKdWxpZTwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2Fya2FyLEFuaXRhPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5BdWRmcmF5LEF5bWVyaWM8L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PkdpbGxvbixFbWlsaWU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PlBlcmV6LFNlcmdlPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5KYW1l

dCxIZWxlbmU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZhcnJvdCxBbm5hYmVs

bGU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkltYmVydHksQW5uZTwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGhvbWFzLEFsaW5lPC9BdXRob3JzX1ByaW1hcnk+

PERhdGVfUHJpbWFyeT4yMDEzLzgvMTk8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+YW5hbHlzaXM8

L0tleXdvcmRzPjxLZXl3b3Jkcz5CSU5ESU5HPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09NUExFWDwv

S2V5d29yZHM+PEtleXdvcmRzPkNPTVBMRVhFUzwvS2V5d29yZHM+PEtleXdvcmRzPkNPTkZPUk1B

VElPTjwvS2V5d29yZHM+PEtleXdvcmRzPmNyeXN0YWwgc3RydWN0dXJlPC9LZXl3b3Jkcz48S2V5

d29yZHM+Q1JZU1RBTC1TVFJVQ1RVUkU8L0tleXdvcmRzPjxLZXl3b3Jkcz5DUllTVEFMLVNUUlVD

VFVSRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5DUllTVEFMTE9HUkFQSFk8L0tleXdvcmRzPjxLZXl3

b3Jkcz5ESVNDT1ZFUlk8L0tleXdvcmRzPjxLZXl3b3Jkcz5kb2NraW5nPC9LZXl3b3Jkcz48S2V5

d29yZHM+RU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5FTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GUkVFIEVORVJHWTwvS2V5d29yZHM+PEtleXdvcmRzPkZyZWUgZW5lcmd5IGNhbGN1bGF0

aW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRz

PkZSRUUtRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+Z2VuZXJhbGl6ZWQgQm9ybjwvS2V5d29y

ZHM+PEtleXdvcmRzPkdFTkVSQUxJWkVELUJPUk48L0tleXdvcmRzPjxLZXl3b3Jkcz5HTElERTwv

S2V5d29yZHM+PEtleXdvcmRzPkxFQUQgRElTQ09WRVJZPC9LZXl3b3Jkcz48S2V5d29yZHM+TUVD

SEFOSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+TU0tR0JTQTwvS2V5d29yZHM+PEtleXdvcmRzPk1P

TEVDVUxBUiBET0NLSU5HPC9LZXl3b3Jkcz48S2V5d29yZHM+bXVsdGlzY2FsZSBhcHByb2FjaGVz

PC9LZXl3b3Jkcz48S2V5d29yZHM+UFJFRElDVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlBTRVVE

T01PTkFTLUFFUlVHSU5PU0E8L0tleXdvcmRzPjxLZXl3b3Jkcz5SRUNPR05JVElPTjwvS2V5d29y

ZHM+PEtleXdvcmRzPlNFVDwvS2V5d29yZHM+PEtleXdvcmRzPlNQRUNJRklDSVRZPC9LZXl3b3Jk

cz48S2V5d29yZHM+U3RydWN0dXJlPC9LZXl3b3Jkcz48S2V5d29yZHM+U1VSRkFDRTwvS2V5d29y

ZHM+PEtleXdvcmRzPlNVUkZBQ0UtQVJFQTwvS2V5d29yZHM+PEtleXdvcmRzPlZBTElEQVRJT048

L0tleXdvcmRzPjxLZXl3b3Jkcz5YLVJBWTwvS2V5d29yZHM+PEtleXdvcmRzPlgtUkFZIENSWVNU

QUxMT0dSQVBIWTwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0

X1BhZ2U+ZTcxMTQ5PC9TdGFydF9QYWdlPjxQZXJpb2RpY2FsPlBsb1Mgb25lPC9QZXJpb2RpY2Fs

PjxWb2x1bWU+ODwvVm9sdW1lPjxJc3N1ZT44PC9Jc3N1ZT48V2ViX1VSTD5odHRwczovL2RvaS5v

cmcvMTAuMTM3MS9qb3VybmFsLnBvbmUuMDA3MTE0OTwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFi

YnJldj48ZiBuYW1lPSJTeXN0ZW0iPlBsb1Mgb25lPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN EN.CITE.DATA 9 Therefore, knowledge of the relative stability of different ring pucker conformations of constituent monosaccharide residues can assist in understanding carbohydrate interactions and reactivity. However, to characterize the ring puckering free energy landscape of carbohydrates is non-trivial: it is challenging to study by NMR methods due to the microsecond timescale of pucker transitions and the low population of rare but important pucker states; ADDIN REFMGR.CITE <Refman><Cite><Author>Plazinski</Author><Year>2015</Year><RecNum>1127</RecNum><IDText>Kinetic characteristics of conformational changes in the hexopyranose rings</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1127</Ref_ID><Title_Primary>Kinetic characteristics of conformational changes in the hexopyranose rings</Title_Primary><Authors_Primary>Plazinski,Wojciech</Authors_Primary><Authors_Primary>Drach,Mateusz</Authors_Primary><Date_Primary>2015</Date_Primary><Keywords>conformational change</Keywords><Keywords>CONFORMATIONAL-CHANGES</Keywords><Keywords>RING</Keywords><Reprint>Not in File</Reprint><Start_Page>41</Start_Page><End_Page>50</End_Page><Periodical>Carbohydr.Res.</Periodical><Volume>416</Volume><ZZ_JournalStdAbbrev><f name="System">Carbohydr.Res.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Woods</Author><Year>2018</Year><RecNum>1166</RecNum><IDText>Predicting the Structures of Glycans, Glycoproteins, and Their Complexes</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1166</Ref_ID><Title_Primary>Predicting the Structures of Glycans, Glycoproteins, and Their Complexes</Title_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2018/9/12</Date_Primary><Keywords>COMPLEX</Keywords><Keywords>COMPLEXES</Keywords><Keywords>Structure</Keywords><Reprint>Not in File</Reprint><Start_Page>8005</Start_Page><End_Page>8024</End_Page><Periodical>Chem.Rev.</Periodical><Volume>118</Volume><Issue>17</Issue><Web_URL> name="System">Chemical Reviews</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">Chem.Rev.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>10,11 it is also difficult to examine ring puckering computationally due to the high energy barriers separating stable conformers, necessitating multi-microsecond molecular dynamics (MD) simulations. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2010</Year><RecNum>1113</RecNum><IDText>Free energy landscapes of iduronic acid and related monosaccharides</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1113</Ref_ID><Title_Primary>Free energy landscapes of iduronic acid and related monosaccharides</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Gardiner,John</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>ACID</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Reprint>Not in File</Reprint><Start_Page>13132</Start_Page><End_Page>13134</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>132</Volume><Issue>38</Issue><ZZ_JournalStdAbbrev><f name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>DeMarco</Author><Year>2008</Year><RecNum>1156</RecNum><IDText>Structural glycobiology: a game of snakes and ladders</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1156</Ref_ID><Title_Primary>Structural glycobiology: a game of snakes and ladders</Title_Primary><Authors_Primary>DeMarco,Mari L.</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2008</Date_Primary><Reprint>Not in File</Reprint><Start_Page>426</Start_Page><End_Page>440</End_Page><Periodical>glycob</Periodical><Volume>18</Volume><Issue>6</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>12,13 Consequently, enhanced sampling MD techniques have been applied to the challenge of exploring carbohydrate ring pucker; this includes the adaptive reaction coordinate force method, ADDIN REFMGR.CITE <Refman><Cite><Author>Naidoo</Author><Year>2011</Year><RecNum>1133</RecNum><IDText>FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1133</Ref_ID><Title_Primary>FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms</Title_Primary><Authors_Primary>Naidoo,Kevin J.</Authors_Primary><Date_Primary>2011</Date_Primary><Keywords>ASSOCIATION</Keywords><Keywords>COMPLEX</Keywords><Keywords>COMPLEXES</Keywords><Keywords>CONFORMATION</Keywords><Keywords>EFFICIENCY</Keywords><Keywords>EFFICIENT</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>IMPLEMENTATION</Keywords><Keywords>MEAN FORCE</Keywords><Keywords>MECHANISM</Keywords><Keywords>PREPHENATE</Keywords><Keywords>puckering</Keywords><Keywords>RING</Keywords><Keywords>SIMULATION</Keywords><Keywords>SIMULATIONS</Keywords><Keywords>SURFACE</Keywords><Keywords>VOLUMES</Keywords><Reprint>Not in File</Reprint><Start_Page>1962</Start_Page><End_Page>1973</End_Page><Periodical>Science China Chemistry</Periodical><Volume>54</Volume><Issue>12</Issue><Web_URL> name="System">Science China Chemistry</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>14 metadynamicsPFJlZm1hbj48Q2l0ZT48QXV0aG9yPkF1dGllcmk8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxS

ZWNOdW0+MTEyODwvUmVjTnVtPjxJRFRleHQ+UHVja2VyaW5nIGZyZWUgZW5lcmd5IG9mIHB5cmFu

b3NlczogQSBOTVIgYW5kIG1ldGFkeW5hbWljcy11bWJyZWxsYSBzYW1wbGluZyBpbnZlc3RpZ2F0

aW9uPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1Jl

Zl9UeXBlPjxSZWZfSUQ+MTEyODwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlB1Y2tlcmluZyBmcmVl

IGVuZXJneSBvZiBweXJhbm9zZXM6IEEgTk1SIGFuZCBtZXRhZHluYW1pY3MtdW1icmVsbGEgc2Ft

cGxpbmcgaW52ZXN0aWdhdGlvbjwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkF1dGll

cmksRW1tYW51ZWw8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNlZ2EsTWFyY2Vs

bG88L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBlZGVyaXZhLEZyYW5jZXNjbzwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlbGxhLEdyYXppYW5vPC9BdXRob3Jz

X1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwPC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkVORVJH

SUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBF

TkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5wdWNrZXJpbmc8L0tleXdvcmRzPjxS

ZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjA5QjYwNDwvU3RhcnRfUGFn

ZT48UGVyaW9kaWNhbD5KLkNoZW0uUGh5cy48L1BlcmlvZGljYWw+PFZvbHVtZT4xMzM8L1ZvbHVt

ZT48SXNzdWU+OTwvSXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5K

LkNoZW0uUGh5cy48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1pa

X1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+UGV0ZXJzZW48L0F1dGhvcj48

WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+MTEzMjwvUmVjTnVtPjxJRFRleHQ+TWVjaGFuaXNtIG9m

IENlbGx1bG9zZSBIeWRyb2x5c2lzIGJ5IEludmVydGluZyBHSDggRW5kb2dsdWNhbmFzZXM6IEEg

UU0vTU0gTWV0YWR5bmFtaWNzIFN0dWR5PC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+

PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEzMjwvUmVmX0lEPjxUaXRsZV9Q

cmltYXJ5Pk1lY2hhbmlzbSBvZiBDZWxsdWxvc2UgSHlkcm9seXNpcyBieSBJbnZlcnRpbmcgR0g4

IEVuZG9nbHVjYW5hc2VzOiBBIFFNL01NIE1ldGFkeW5hbWljcyBTdHVkeTwvVGl0bGVfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PlBldGVyc2VuLEx1aXM8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PkFyZHZvbCxBbGJlcnQ8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PlJvdmlyYSxDYXJtZTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UmVpbGx5LFBl

dGVyIEouPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDA5LzUvMjE8L0RhdGVfUHJp

bWFyeT48S2V5d29yZHM+SFlEUk9MWVNJUzwvS2V5d29yZHM+PEtleXdvcmRzPk1FQ0hBTklTTTwv

S2V5d29yZHM+PEtleXdvcmRzPlFNPC9LZXl3b3Jkcz48S2V5d29yZHM+TU08L0tleXdvcmRzPjxS

ZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjczMzE8L1N0YXJ0X1BhZ2U+

PEVuZF9QYWdlPjczMzk8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouUGh5cy5DaGVtLkI8L1Blcmlv

ZGljYWw+PFZvbHVtZT4xMTM8L1ZvbHVtZT48SXNzdWU+MjA8L0lzc3VlPjxXZWJfVVJMPmh0dHBz

Oi8vZG9pLm9yZy8xMC4xMDIxL2pwODExNDcwZDwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJl

dj48ZiBuYW1lPSJTeXN0ZW0iPkouUGh5cy5DaGVtLkI8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+UWlhbjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051bT4xMTI5PC9SZWNOdW0+PElE

VGV4dD5GcmVlIGVuZXJneSBsYW5kc2NhcGUgZm9yIGdsdWNvc2UgY29uZGVuc2F0aW9uIGFuZCBk

ZWh5ZHJhdGlvbiByZWFjdGlvbnMgaW4gZGltZXRoeWwgc3VsZm94aWRlIGFuZCB0aGUgZWZmZWN0

cyBvZiBzb2x2ZW50PC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpv

dXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyOTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkZyZWUg

ZW5lcmd5IGxhbmRzY2FwZSBmb3IgZ2x1Y29zZSBjb25kZW5zYXRpb24gYW5kIGRlaHlkcmF0aW9u

IHJlYWN0aW9ucyBpbiBkaW1ldGh5bCBzdWxmb3hpZGUgYW5kIHRoZSBlZmZlY3RzIG9mIHNvbHZl

bnQ8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5RaWFuLFhpYW5naG9uZzwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGl1LERhamlhbmc8L0F1dGhvcnNfUHJpbWFyeT48

RGF0ZV9QcmltYXJ5PjIwMTQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RU5FUkdJRVM8L0tleXdv

cmRzPjxLZXl3b3Jkcz5FTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFIEVORVJHWTwvS2V5

d29yZHM+PEtleXdvcmRzPkZSRUUtRU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVO

RVJHWTwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+

NTA8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjYwPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5DYXJib2h5

ZHIuUmVzLjwvUGVyaW9kaWNhbD48Vm9sdW1lPjM4ODwvVm9sdW1lPjxaWl9Kb3VybmFsU3RkQWJi

cmV2PjxmIG5hbWU9IlN5c3RlbSI+Q2FyYm9oeWRyLlJlcy48L2Y+PC9aWl9Kb3VybmFsU3RkQWJi

cmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxB

dXRob3I+U3Bpd29rPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjExMzc8L1JlY051

bT48SURUZXh0Pk1vZGVsbGluZyBvZiBhLUQtZ2x1Y29weXJhbm9zZSByaW5nIGRpc3RvcnRpb24g

aW4gZGlmZmVyZW50IGZvcmNlIGZpZWxkczogYSBtZXRhZHluYW1pY3Mgc3R1ZHk8L0lEVGV4dD48

TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9J

RD4xMTM3PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+TW9kZWxsaW5nIG9mIDxmIG5hbWU9IlN5bWJv

bCI+YTwvZj4tRC1nbHVjb3B5cmFub3NlIHJpbmcgZGlzdG9ydGlvbiBpbiBkaWZmZXJlbnQgZm9y

Y2UgZmllbGRzOiBhIG1ldGFkeW5hbWljcyBzdHVkeTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PlNwaXdvayxWb2p0LSYjeEY4O2NoPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5LcmFsb3ZhLEJsYW5rYTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VHZh

cm9za2EsSWdvcjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9Qcmlt

YXJ5PjxLZXl3b3Jkcz5DYXJib2h5ZHJhdGUgY29uZm9ybWF0aW9uPC9LZXl3b3Jkcz48S2V5d29y

ZHM+Q09ORk9STUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09ORk9STUFUSU9OUzwvS2V5d29y

ZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZPC9LZXl3b3Jk

cz48S2V5d29yZHM+Rk9SQ0UgRklFTEQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5mb3JjZSBmaWVsZHM8

L0tleXdvcmRzPjxLZXl3b3Jkcz5GT1JDRS1GSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPkZPUkNF

LUZJRUxEUzwvS2V5d29yZHM+PEtleXdvcmRzPkZSRUUgRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RlJFRS1FTkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRzPkZSRUUtRU5FUkdZPC9LZXl3b3Jk

cz48S2V5d29yZHM+R0xZQ0FNMDY8L0tleXdvcmRzPjxLZXl3b3Jkcz5HUk9NT1M8L0tleXdvcmRz

PjxLZXl3b3Jkcz5NZXRhZHluYW1pY3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5NT0RFTDwvS2V5d29y

ZHM+PEtleXdvcmRzPm1vbGVjdWxhciBkeW5hbWljcyBzaW11bGF0aW9uPC9LZXl3b3Jkcz48S2V5

d29yZHM+UHlyYW5vc2UgcmluZyBkaXN0b3J0aW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+UklORzwv

S2V5d29yZHM+PEtleXdvcmRzPlNVUkZBQ0U8L0tleXdvcmRzPjxLZXl3b3Jkcz53YXRlcjwvS2V5

d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+NTMwPC9TdGFy

dF9QYWdlPjxFbmRfUGFnZT41Mzc8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNhcmJvaHlkci5SZXMu

PC9QZXJpb2RpY2FsPjxWb2x1bWU+MzQ1PC9Wb2x1bWU+PElzc3VlPjQ8L0lzc3VlPjxXZWJfVVJM

Pmh0dHA6Ly93d3cuc2NpZW5jZWRpcmVjdC5jb20vc2NpZW5jZS9hcnRpY2xlL3BpaS9TMDAwODYy

MTUwOTAwNTk1MzwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0i

PkNhcmJvaHlkci5SZXMuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4x

PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkF1dGllcmk8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxS

ZWNOdW0+MTEyODwvUmVjTnVtPjxJRFRleHQ+UHVja2VyaW5nIGZyZWUgZW5lcmd5IG9mIHB5cmFu

b3NlczogQSBOTVIgYW5kIG1ldGFkeW5hbWljcy11bWJyZWxsYSBzYW1wbGluZyBpbnZlc3RpZ2F0

aW9uPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1Jl

Zl9UeXBlPjxSZWZfSUQ+MTEyODwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PlB1Y2tlcmluZyBmcmVl

IGVuZXJneSBvZiBweXJhbm9zZXM6IEEgTk1SIGFuZCBtZXRhZHluYW1pY3MtdW1icmVsbGEgc2Ft

cGxpbmcgaW52ZXN0aWdhdGlvbjwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkF1dGll

cmksRW1tYW51ZWw8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlNlZ2EsTWFyY2Vs

bG88L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBlZGVyaXZhLEZyYW5jZXNjbzwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlbGxhLEdyYXppYW5vPC9BdXRob3Jz

X1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwPC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkVORVJH

SUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBF

TkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5wdWNrZXJpbmc8L0tleXdvcmRzPjxS

ZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjA5QjYwNDwvU3RhcnRfUGFn

ZT48UGVyaW9kaWNhbD5KLkNoZW0uUGh5cy48L1BlcmlvZGljYWw+PFZvbHVtZT4xMzM8L1ZvbHVt

ZT48SXNzdWU+OTwvSXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5K

LkNoZW0uUGh5cy48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1pa

X1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+UGV0ZXJzZW48L0F1dGhvcj48

WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+MTEzMjwvUmVjTnVtPjxJRFRleHQ+TWVjaGFuaXNtIG9m

IENlbGx1bG9zZSBIeWRyb2x5c2lzIGJ5IEludmVydGluZyBHSDggRW5kb2dsdWNhbmFzZXM6IEEg

UU0vTU0gTWV0YWR5bmFtaWNzIFN0dWR5PC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+

PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEzMjwvUmVmX0lEPjxUaXRsZV9Q

cmltYXJ5Pk1lY2hhbmlzbSBvZiBDZWxsdWxvc2UgSHlkcm9seXNpcyBieSBJbnZlcnRpbmcgR0g4

IEVuZG9nbHVjYW5hc2VzOiBBIFFNL01NIE1ldGFkeW5hbWljcyBTdHVkeTwvVGl0bGVfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PlBldGVyc2VuLEx1aXM8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PkFyZHZvbCxBbGJlcnQ8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PlJvdmlyYSxDYXJtZTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UmVpbGx5LFBl

dGVyIEouPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDA5LzUvMjE8L0RhdGVfUHJp

bWFyeT48S2V5d29yZHM+SFlEUk9MWVNJUzwvS2V5d29yZHM+PEtleXdvcmRzPk1FQ0hBTklTTTwv

S2V5d29yZHM+PEtleXdvcmRzPlFNPC9LZXl3b3Jkcz48S2V5d29yZHM+TU08L0tleXdvcmRzPjxS

ZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjczMzE8L1N0YXJ0X1BhZ2U+

PEVuZF9QYWdlPjczMzk8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouUGh5cy5DaGVtLkI8L1Blcmlv

ZGljYWw+PFZvbHVtZT4xMTM8L1ZvbHVtZT48SXNzdWU+MjA8L0lzc3VlPjxXZWJfVVJMPmh0dHBz

Oi8vZG9pLm9yZy8xMC4xMDIxL2pwODExNDcwZDwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJl

dj48ZiBuYW1lPSJTeXN0ZW0iPkouUGh5cy5DaGVtLkI8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+UWlhbjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051bT4xMTI5PC9SZWNOdW0+PElE

VGV4dD5GcmVlIGVuZXJneSBsYW5kc2NhcGUgZm9yIGdsdWNvc2UgY29uZGVuc2F0aW9uIGFuZCBk

ZWh5ZHJhdGlvbiByZWFjdGlvbnMgaW4gZGltZXRoeWwgc3VsZm94aWRlIGFuZCB0aGUgZWZmZWN0

cyBvZiBzb2x2ZW50PC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpv

dXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyOTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkZyZWUg

ZW5lcmd5IGxhbmRzY2FwZSBmb3IgZ2x1Y29zZSBjb25kZW5zYXRpb24gYW5kIGRlaHlkcmF0aW9u

IHJlYWN0aW9ucyBpbiBkaW1ldGh5bCBzdWxmb3hpZGUgYW5kIHRoZSBlZmZlY3RzIG9mIHNvbHZl

bnQ8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5RaWFuLFhpYW5naG9uZzwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGl1LERhamlhbmc8L0F1dGhvcnNfUHJpbWFyeT48

RGF0ZV9QcmltYXJ5PjIwMTQ8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+RU5FUkdJRVM8L0tleXdv

cmRzPjxLZXl3b3Jkcz5FTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFIEVORVJHWTwvS2V5

d29yZHM+PEtleXdvcmRzPkZSRUUtRU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVO

RVJHWTwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+

NTA8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjYwPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5DYXJib2h5

ZHIuUmVzLjwvUGVyaW9kaWNhbD48Vm9sdW1lPjM4ODwvVm9sdW1lPjxaWl9Kb3VybmFsU3RkQWJi

cmV2PjxmIG5hbWU9IlN5c3RlbSI+Q2FyYm9oeWRyLlJlcy48L2Y+PC9aWl9Kb3VybmFsU3RkQWJi

cmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxB

dXRob3I+U3Bpd29rPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjExMzc8L1JlY051

bT48SURUZXh0Pk1vZGVsbGluZyBvZiBhLUQtZ2x1Y29weXJhbm9zZSByaW5nIGRpc3RvcnRpb24g

aW4gZGlmZmVyZW50IGZvcmNlIGZpZWxkczogYSBtZXRhZHluYW1pY3Mgc3R1ZHk8L0lEVGV4dD48

TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9J

RD4xMTM3PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+TW9kZWxsaW5nIG9mIDxmIG5hbWU9IlN5bWJv

bCI+YTwvZj4tRC1nbHVjb3B5cmFub3NlIHJpbmcgZGlzdG9ydGlvbiBpbiBkaWZmZXJlbnQgZm9y

Y2UgZmllbGRzOiBhIG1ldGFkeW5hbWljcyBzdHVkeTwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PlNwaXdvayxWb2p0LSYjeEY4O2NoPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5LcmFsb3ZhLEJsYW5rYTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VHZh

cm9za2EsSWdvcjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9Qcmlt

YXJ5PjxLZXl3b3Jkcz5DYXJib2h5ZHJhdGUgY29uZm9ybWF0aW9uPC9LZXl3b3Jkcz48S2V5d29y

ZHM+Q09ORk9STUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09ORk9STUFUSU9OUzwvS2V5d29y

ZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZPC9LZXl3b3Jk

cz48S2V5d29yZHM+Rk9SQ0UgRklFTEQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5mb3JjZSBmaWVsZHM8

L0tleXdvcmRzPjxLZXl3b3Jkcz5GT1JDRS1GSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPkZPUkNF

LUZJRUxEUzwvS2V5d29yZHM+PEtleXdvcmRzPkZSRUUgRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RlJFRS1FTkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRzPkZSRUUtRU5FUkdZPC9LZXl3b3Jk

cz48S2V5d29yZHM+R0xZQ0FNMDY8L0tleXdvcmRzPjxLZXl3b3Jkcz5HUk9NT1M8L0tleXdvcmRz

PjxLZXl3b3Jkcz5NZXRhZHluYW1pY3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5NT0RFTDwvS2V5d29y

ZHM+PEtleXdvcmRzPm1vbGVjdWxhciBkeW5hbWljcyBzaW11bGF0aW9uPC9LZXl3b3Jkcz48S2V5

d29yZHM+UHlyYW5vc2UgcmluZyBkaXN0b3J0aW9uPC9LZXl3b3Jkcz48S2V5d29yZHM+UklORzwv

S2V5d29yZHM+PEtleXdvcmRzPlNVUkZBQ0U8L0tleXdvcmRzPjxLZXl3b3Jkcz53YXRlcjwvS2V5

d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+NTMwPC9TdGFy

dF9QYWdlPjxFbmRfUGFnZT41Mzc8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNhcmJvaHlkci5SZXMu

PC9QZXJpb2RpY2FsPjxWb2x1bWU+MzQ1PC9Wb2x1bWU+PElzc3VlPjQ8L0lzc3VlPjxXZWJfVVJM

Pmh0dHA6Ly93d3cuc2NpZW5jZWRpcmVjdC5jb20vc2NpZW5jZS9hcnRpY2xlL3BpaS9TMDAwODYy

MTUwOTAwNTk1MzwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0i

PkNhcmJvaHlkci5SZXMuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4x

PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj5=

ADDIN EN.CITE.DATA 15,16,17,18 and replica exchange-based schemes.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJhYmluPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjExMzE8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlvbmFsIGZyZWUgZW5lcmdpZXMgb2Yg

bWV0aHlsLWEtTC1pZHVyb25pYyBhbmQgbWV0aHlsLWItRC1nbHVjdXJvbmljIGFjaWRzIGluIHdh

dGVyPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1Jl

Zl9UeXBlPjxSZWZfSUQ+MTEzMTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkNvbmZvcm1hdGlvbmFs

IGZyZWUgZW5lcmdpZXMgb2YgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YTwvZj4tTC1pZHVyb25p

YyBhbmQgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YjwvZj4tRC1nbHVjdXJvbmljIGFjaWRzIGlu

IHdhdGVyPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFiaW4sVm9sb2R5bXlyPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TYWd1aSxDZWxlc3RlPC9BdXRob3JzX1By

aW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwLzMvMTE8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QUNJ

RDwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZ

PC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVF

LUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz53YXRlcjwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0

X1BhZ2U+MTA0MTA4PC9TdGFydF9QYWdlPjxQZXJpb2RpY2FsPkouQ2hlbS5QaHlzLjwvUGVyaW9k

aWNhbD48Vm9sdW1lPjEzMjwvVm9sdW1lPjxJc3N1ZT4xMDwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6

Ly9kb2kub3JnLzEwLjEwNjMvMS4zMzU1NjIxPC9XZWJfVVJMPjxaWl9Kb3VybmFsU3RkQWJicmV2

PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlBoeXMuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

Pldhbmc8L0F1dGhvcj48WWVhcj4yMDE4PC9ZZWFyPjxSZWNOdW0+MTEzMDwvUmVjTnVtPjxJRFRl

eHQ+RWZmaWNpZW50IHNhbXBsaW5nIG9mIHB1Y2tlcmluZyBzdGF0ZXMgb2YgbW9ub3NhY2NoYXJp

ZGVzIHRocm91Z2ggcmVwbGljYSBleGNoYW5nZSB3aXRoIHNvbHV0ZSB0ZW1wZXJpbmcgYW5kIGJv

bmQgc29mdGVuaW5nPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpv

dXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEzMDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkVmZmlj

aWVudCBzYW1wbGluZyBvZiBwdWNrZXJpbmcgc3RhdGVzIG9mIG1vbm9zYWNjaGFyaWRlcyB0aHJv

dWdoIHJlcGxpY2EgZXhjaGFuZ2Ugd2l0aCBzb2x1dGUgdGVtcGVyaW5nIGFuZCBib25kIHNvZnRl

bmluZzwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbmcsTGluZ2xlPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CZXJuZSxCLkouPC9BdXRob3JzX1ByaW1hcnk+PERh

dGVfUHJpbWFyeT4yMDE4LzUvODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5FRkZJQ0lFTlQ8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5wdWNrZXJpbmc8L0tleXdvcmRzPjxLZXl3b3Jkcz5SZXBsaWNhIEV4

Y2hhbmdlPC9LZXl3b3Jkcz48S2V5d29yZHM+U1RBVEU8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBp

biBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjA3MjMwNjwvU3RhcnRfUGFnZT48UGVyaW9kaWNh

bD5KLkNoZW0uUGh5cy48L1BlcmlvZGljYWw+PFZvbHVtZT4xNDk8L1ZvbHVtZT48SXNzdWU+Nzwv

SXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3JnLzEwLjEwNjMvMS41MDI0Mzg5PC9XZWJfVVJM

PjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlBoeXMuPC9mPjwv

WlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURM

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlBhdGVsPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjExNjI8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlvbmFsIHByb3BlcnRpZXMgb2YgYS1v

ciBiLSgxLTYpLWxpbmtlZCBvbGlnb3NhY2NoYXJpZGVzOiBIYW1pbHRvbmlhbiByZXBsaWNhIGV4

Y2hhbmdlIE1EIHNpbXVsYXRpb25zIGFuZCBOTVIgZXhwZXJpbWVudHM8L0lEVGV4dD48TURMIFJl

Zl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTYy

PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+Q29uZm9ybWF0aW9uYWwgcHJvcGVydGllcyBvZiA8ZiBu

YW1lPSJTeW1ib2wiPmE8L2Y+LW9yIDxmIG5hbWU9IlN5bWJvbCI+YjwvZj4tKDE8ZiBuYW1lPSJT

eW1ib2wiPi08L2Y+NiktbGlua2VkIG9saWdvc2FjY2hhcmlkZXM6IEhhbWlsdG9uaWFuIHJlcGxp

Y2EgZXhjaGFuZ2UgTUQgc2ltdWxhdGlvbnMgYW5kIE5NUiBleHBlcmltZW50czwvVGl0bGVfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PlBhdGVsLERoaWxvbiBTLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+UGVuZHJpbGwsUm9iZXJ0PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5NYWxsYWpvc3l1bGEsU2FpcmFtIFMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5XaWRtYWxtLEdvcmFuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5N

YWNLZXJlbGwgSnIsQWxleGFuZGVyIEQuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4y

MDE0PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPlByb3BlcnR5PC9LZXl3b3Jkcz48S2V5d29yZHM+

UmVwbGljYSBFeGNoYW5nZTwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT048L0tleXdvcmRz

PjxLZXl3b3Jkcz5TSU1VTEFUSU9OUzwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1Jl

cHJpbnQ+PFN0YXJ0X1BhZ2U+Mjg1MTwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+Mjg3MTwvRW5kX1Bh

Z2U+PFBlcmlvZGljYWw+Si5QaHlzLkNoZW0uQjwvUGVyaW9kaWNhbD48Vm9sdW1lPjExODwvVm9s

dW1lPjxJc3N1ZT4xMTwvSXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVt

Ij5KLlBoeXMuQ2hlbS5CPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4x

PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdhbHZlbGlzPC9BdXRo

b3I+PFllYXI+MjAxNzwvWWVhcj48UmVjTnVtPjExNjM8L1JlY051bT48SURUZXh0PkVuaGFuY2Vk

IGNvbmZvcm1hdGlvbmFsIHNhbXBsaW5nIG9mIE4tZ2x5Y2FucyBpbiBzb2x1dGlvbiB3aXRoIHJl

cGxpY2Egc3RhdGUgZXhjaGFuZ2UgbWV0YWR5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE2MzwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PkVuaGFuY2VkIGNvbmZvcm1hdGlvbmFsIHNhbXBsaW5nIG9mIE4tZ2x5

Y2FucyBpbiBzb2x1dGlvbiB3aXRoIHJlcGxpY2Egc3RhdGUgZXhjaGFuZ2UgbWV0YWR5bmFtaWNz

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R2FsdmVsaXMsUmFpbW9uZGFzPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5SZSxTdXlvbmc8L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlN1Z2l0YSxZdWppPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFy

eT4yMDE3PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkNvbmZvcm1hdGlvbmFsIHNhbXBsaW5nPC9L

ZXl3b3Jkcz48S2V5d29yZHM+TWV0YWR5bmFtaWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+U1RBVEU8

L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjE5MzQ8

L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjE5NDI8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouQ2hlbS5U

aGVvcnkgQ29tcHV0LjwvUGVyaW9kaWNhbD48Vm9sdW1lPjEzPC9Wb2x1bWU+PElzc3VlPjU8L0lz

c3VlPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlRoZW9yeSBD

b21wdXQuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3Jr

Zm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJhYmluPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjExMzE8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlvbmFsIGZyZWUgZW5lcmdpZXMgb2Yg

bWV0aHlsLWEtTC1pZHVyb25pYyBhbmQgbWV0aHlsLWItRC1nbHVjdXJvbmljIGFjaWRzIGluIHdh

dGVyPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1Jl

Zl9UeXBlPjxSZWZfSUQ+MTEzMTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkNvbmZvcm1hdGlvbmFs

IGZyZWUgZW5lcmdpZXMgb2YgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YTwvZj4tTC1pZHVyb25p

YyBhbmQgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YjwvZj4tRC1nbHVjdXJvbmljIGFjaWRzIGlu

IHdhdGVyPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFiaW4sVm9sb2R5bXlyPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TYWd1aSxDZWxlc3RlPC9BdXRob3JzX1By

aW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwLzMvMTE8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QUNJ

RDwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZ

PC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVF

LUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz53YXRlcjwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0

X1BhZ2U+MTA0MTA4PC9TdGFydF9QYWdlPjxQZXJpb2RpY2FsPkouQ2hlbS5QaHlzLjwvUGVyaW9k

aWNhbD48Vm9sdW1lPjEzMjwvVm9sdW1lPjxJc3N1ZT4xMDwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6

Ly9kb2kub3JnLzEwLjEwNjMvMS4zMzU1NjIxPC9XZWJfVVJMPjxaWl9Kb3VybmFsU3RkQWJicmV2

PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlBoeXMuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

Pldhbmc8L0F1dGhvcj48WWVhcj4yMDE4PC9ZZWFyPjxSZWNOdW0+MTEzMDwvUmVjTnVtPjxJRFRl

eHQ+RWZmaWNpZW50IHNhbXBsaW5nIG9mIHB1Y2tlcmluZyBzdGF0ZXMgb2YgbW9ub3NhY2NoYXJp

ZGVzIHRocm91Z2ggcmVwbGljYSBleGNoYW5nZSB3aXRoIHNvbHV0ZSB0ZW1wZXJpbmcgYW5kIGJv

bmQgc29mdGVuaW5nPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpv

dXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEzMDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkVmZmlj

aWVudCBzYW1wbGluZyBvZiBwdWNrZXJpbmcgc3RhdGVzIG9mIG1vbm9zYWNjaGFyaWRlcyB0aHJv

dWdoIHJlcGxpY2EgZXhjaGFuZ2Ugd2l0aCBzb2x1dGUgdGVtcGVyaW5nIGFuZCBib25kIHNvZnRl

bmluZzwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbmcsTGluZ2xlPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CZXJuZSxCLkouPC9BdXRob3JzX1ByaW1hcnk+PERh

dGVfUHJpbWFyeT4yMDE4LzUvODwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5FRkZJQ0lFTlQ8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5wdWNrZXJpbmc8L0tleXdvcmRzPjxLZXl3b3Jkcz5SZXBsaWNhIEV4

Y2hhbmdlPC9LZXl3b3Jkcz48S2V5d29yZHM+U1RBVEU8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBp

biBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjA3MjMwNjwvU3RhcnRfUGFnZT48UGVyaW9kaWNh

bD5KLkNoZW0uUGh5cy48L1BlcmlvZGljYWw+PFZvbHVtZT4xNDk8L1ZvbHVtZT48SXNzdWU+Nzwv

SXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3JnLzEwLjEwNjMvMS41MDI0Mzg5PC9XZWJfVVJM

PjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlBoeXMuPC9mPjwv

WlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURM

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlBhdGVsPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjExNjI8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlvbmFsIHByb3BlcnRpZXMgb2YgYS1v

ciBiLSgxLTYpLWxpbmtlZCBvbGlnb3NhY2NoYXJpZGVzOiBIYW1pbHRvbmlhbiByZXBsaWNhIGV4

Y2hhbmdlIE1EIHNpbXVsYXRpb25zIGFuZCBOTVIgZXhwZXJpbWVudHM8L0lEVGV4dD48TURMIFJl

Zl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTYy

PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+Q29uZm9ybWF0aW9uYWwgcHJvcGVydGllcyBvZiA8ZiBu

YW1lPSJTeW1ib2wiPmE8L2Y+LW9yIDxmIG5hbWU9IlN5bWJvbCI+YjwvZj4tKDE8ZiBuYW1lPSJT

eW1ib2wiPi08L2Y+NiktbGlua2VkIG9saWdvc2FjY2hhcmlkZXM6IEhhbWlsdG9uaWFuIHJlcGxp

Y2EgZXhjaGFuZ2UgTUQgc2ltdWxhdGlvbnMgYW5kIE5NUiBleHBlcmltZW50czwvVGl0bGVfUHJp

bWFyeT48QXV0aG9yc19QcmltYXJ5PlBhdGVsLERoaWxvbiBTLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+UGVuZHJpbGwsUm9iZXJ0PC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5NYWxsYWpvc3l1bGEsU2FpcmFtIFMuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5XaWRtYWxtLEdvcmFuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5N

YWNLZXJlbGwgSnIsQWxleGFuZGVyIEQuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4y

MDE0PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPlByb3BlcnR5PC9LZXl3b3Jkcz48S2V5d29yZHM+

UmVwbGljYSBFeGNoYW5nZTwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT048L0tleXdvcmRz

PjxLZXl3b3Jkcz5TSU1VTEFUSU9OUzwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1Jl

cHJpbnQ+PFN0YXJ0X1BhZ2U+Mjg1MTwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+Mjg3MTwvRW5kX1Bh

Z2U+PFBlcmlvZGljYWw+Si5QaHlzLkNoZW0uQjwvUGVyaW9kaWNhbD48Vm9sdW1lPjExODwvVm9s

dW1lPjxJc3N1ZT4xMTwvSXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVt

Ij5KLlBoeXMuQ2hlbS5CPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4x

PC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdhbHZlbGlzPC9BdXRo

b3I+PFllYXI+MjAxNzwvWWVhcj48UmVjTnVtPjExNjM8L1JlY051bT48SURUZXh0PkVuaGFuY2Vk

IGNvbmZvcm1hdGlvbmFsIHNhbXBsaW5nIG9mIE4tZ2x5Y2FucyBpbiBzb2x1dGlvbiB3aXRoIHJl

cGxpY2Egc3RhdGUgZXhjaGFuZ2UgbWV0YWR5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE2MzwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PkVuaGFuY2VkIGNvbmZvcm1hdGlvbmFsIHNhbXBsaW5nIG9mIE4tZ2x5

Y2FucyBpbiBzb2x1dGlvbiB3aXRoIHJlcGxpY2Egc3RhdGUgZXhjaGFuZ2UgbWV0YWR5bmFtaWNz

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R2FsdmVsaXMsUmFpbW9uZGFzPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5SZSxTdXlvbmc8L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PlN1Z2l0YSxZdWppPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFy

eT4yMDE3PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkNvbmZvcm1hdGlvbmFsIHNhbXBsaW5nPC9L

ZXl3b3Jkcz48S2V5d29yZHM+TWV0YWR5bmFtaWNzPC9LZXl3b3Jkcz48S2V5d29yZHM+U1RBVEU8

L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjE5MzQ8

L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjE5NDI8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouQ2hlbS5U

aGVvcnkgQ29tcHV0LjwvUGVyaW9kaWNhbD48Vm9sdW1lPjEzPC9Wb2x1bWU+PElzc3VlPjU8L0lz

c3VlPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlRoZW9yeSBD

b21wdXQuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3Jr

Zm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN EN.CITE.DATA 19,20,21,22 To date, however, enhanced sampling MD methods have not been deployed to examine the ring puckering of GAG monosaccharides. Recently, we introduced the msesMD method (multi-dimensional swarm enhanced sampling molecular dynamics) as an intuitive and effective biased MD approach. ADDIN REFMGR.CITE <Refman><Cite><Author>Alibay</Author><Year>2018</Year><RecNum>1121</RecNum><IDText>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1121</Ref_ID><Title_Primary>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</Title_Primary><Authors_Primary>Alibay,Irfan</Authors_Primary><Authors_Primary>Burusco,Kepa K.</Authors_Primary><Authors_Primary>Bruce,Neil J.</Authors_Primary><Authors_Primary>Bryce,Richard A.</Authors_Primary><Date_Primary>2018/3/8</Date_Primary><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>DYNAMICS</Keywords><Keywords>IDENTIFICATION</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>2462</Start_Page><End_Page>2474</End_Page><Periodical>J.Phys.Chem.B</Periodical><Volume>122</Volume><Issue>9</Issue><Web_URL> name="System">J.Phys.Chem.B</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>23 The msesMD method involves the coupling of a swarm of simulation replicas via attractive and repulsive potentials acting on dihedral angles of interest.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkFsaWJheTwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+PFJl

Y051bT4xMTIxPC9SZWNOdW0+PElEVGV4dD5JZGVudGlmaWNhdGlvbiBvZiBSYXJlIExld2lzIE9s

aWdvc2FjY2hhcmlkZSBDb25mb3JtZXJzIGluIEFxdWVvdXMgU29sdXRpb24gVXNpbmcgRW5oYW5j

ZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91

cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyMTwvUmVmX0lEPjxU

aXRsZV9QcmltYXJ5PklkZW50aWZpY2F0aW9uIG9mIFJhcmUgTGV3aXMgT2xpZ29zYWNjaGFyaWRl

IENvbmZvcm1lcnMgaW4gQXF1ZW91cyBTb2x1dGlvbiBVc2luZyBFbmhhbmNlZCBTYW1wbGluZyBN

b2xlY3VsYXIgRHluYW1pY3M8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5BbGliYXks

SXJmYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJ1cnVzY28sS2VwYSBLLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ1Y2UsTmVpbCBKLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ5Y2UsUmljaGFyZCBBLjwvQXV0aG9yc19QcmltYXJ5

PjxEYXRlX1ByaW1hcnk+MjAxOC8zLzg8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QVFVRU9VUy1T

T0xVVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+

SURFTlRJRklDQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1pY3M8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxSZXByaW50Pk5v

dCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI0NjI8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdl

PjI0NzQ8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouUGh5cy5DaGVtLkI8L1BlcmlvZGljYWw+PFZv

bHVtZT4xMjI8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3Jn

LzEwLjEwMjEvYWNzLmpwY2IuN2IwOTg0MTwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48

ZiBuYW1lPSJTeXN0ZW0iPkouUGh5cy5DaGVtLkI8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2Pjxa

Wl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+

QXR6b3JpPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVjTnVtPjExMDk8L1JlY051bT48SURU

ZXh0PkV4cGxvcmluZyBQcm90ZWluIEtpbmFzZSBDb25mb3JtYXRpb24gVXNpbmcgU3dhcm0tRW5o

YW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEwOTwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PkV4cGxvcmluZyBQcm90ZWluIEtpbmFzZSBDb25mb3JtYXRpb24gVXNp

bmcgU3dhcm0tRW5oYW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+QXR6b3JpLEFsZXNzaW88L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PkJydWNlLE5laWwgSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkJ1cnVzY28sS2VwYSBLLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3Jv

Ymxvd3NraSxCZXJ0aG9sZDwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Qm9ubmV0

LFBhc2NhbDwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ5Y2UsUmljaGFyZCBB

LjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxNC85LzE8L0RhdGVfUHJpbWFyeT48

S2V5d29yZHM+Q09ORk9STUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tleXdv

cmRzPjxLZXl3b3Jkcz5LaW5hc2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1p

Y3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxLZXl3

b3Jkcz5QUk9URUlOPC9LZXl3b3Jkcz48S2V5d29yZHM+cHJvdGVpbiBraW5hc2U8L0tleXdvcmRz

PjxLZXl3b3Jkcz5QUk9URUlOLUtJTkFTRTwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8

L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+Mjc2NDwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+Mjc3NTwvRW5k

X1BhZ2U+PFBlcmlvZGljYWw+Si5DaGVtLkluZi5Nb2RlbC48L1BlcmlvZGljYWw+PFZvbHVtZT41

NDwvVm9sdW1lPjxJc3N1ZT4xMDwvSXNzdWU+PFdlYl9VUkw+aHR0cDovL2R4LmRvaS5vcmcvMTAu

MTAyMS9jaTUwMDMzMzQ8L1dlYl9VUkw+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+

Sm91cm5hbCBvZiBDaGVtaWNhbCBJbmZvcm1hdGlvbiBhbmQgTW9kZWxpbmc8L2Y+PC9aWl9Kb3Vy

bmFsRnVsbD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPkouQ2hlbS5JbmYu

TW9kZWwuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3Jr

Zm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkJ1cnVzY288L0F1dGhvcj48WWVhcj4y

MDE1PC9ZZWFyPjxSZWNOdW0+MTE1MzwvUmVjTnVtPjxJRFRleHQ+RnJlZSBFbmVyZ3kgQ2FsY3Vs

YXRpb25zIHVzaW5nIGEgU3dhcm0tRW5oYW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNz

IEFwcHJvYWNoPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJu

YWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE1MzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkZyZWUgRW5l

cmd5IENhbGN1bGF0aW9ucyB1c2luZyBhIFN3YXJtLUVuaGFuY2VkIFNhbXBsaW5nIE1vbGVjdWxh

ciBEeW5hbWljcyBBcHByb2FjaDwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJ1cnVz

Y28sS2VwYSBLLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ1Y2UsTmVpbCBK

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWxpYmF5LElyZmFuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CcnljZSxSaWNoYXJkIEEuPC9BdXRob3JzX1ByaW1h

cnk+PERhdGVfUHJpbWFyeT4yMDE1LzEwLzE8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+Q09ORk9S

TUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09ORk9STUFUSU9OUzwvS2V5d29yZHM+PEtleXdv

cmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+RUZGSUNJRU5DWTwvS2V5d29yZHM+PEtl

eXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZPC9LZXl3b3Jkcz48S2V5

d29yZHM+ZW5oYW5jZWQgc2FtcGxpbmc8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFIEVORVJHWTwv

S2V5d29yZHM+PEtleXdvcmRzPkZyZWUgZW5lcmd5IGNhbGN1bGF0aW9uPC9LZXl3b3Jkcz48S2V5

d29yZHM+ZnJlZSBlbmVyZ3kgY2FsY3VsYXRpb25zPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1F

TkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRzPkZSRUUtRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29y

ZHM+a2luZXRpYyBzdWJzdGF0ZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1p

Y3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxLZXl3

b3Jkcz5QSEFTRTwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT048L0tleXdvcmRzPjxLZXl3

b3Jkcz5TSU1VTEFUSU9OUzwvS2V5d29yZHM+PEtleXdvcmRzPnN3YXJtPC9LZXl3b3Jkcz48S2V5

d29yZHM+U1lTVEVNUzwvS2V5d29yZHM+PEtleXdvcmRzPlRoZXJtb2R5bmFtaWMgaW50ZWdyYXRp

b248L0tleXdvcmRzPjxLZXl3b3Jkcz5UT09MPC9LZXl3b3Jkcz48S2V5d29yZHM+VFJBTlNJVElP

TlM8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjMy

MzM8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjMyNDE8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNoZW1w

aHlzY2hlbTwvUGVyaW9kaWNhbD48Vm9sdW1lPjE2PC9Wb2x1bWU+PElzc3VlPjE1PC9Jc3N1ZT48

V2ViX1VSTD5odHRwczovL2RvaS5vcmcvMTAuMTAwMi9jcGhjLjIwMTUwMDUyNDwvV2ViX1VSTD48

WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5DaGVtcGh5c2NoZW08L2Y+PC9aWl9Kb3Vy

bmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1Jl

Zm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkFsaWJheTwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+PFJl

Y051bT4xMTIxPC9SZWNOdW0+PElEVGV4dD5JZGVudGlmaWNhdGlvbiBvZiBSYXJlIExld2lzIE9s

aWdvc2FjY2hhcmlkZSBDb25mb3JtZXJzIGluIEFxdWVvdXMgU29sdXRpb24gVXNpbmcgRW5oYW5j

ZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91

cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyMTwvUmVmX0lEPjxU

aXRsZV9QcmltYXJ5PklkZW50aWZpY2F0aW9uIG9mIFJhcmUgTGV3aXMgT2xpZ29zYWNjaGFyaWRl

IENvbmZvcm1lcnMgaW4gQXF1ZW91cyBTb2x1dGlvbiBVc2luZyBFbmhhbmNlZCBTYW1wbGluZyBN

b2xlY3VsYXIgRHluYW1pY3M8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5BbGliYXks

SXJmYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJ1cnVzY28sS2VwYSBLLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ1Y2UsTmVpbCBKLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ5Y2UsUmljaGFyZCBBLjwvQXV0aG9yc19QcmltYXJ5

PjxEYXRlX1ByaW1hcnk+MjAxOC8zLzg8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QVFVRU9VUy1T

T0xVVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+

SURFTlRJRklDQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1pY3M8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxSZXByaW50Pk5v

dCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI0NjI8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdl

PjI0NzQ8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouUGh5cy5DaGVtLkI8L1BlcmlvZGljYWw+PFZv

bHVtZT4xMjI8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3Jn

LzEwLjEwMjEvYWNzLmpwY2IuN2IwOTg0MTwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48

ZiBuYW1lPSJTeXN0ZW0iPkouUGh5cy5DaGVtLkI8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2Pjxa

Wl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+

QXR6b3JpPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVjTnVtPjExMDk8L1JlY051bT48SURU

ZXh0PkV4cGxvcmluZyBQcm90ZWluIEtpbmFzZSBDb25mb3JtYXRpb24gVXNpbmcgU3dhcm0tRW5o

YW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEwOTwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PkV4cGxvcmluZyBQcm90ZWluIEtpbmFzZSBDb25mb3JtYXRpb24gVXNp

bmcgU3dhcm0tRW5oYW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+QXR6b3JpLEFsZXNzaW88L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PkJydWNlLE5laWwgSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkJ1cnVzY28sS2VwYSBLLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3Jv

Ymxvd3NraSxCZXJ0aG9sZDwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Qm9ubmV0

LFBhc2NhbDwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ5Y2UsUmljaGFyZCBB

LjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxNC85LzE8L0RhdGVfUHJpbWFyeT48

S2V5d29yZHM+Q09ORk9STUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tleXdv

cmRzPjxLZXl3b3Jkcz5LaW5hc2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1p

Y3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxLZXl3

b3Jkcz5QUk9URUlOPC9LZXl3b3Jkcz48S2V5d29yZHM+cHJvdGVpbiBraW5hc2U8L0tleXdvcmRz

PjxLZXl3b3Jkcz5QUk9URUlOLUtJTkFTRTwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8

L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+Mjc2NDwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+Mjc3NTwvRW5k

X1BhZ2U+PFBlcmlvZGljYWw+Si5DaGVtLkluZi5Nb2RlbC48L1BlcmlvZGljYWw+PFZvbHVtZT41

NDwvVm9sdW1lPjxJc3N1ZT4xMDwvSXNzdWU+PFdlYl9VUkw+aHR0cDovL2R4LmRvaS5vcmcvMTAu

MTAyMS9jaTUwMDMzMzQ8L1dlYl9VUkw+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+

Sm91cm5hbCBvZiBDaGVtaWNhbCBJbmZvcm1hdGlvbiBhbmQgTW9kZWxpbmc8L2Y+PC9aWl9Kb3Vy

bmFsRnVsbD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPkouQ2hlbS5JbmYu

TW9kZWwuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3Jr

Zm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkJ1cnVzY288L0F1dGhvcj48WWVhcj4y

MDE1PC9ZZWFyPjxSZWNOdW0+MTE1MzwvUmVjTnVtPjxJRFRleHQ+RnJlZSBFbmVyZ3kgQ2FsY3Vs

YXRpb25zIHVzaW5nIGEgU3dhcm0tRW5oYW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNz

IEFwcHJvYWNoPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJu

YWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE1MzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkZyZWUgRW5l

cmd5IENhbGN1bGF0aW9ucyB1c2luZyBhIFN3YXJtLUVuaGFuY2VkIFNhbXBsaW5nIE1vbGVjdWxh

ciBEeW5hbWljcyBBcHByb2FjaDwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJ1cnVz

Y28sS2VwYSBLLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ1Y2UsTmVpbCBK

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWxpYmF5LElyZmFuPC9BdXRob3Jz

X1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CcnljZSxSaWNoYXJkIEEuPC9BdXRob3JzX1ByaW1h

cnk+PERhdGVfUHJpbWFyeT4yMDE1LzEwLzE8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+Q09ORk9S

TUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09ORk9STUFUSU9OUzwvS2V5d29yZHM+PEtleXdv

cmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+RUZGSUNJRU5DWTwvS2V5d29yZHM+PEtl

eXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZPC9LZXl3b3Jkcz48S2V5

d29yZHM+ZW5oYW5jZWQgc2FtcGxpbmc8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVFIEVORVJHWTwv

S2V5d29yZHM+PEtleXdvcmRzPkZyZWUgZW5lcmd5IGNhbGN1bGF0aW9uPC9LZXl3b3Jkcz48S2V5

d29yZHM+ZnJlZSBlbmVyZ3kgY2FsY3VsYXRpb25zPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1F

TkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRzPkZSRUUtRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29y

ZHM+a2luZXRpYyBzdWJzdGF0ZXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1p

Y3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxLZXl3

b3Jkcz5QSEFTRTwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT048L0tleXdvcmRzPjxLZXl3

b3Jkcz5TSU1VTEFUSU9OUzwvS2V5d29yZHM+PEtleXdvcmRzPnN3YXJtPC9LZXl3b3Jkcz48S2V5

d29yZHM+U1lTVEVNUzwvS2V5d29yZHM+PEtleXdvcmRzPlRoZXJtb2R5bmFtaWMgaW50ZWdyYXRp

b248L0tleXdvcmRzPjxLZXl3b3Jkcz5UT09MPC9LZXl3b3Jkcz48S2V5d29yZHM+VFJBTlNJVElP

TlM8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjMy

MzM8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjMyNDE8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNoZW1w

aHlzY2hlbTwvUGVyaW9kaWNhbD48Vm9sdW1lPjE2PC9Wb2x1bWU+PElzc3VlPjE1PC9Jc3N1ZT48

V2ViX1VSTD5odHRwczovL2RvaS5vcmcvMTAuMTAwMi9jcGhjLjIwMTUwMDUyNDwvV2ViX1VSTD48

WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5DaGVtcGh5c2NoZW08L2Y+PC9aWl9Kb3Vy

bmFsRnVsbD48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1Jl

Zm1hbj5=

ADDIN EN.CITE.DATA 23,24,25 We demonstrated the computational efficiency of msesMD simulations in sampling Lewis tri- and tetrasaccharide conformations separated by high energy barriers to rotation about glycosidic torsions. ADDIN REFMGR.CITE <Refman><Cite><Author>Alibay</Author><Year>2018</Year><RecNum>1121</RecNum><IDText>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1121</Ref_ID><Title_Primary>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</Title_Primary><Authors_Primary>Alibay,Irfan</Authors_Primary><Authors_Primary>Burusco,Kepa K.</Authors_Primary><Authors_Primary>Bruce,Neil J.</Authors_Primary><Authors_Primary>Bryce,Richard A.</Authors_Primary><Date_Primary>2018/3/8</Date_Primary><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>DYNAMICS</Keywords><Keywords>IDENTIFICATION</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>2462</Start_Page><End_Page>2474</End_Page><Periodical>J.Phys.Chem.B</Periodical><Volume>122</Volume><Issue>9</Issue><Web_URL> name="System">J.Phys.Chem.B</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>23 In this work, we apply msesMD simulations to characterize the free energy landscape of ring pucker in GAG-related monosaccharides. We first validate the msesMD approach against unbiased multi-microsecond MD simulations for four unmodified monosaccharides: the anomers, α-D-glucose (α-Glc) and β-D-glucose (?-Glc); and the uronic acid epimers, α-L-iduronic acid (IdoA) and β-D-glucuronic acid (GlcA). Having established the efficient and quantitative sampling of ring pucker populations for these monosaccharides by msesMD simulations, we then employ this method to study a range of N-acetylated and sulfated GAG residues of IdoA, GlcA, N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) (Figure 1). For simulating these monosaccharides, we employ the GLYCAM06 force field ADDIN REFMGR.CITE <Refman><Cite><Author>Kirschner</Author><Year>2008</Year><RecNum>1143</RecNum><IDText>GLYCAM06: a generalizable biomolecular force field. Carbohydrates</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1143</Ref_ID><Title_Primary>GLYCAM06: a generalizable biomolecular force field. Carbohydrates</Title_Primary><Authors_Primary>Kirschner,Karl N.</Authors_Primary><Authors_Primary>Yongye,Austin B.</Authors_Primary><Authors_Primary>Tschampel,Sarah M.</Authors_Primary><Authors_Primary>Gonz+&#xED;lez<f name="Symbol">G</f>&#xC7;&#xC9;Outeiri+&#xA6;o,Jorge</Authors_Primary><Authors_Primary>Daniels,Charlisa R.</Authors_Primary><Authors_Primary>Foley,B.Lachele</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>GLYCAM06</Keywords><Reprint>Not in File</Reprint><Start_Page>622</Start_Page><End_Page>655</End_Page><Periodical>put.Chem.</Periodical><Volume>29</Volume><Issue>4</Issue><ZZ_JournalStdAbbrev><f name="System">put.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>26 and its recently introduced extension for modelling GAGs. ADDIN REFMGR.CITE <Refman><Cite><Author>Singh</Author><Year>2016</Year><RecNum>1142</RecNum><IDText>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1142</Ref_ID><Title_Primary>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</Title_Primary><Authors_Primary>Singh,Arunima</Authors_Primary><Authors_Primary>Tessier,Matthew B.</Authors_Primary><Authors_Primary>Pederson,Kari</Authors_Primary><Authors_Primary>Wang,Xiaocong</Authors_Primary><Authors_Primary>Venot,Andre P.</Authors_Primary><Authors_Primary>Boons,Geert Jan</Authors_Primary><Authors_Primary>Prestegard,James H.</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2016/2/9</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>PARAMETERS</Keywords><Keywords>VALIDATION</Keywords><Reprint>Not in File</Reprint><Start_Page>927</Start_Page><End_Page>935</End_Page><Periodical>Can.J.Chem.</Periodical><Volume>94</Volume><Issue>11</Issue><Web_URL> name="System">Canadian Journal of Chemistry</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">Can.J.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>27 Thus, we employ enhanced sampling molecular dynamics simulations to examine the puckering landscapes of sulfated monosaccharides, residues which feature in biologically key GAGs such as heparan sulfate/heparin, dermatan sulfate and chondroitin sulfate.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNhdHRlbGxlPC9BdXRob3I+PFllYXI+MjAxMTwvWWVhcj48

UmVjTnVtPjExMTg8L1JlY051bT48SURUZXh0PklzIE4tYWNldHlsLUQtZ2x1Y29zYW1pbmUgYSBy

aWdpZCA0QzEgY2hhaXI/PC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBl

PkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTExODwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5Pklz

IE4tYWNldHlsLUQtZ2x1Y29zYW1pbmUgYSByaWdpZCA0QzEgY2hhaXI/PC9UaXRsZV9QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U2F0dGVsbGUsQmVuZWRpY3QgTS48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PkFsbW9uZCxBbmRyZXc8L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Qcmlt

YXJ5PjIwMTE8L0RhdGVfUHJpbWFyeT48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3Rh

cnRfUGFnZT4xNjUxPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4xNjYyPC9FbmRfUGFnZT48UGVyaW9k

aWNhbD5nbHljb2I8L1BlcmlvZGljYWw+PFZvbHVtZT4yMTwvVm9sdW1lPjxJc3N1ZT4xMjwvSXNz

dWU+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+R0xZQ09CSU9MT0dZPC9mPjwvWlpf

Sm91cm5hbEZ1bGw+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5nbHljb2I8

L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+

PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+SHNpZWg8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFy

PjxSZWNOdW0+MTExNTwvUmVjTnVtPjxJRFRleHQ+VW5jb3ZlcmluZyB0aGUgcmVsYXRpb25zaGlw

IGJldHdlZW4gc3VscGhhdGlvbiBwYXR0ZXJucyBhbmQgY29uZm9ybWF0aW9uIG9mIGlkdXJvbmlj

IGFjaWQgaW4gaGVwYXJhbiBzdWxwaGF0ZTwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwi

PjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjExMTU8L1JlZl9JRD48VGl0bGVf

UHJpbWFyeT5VbmNvdmVyaW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzdWxwaGF0aW9uIHBh

dHRlcm5zIGFuZCBjb25mb3JtYXRpb24gb2YgaWR1cm9uaWMgYWNpZCBpbiBoZXBhcmFuIHN1bHBo

YXRlPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SHNpZWgsUG8gSHVuZzwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGhpZWtlcixEYXZpZCBGLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTWFyY288L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5Pldvb2RzLFJvYmVydCBKLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+TGl1LEppYW48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTY8L0RhdGVf

UHJpbWFyeT48S2V5d29yZHM+QUNJRDwvS2V5d29yZHM+PEtleXdvcmRzPkNPTkZPUk1BVElPTjwv

S2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+Mjk2MDI8

L1N0YXJ0X1BhZ2U+PFBlcmlvZGljYWw+U2NpLlJlcC48L1BlcmlvZGljYWw+PFZvbHVtZT42PC9W

b2x1bWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5TY2kuUmVwLjwvZj48

L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01E

TD48L0NpdGU+PENpdGU+PEF1dGhvcj5TYW1zb25vdjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+

PFJlY051bT4xMTQ0PC9SZWNOdW0+PElEVGV4dD5HbHljb3NhbWlub2dseWNhbiBtb25vc2FjY2hh

cmlkZSBibG9ja3MgYW5hbHlzaXMgYnkgcXVhbnR1bSBtZWNoYW5pY3MsIG1vbGVjdWxhciBkeW5h

bWljcywgYW5kIG51Y2xlYXIgbWFnbmV0aWMgcmVzb25hbmNlPC9JRFRleHQ+PE1ETCBSZWZfVHlw

ZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE0NDwvUmVm

X0lEPjxUaXRsZV9QcmltYXJ5PkdseWNvc2FtaW5vZ2x5Y2FuIG1vbm9zYWNjaGFyaWRlIGJsb2Nr

cyBhbmFseXNpcyBieSBxdWFudHVtIG1lY2hhbmljcywgbW9sZWN1bGFyIGR5bmFtaWNzLCBhbmQg

bnVjbGVhciBtYWduZXRpYyByZXNvbmFuY2U8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5TYW1zb25vdixTZXJnZXkgQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRo

ZWlzZ2VuLFN0ZXBoYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJpZW1lcixU

aG9tYXM8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pkh1c3RlcixEYW5pZWw8L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBpc2FiYXJybyxNLlRlcmVzYTwvQXV0aG9y

c19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxNDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hbmFs

eXNpczwvS2V5d29yZHM+PEtleXdvcmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+TUVD

SEFOSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+bW9sZWN1bGFyIGR5bmFtaWNzPC9LZXl3b3Jkcz48

S2V5d29yZHM+TU9MRUNVTEFSLURZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+cXVhbnR1bSBt

ZWNoYW5pY3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5RVUFOVFVNLU1FQ0hBTklDUzwvS2V5d29yZHM+

PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+ODA4MDcxPC9TdGFydF9Q

YWdlPjxQZXJpb2RpY2FsPkJpb01lZCBSZXMuSW50LjwvUGVyaW9kaWNhbD48Vm9sdW1lPjIwMTQ8

L1ZvbHVtZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPkJpb01lZCBSZXMu

SW50LjwvZj48L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zv

cm1JRD48L01ETD48L0NpdGU+PC9SZWZtYW4+

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNhdHRlbGxlPC9BdXRob3I+PFllYXI+MjAxMTwvWWVhcj48

UmVjTnVtPjExMTg8L1JlY051bT48SURUZXh0PklzIE4tYWNldHlsLUQtZ2x1Y29zYW1pbmUgYSBy

aWdpZCA0QzEgY2hhaXI/PC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBl

PkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTExODwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5Pklz

IE4tYWNldHlsLUQtZ2x1Y29zYW1pbmUgYSByaWdpZCA0QzEgY2hhaXI/PC9UaXRsZV9QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+U2F0dGVsbGUsQmVuZWRpY3QgTS48L0F1dGhvcnNfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PkFsbW9uZCxBbmRyZXc8L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9Qcmlt

YXJ5PjIwMTE8L0RhdGVfUHJpbWFyeT48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3Rh

cnRfUGFnZT4xNjUxPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4xNjYyPC9FbmRfUGFnZT48UGVyaW9k

aWNhbD5nbHljb2I8L1BlcmlvZGljYWw+PFZvbHVtZT4yMTwvVm9sdW1lPjxJc3N1ZT4xMjwvSXNz

dWU+PFpaX0pvdXJuYWxGdWxsPjxmIG5hbWU9IlN5c3RlbSI+R0xZQ09CSU9MT0dZPC9mPjwvWlpf

Sm91cm5hbEZ1bGw+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5nbHljb2I8

L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+

PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+SHNpZWg8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFy

PjxSZWNOdW0+MTExNTwvUmVjTnVtPjxJRFRleHQ+VW5jb3ZlcmluZyB0aGUgcmVsYXRpb25zaGlw

IGJldHdlZW4gc3VscGhhdGlvbiBwYXR0ZXJucyBhbmQgY29uZm9ybWF0aW9uIG9mIGlkdXJvbmlj

IGFjaWQgaW4gaGVwYXJhbiBzdWxwaGF0ZTwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwi

PjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjExMTU8L1JlZl9JRD48VGl0bGVf

UHJpbWFyeT5VbmNvdmVyaW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzdWxwaGF0aW9uIHBh

dHRlcm5zIGFuZCBjb25mb3JtYXRpb24gb2YgaWR1cm9uaWMgYWNpZCBpbiBoZXBhcmFuIHN1bHBo

YXRlPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SHNpZWgsUG8gSHVuZzwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VGhpZWtlcixEYXZpZCBGLjwvQXV0aG9yc19Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTWFyY288L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5Pldvb2RzLFJvYmVydCBKLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+TGl1LEppYW48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTY8L0RhdGVf

UHJpbWFyeT48S2V5d29yZHM+QUNJRDwvS2V5d29yZHM+PEtleXdvcmRzPkNPTkZPUk1BVElPTjwv

S2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+Mjk2MDI8

L1N0YXJ0X1BhZ2U+PFBlcmlvZGljYWw+U2NpLlJlcC48L1BlcmlvZGljYWw+PFZvbHVtZT42PC9W

b2x1bWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5TY2kuUmVwLjwvZj48

L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01E

TD48L0NpdGU+PENpdGU+PEF1dGhvcj5TYW1zb25vdjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+

PFJlY051bT4xMTQ0PC9SZWNOdW0+PElEVGV4dD5HbHljb3NhbWlub2dseWNhbiBtb25vc2FjY2hh

cmlkZSBibG9ja3MgYW5hbHlzaXMgYnkgcXVhbnR1bSBtZWNoYW5pY3MsIG1vbGVjdWxhciBkeW5h

bWljcywgYW5kIG51Y2xlYXIgbWFnbmV0aWMgcmVzb25hbmNlPC9JRFRleHQ+PE1ETCBSZWZfVHlw

ZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE0NDwvUmVm

X0lEPjxUaXRsZV9QcmltYXJ5PkdseWNvc2FtaW5vZ2x5Y2FuIG1vbm9zYWNjaGFyaWRlIGJsb2Nr

cyBhbmFseXNpcyBieSBxdWFudHVtIG1lY2hhbmljcywgbW9sZWN1bGFyIGR5bmFtaWNzLCBhbmQg

bnVjbGVhciBtYWduZXRpYyByZXNvbmFuY2U8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5TYW1zb25vdixTZXJnZXkgQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlRo

ZWlzZ2VuLFN0ZXBoYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJpZW1lcixU

aG9tYXM8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5Pkh1c3RlcixEYW5pZWw8L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBpc2FiYXJybyxNLlRlcmVzYTwvQXV0aG9y

c19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxNDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5hbmFs

eXNpczwvS2V5d29yZHM+PEtleXdvcmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+TUVD

SEFOSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+bW9sZWN1bGFyIGR5bmFtaWNzPC9LZXl3b3Jkcz48

S2V5d29yZHM+TU9MRUNVTEFSLURZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+cXVhbnR1bSBt

ZWNoYW5pY3M8L0tleXdvcmRzPjxLZXl3b3Jkcz5RVUFOVFVNLU1FQ0hBTklDUzwvS2V5d29yZHM+

PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+ODA4MDcxPC9TdGFydF9Q

YWdlPjxQZXJpb2RpY2FsPkJpb01lZCBSZXMuSW50LjwvUGVyaW9kaWNhbD48Vm9sdW1lPjIwMTQ8

L1ZvbHVtZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPkJpb01lZCBSZXMu

SW50LjwvZj48L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zv

cm1JRD48L01ETD48L0NpdGU+PC9SZWZtYW4+

ADDIN EN.CITE.DATA 28,29,302. Computational MethodsSystem preparation. All monosaccharide-water systems were built using the tleap module in AmberTools14.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkNhc2U8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNO

dW0+MTE2OTwvUmVjTnVtPjxJRFRleHQ+QU1CRVIgMTQ8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJH

ZW5lcmljIj48UmVmX1R5cGU+R2VuZXJpYzwvUmVmX1R5cGU+PFJlZl9JRD4xMTY5PC9SZWZfSUQ+

PFRpdGxlX1ByaW1hcnk+QU1CRVIgMTQ8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5D

YXNlLEQuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJhYmluLFYuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CZXJyeW1hbixKLlQuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5CZXR6LFIuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkNhaSxRLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2VydXR0aSxE

LlMuLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2hlYXRoYW0gSUlJLFQuRS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRhcmRlbixULkEuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EdWtlLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5Hb2hsa2UsSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkdvdHos

QS5XLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VzYXJvdixTLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SG9tZXllcixOLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+SmFub3dza2ksUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkthdXMsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktvbGFzc3Zhcnks

SS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktvdmFsZW5rbyxBLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGVlLFQuLVMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5MZUdyYW5kLFMuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5Pkx1Y2hrbyxULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+THVvLFIuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NYWRlaixCLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+TWVyeiBKci4sSy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+UGFlc2FuaSxGLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Um9l

LEQuUi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJvaXRiZXJnLEEuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TYWd1aSxDLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+U2Fsb21vbi1GZXJyZXIsUi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlNlYWJyYSxHLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2lt

bWVybGluZyxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U21pdGgsVy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlN3YWlscyxKLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+V2Fsa2VyLFIuQy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PldhbmcsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldvbGYsUi5N

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3UsWC48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PktvbGxtYW4sUC5BLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1By

aW1hcnk+MjAxNDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5BTUJFUjwvS2V5d29yZHM+PFJlcHJp

bnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PEFkZHJlc3M+VW5pdmVyc2l0eSBvZiBDYWxpZm9ybmlh

LCBTYW4gRnJhbmNpc2NvPC9BZGRyZXNzPjxaWl9Xb3JrZm9ybUlEPjMzPC9aWl9Xb3JrZm9ybUlE

PjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkNhc2U8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNO

dW0+MTE2OTwvUmVjTnVtPjxJRFRleHQ+QU1CRVIgMTQ8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJH

ZW5lcmljIj48UmVmX1R5cGU+R2VuZXJpYzwvUmVmX1R5cGU+PFJlZl9JRD4xMTY5PC9SZWZfSUQ+

PFRpdGxlX1ByaW1hcnk+QU1CRVIgMTQ8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5D

YXNlLEQuQS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJhYmluLFYuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CZXJyeW1hbixKLlQuPC9BdXRob3JzX1ByaW1h

cnk+PEF1dGhvcnNfUHJpbWFyeT5CZXR6LFIuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PkNhaSxRLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2VydXR0aSxE

LlMuLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Q2hlYXRoYW0gSUlJLFQuRS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRhcmRlbixULkEuPC9BdXRob3JzX1By

aW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5EdWtlLFIuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5Hb2hsa2UsSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkdvdHos

QS5XLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VzYXJvdixTLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+SG9tZXllcixOLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+SmFub3dza2ksUC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PkthdXMsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktvbGFzc3Zhcnks

SS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PktvdmFsZW5rbyxBLjwvQXV0aG9y

c19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TGVlLFQuLVMuPC9BdXRob3JzX1ByaW1hcnk+PEF1

dGhvcnNfUHJpbWFyeT5MZUdyYW5kLFMuTS48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5Pkx1Y2hrbyxULjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+THVvLFIuPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5NYWRlaixCLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+TWVyeiBKci4sSy5NLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+UGFlc2FuaSxGLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+Um9l

LEQuUi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlJvaXRiZXJnLEEuPC9BdXRo

b3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TYWd1aSxDLjwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+U2Fsb21vbi1GZXJyZXIsUi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlNlYWJyYSxHLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2lt

bWVybGluZyxDLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U21pdGgsVy48L0F1

dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlN3YWlscyxKLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+V2Fsa2VyLFIuQy48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PldhbmcsSi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldvbGYsUi5N

LjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+V3UsWC48L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PktvbGxtYW4sUC5BLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1By

aW1hcnk+MjAxNDwvRGF0ZV9QcmltYXJ5PjxLZXl3b3Jkcz5BTUJFUjwvS2V5d29yZHM+PFJlcHJp

bnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PEFkZHJlc3M+VW5pdmVyc2l0eSBvZiBDYWxpZm9ybmlh

LCBTYW4gRnJhbmNpc2NvPC9BZGRyZXNzPjxaWl9Xb3JrZm9ybUlEPjMzPC9aWl9Xb3JrZm9ybUlE

PjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN EN.CITE.DATA 31 Carbohydrate parameters were obtained from the GLYCAM06 (version j-1) force field, ADDIN REFMGR.CITE <Refman><Cite><Author>Kirschner</Author><Year>2008</Year><RecNum>1143</RecNum><IDText>GLYCAM06: a generalizable biomolecular force field. Carbohydrates</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1143</Ref_ID><Title_Primary>GLYCAM06: a generalizable biomolecular force field. Carbohydrates</Title_Primary><Authors_Primary>Kirschner,Karl N.</Authors_Primary><Authors_Primary>Yongye,Austin B.</Authors_Primary><Authors_Primary>Tschampel,Sarah M.</Authors_Primary><Authors_Primary>Gonz+&#xED;lez<f name="Symbol">G</f>&#xC7;&#xC9;Outeiri+&#xA6;o,Jorge</Authors_Primary><Authors_Primary>Daniels,Charlisa R.</Authors_Primary><Authors_Primary>Foley,B.Lachele</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>GLYCAM06</Keywords><Reprint>Not in File</Reprint><Start_Page>622</Start_Page><End_Page>655</End_Page><Periodical>put.Chem.</Periodical><Volume>29</Volume><Issue>4</Issue><ZZ_JournalStdAbbrev><f name="System">put.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>26 with additional parameters for the unsubstituted and N-sulfated glucosamine units obtained from a separate GLYCAM06 release for glycosaminoglycan monosaccharides. ADDIN REFMGR.CITE <Refman><Cite><Author>Singh</Author><Year>2016</Year><RecNum>1142</RecNum><IDText>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1142</Ref_ID><Title_Primary>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</Title_Primary><Authors_Primary>Singh,Arunima</Authors_Primary><Authors_Primary>Tessier,Matthew B.</Authors_Primary><Authors_Primary>Pederson,Kari</Authors_Primary><Authors_Primary>Wang,Xiaocong</Authors_Primary><Authors_Primary>Venot,Andre P.</Authors_Primary><Authors_Primary>Boons,Geert Jan</Authors_Primary><Authors_Primary>Prestegard,James H.</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2016/2/9</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>PARAMETERS</Keywords><Keywords>VALIDATION</Keywords><Reprint>Not in File</Reprint><Start_Page>927</Start_Page><End_Page>935</End_Page><Periodical>Can.J.Chem.</Periodical><Volume>94</Volume><Issue>11</Issue><Web_URL> name="System">Canadian Journal of Chemistry</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">Can.J.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>27 O-sulfated glycosaminoglycan monosaccharide parameters were set using the GLYCAM06 transferable sulfation method as described by Singh et al. ADDIN REFMGR.CITE <Refman><Cite><Author>Singh</Author><Year>2016</Year><RecNum>1142</RecNum><IDText>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1142</Ref_ID><Title_Primary>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</Title_Primary><Authors_Primary>Singh,Arunima</Authors_Primary><Authors_Primary>Tessier,Matthew B.</Authors_Primary><Authors_Primary>Pederson,Kari</Authors_Primary><Authors_Primary>Wang,Xiaocong</Authors_Primary><Authors_Primary>Venot,Andre P.</Authors_Primary><Authors_Primary>Boons,Geert Jan</Authors_Primary><Authors_Primary>Prestegard,James H.</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2016/2/9</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>PARAMETERS</Keywords><Keywords>VALIDATION</Keywords><Reprint>Not in File</Reprint><Start_Page>927</Start_Page><End_Page>935</End_Page><Periodical>Can.J.Chem.</Periodical><Volume>94</Volume><Issue>11</Issue><Web_URL> name="System">Canadian Journal of Chemistry</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">Can.J.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>27 The various monosaccharides (Figure 1) were built in the 4C1 ring configuration, with hydroxyl substituents at the C1 position. The systems were neutralised using sodium ions where appropriate and explicitly solvated in truncated octahedron boxes with TIP3P ADDIN REFMGR.CITE <Refman><Cite><Author>Jorgensen</Author><Year>1983</Year><RecNum>14</RecNum><IDText>Comparison of simple potential functions for simulating liquid water</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>14</Ref_ID><Title_Primary>Comparison of simple potential functions for simulating liquid water</Title_Primary><Authors_Primary>Jorgensen,W.L.</Authors_Primary><Authors_Primary>Chandrasekhar,J.</Authors_Primary><Authors_Primary>Madura,J.D.</Authors_Primary><Authors_Primary>Impey,R.W.</Authors_Primary><Authors_Primary>Klein,M.L.</Authors_Primary><Date_Primary>1983</Date_Primary><Reprint>Not in File</Reprint><Start_Page>926</Start_Page><End_Page>935</End_Page><Periodical>J.Chem.Phys.</Periodical><Volume>79</Volume><ZZ_JournalStdAbbrev><f name="System">J.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>32 waters. For β-GalNAc and its sulfated decorations (i.e. β-GalNAc(4S), β-GalNAc(6S), and β-GalNAc(4S, 6S)), an extra set of simulations was carried out at an ionic concentration of approximately between 150 and 175 mM, with 3 to 4 pairs of sodium and chloride ions added to the simulation box.MD simulations. All simulations were equilibrated using the following protocol. Solvated monosaccharide boxes were minimised and then heated from 0 to 298 K over 500 ps under constant volume conditions (NVT). The box density was then equilibrated to a target pressure of 1 bar via 1 ns of constant pressure (NPT) simulation using the Monte Carlo barostat, ADDIN REFMGR.CITE <Refman><Cite><Author>Allen</Author><Year>1987</Year><RecNum>239</RecNum><IDText>Computer simulation of liquids</IDText><MDL Ref_Type="Book, Whole"><Ref_Type>Book, Whole</Ref_Type><Ref_ID>239</Ref_ID><Title_Primary>Computer simulation of liquids</Title_Primary><Authors_Primary>Allen,M.P.</Authors_Primary><Authors_Primary>Tildesley,D.J.</Authors_Primary><Date_Primary>1987</Date_Primary><Reprint>Not in File</Reprint><Publisher>OUP</Publisher><ZZ_WorkformID>2</ZZ_WorkformID></MDL></Cite></Refman>33 with volume exchange attempts every 100 steps. The system was then further equilibrated under NVT conditions for a further 1 ns. All subsequent simulations were carried out in the NVT ensemble. Temperature control was achieved using the Langevin thermostat, ADDIN REFMGR.CITE <Refman><Cite><Author>Allen</Author><Year>1987</Year><RecNum>239</RecNum><IDText>Computer simulation of liquids</IDText><MDL Ref_Type="Book, Whole"><Ref_Type>Book, Whole</Ref_Type><Ref_ID>239</Ref_ID><Title_Primary>Computer simulation of liquids</Title_Primary><Authors_Primary>Allen,M.P.</Authors_Primary><Authors_Primary>Tildesley,D.J.</Authors_Primary><Date_Primary>1987</Date_Primary><Reprint>Not in File</Reprint><Publisher>OUP</Publisher><ZZ_WorkformID>2</ZZ_WorkformID></MDL></Cite><Cite><Author>Lemons</Author><Year>1997</Year><RecNum>1160</RecNum><IDText>Paul Langevin&apos;s 1908 paper &quot;On the theory of Brownian motion / Sur la theorie du mouvement brownien&quot;, [CR Acad. Sci.(Paris) 146, 530-533 (1908)]</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1160</Ref_ID><Title_Primary>Paul Langevin&apos;s 1908 paper &quot;On the theory of Brownian motion<f name="Symbol"> / </f>Sur la theorie du mouvement brownien&quot;, <f name="Symbol">[</f>CR Acad. Sci.(Paris) 146, 530<f name="Symbol">-</f>533 (1908)]</Title_Primary><Authors_Primary>Lemons,Don S.</Authors_Primary><Authors_Primary>Gythiel,Anthony</Authors_Primary><Date_Primary>1997</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1079</Start_Page><End_Page>1081</End_Page><Periodical>Am.J.Phys.</Periodical><Volume>65</Volume><Issue>11</Issue><ZZ_JournalStdAbbrev><f name="System">Am.J.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>33,34 with a collision frequency of 3 ps-1 and a target temperature of 298 K. Hydrogen bond motion was constrained using the SHAKE ADDIN REFMGR.CITE <Refman><Cite><Author>Ryckaert</Author><Year>1977</Year><RecNum>4</RecNum><IDText>Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>4</Ref_ID><Title_Primary>Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes</Title_Primary><Authors_Primary>Ryckaert,J.P.</Authors_Primary><Authors_Primary>Ciccotti,G.</Authors_Primary><Authors_Primary>Berendsen,H.J.C.</Authors_Primary><Date_Primary>1977</Date_Primary><Reprint>Not in File</Reprint><Start_Page>327</Start_Page><End_Page>341</End_Page><Periodical>put.Phys.</Periodical><Volume>23</Volume><ZZ_JournalStdAbbrev><f name="System">put.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>35 and SETTLE ADDIN REFMGR.CITE <Refman><Cite><Author>Miyamoto</Author><Year>1992</Year><RecNum>1145</RecNum><IDText>Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1145</Ref_ID><Title_Primary>Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models</Title_Primary><Authors_Primary>Miyamoto,Shuichi</Authors_Primary><Authors_Primary>Kollman,Peter A.</Authors_Primary><Date_Primary>1992</Date_Primary><Keywords>ALGORITHM</Keywords><Keywords>MODEL</Keywords><Keywords>MODELS</Keywords><Keywords>water</Keywords><Keywords>WATER MODEL</Keywords><Reprint>Not in File</Reprint><Start_Page>952</Start_Page><End_Page>962</End_Page><Periodical>put.Chem.</Periodical><Volume>13</Volume><Issue>8</Issue><ZZ_JournalStdAbbrev><f name="System">put.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>36 algorithms for solute and water molecule respectively. A 2 fs integration timestep was used for all msesMD simulations, whilst the unbiased MD simulations employed the hydrogen mass repartitioning (HMR) ADDIN REFMGR.CITE <Refman><Cite><Author>Feenstra</Author><Year>1999</Year><RecNum>1146</RecNum><IDText>Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1146</Ref_ID><Title_Primary>Improving efficiency of large time<f name="Symbol">-</f>scale molecular dynamics simulations of hydrogen<f name="Symbol">-</f>rich systems</Title_Primary><Authors_Primary>Feenstra,K.Anton</Authors_Primary><Authors_Primary>Hess,Berk</Authors_Primary><Authors_Primary>Berendsen,Herman JC</Authors_Primary><Date_Primary>1999</Date_Primary><Keywords>DYNAMICS</Keywords><Keywords>DYNAMICS SIMULATION</Keywords><Keywords>DYNAMICS SIMULATIONS</Keywords><Keywords>EFFICIENCY</Keywords><Keywords>molecular dynamics</Keywords><Keywords>molecular dynamics simulation</Keywords><Keywords>molecular dynamics simulations</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Keywords>SIMULATION</Keywords><Keywords>SIMULATIONS</Keywords><Keywords>SYSTEMS</Keywords><Reprint>Not in File</Reprint><Start_Page>786</Start_Page><End_Page>798</End_Page><Periodical>put.Chem.</Periodical><Volume>20</Volume><Issue>8</Issue><ZZ_JournalStdAbbrev><f name="System">put.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>37 methodology with a timestep of 4 fs. Following Hopkins et al., ADDIN REFMGR.CITE <Refman><Cite><Author>Hopkins</Author><Year>2015</Year><RecNum>1147</RecNum><IDText>Long-time-step molecular dynamics through hydrogen mass repartitioning</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1147</Ref_ID><Title_Primary>Long-time-step molecular dynamics through hydrogen mass repartitioning</Title_Primary><Authors_Primary>Hopkins,Chad W.</Authors_Primary><Authors_Primary>Le Grand,Scott</Authors_Primary><Authors_Primary>Walker,Ross C.</Authors_Primary><Authors_Primary>Roitberg,Adrian E.</Authors_Primary><Date_Primary>2015</Date_Primary><Keywords>DYNAMICS</Keywords><Keywords>HYDROGEN</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>1864</Start_Page><End_Page>1874</End_Page><Periodical>J.Chem.Theory Comput.</Periodical><Volume>11</Volume><Issue>4</Issue><ZZ_JournalStdAbbrev><f name="System">J.Chem.Theory Comput.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>38 2 amu was repartitioned from heavy atoms to hydrogens via the AMBER parmed utility. A 9 ? cut-off was used for short range non-bonded interactions, with long range electrostatics calculated via the particle mesh Ewald approach. ADDIN REFMGR.CITE <Refman><Cite><Author>Essmann</Author><Year>1995</Year><RecNum>16</RecNum><IDText>A smooth particle mesh Ewald method</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>16</Ref_ID><Title_Primary>A smooth particle mesh Ewald method</Title_Primary><Authors_Primary>Essmann,U.</Authors_Primary><Authors_Primary>Perera,L.</Authors_Primary><Authors_Primary>Berkowitz,M.L.</Authors_Primary><Authors_Primary>Darden,T.</Authors_Primary><Authors_Primary>Lee,H.</Authors_Primary><Authors_Primary>Pedersen,L.G.</Authors_Primary><Date_Primary>1995</Date_Primary><Reprint>Not in File</Reprint><Start_Page>8577</Start_Page><End_Page>8593</End_Page><Periodical>J.Chem.Phys.</Periodical><Volume>103</Volume><ZZ_JournalStdAbbrev><f name="System">J.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Darden</Author><Year>1993</Year><RecNum>490</RecNum><IDText>Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems.</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>490</Ref_ID><Title_Primary>Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems.</Title_Primary><Authors_Primary>Darden,T.</Authors_Primary><Authors_Primary>York,D.M.</Authors_Primary><Authors_Primary>Pedersen,L.</Authors_Primary><Date_Primary>1993</Date_Primary><Reprint>Not in File</Reprint><Start_Page>10089</Start_Page><End_Page>10092</End_Page><Periodical>J.Chem.Phys.</Periodical><Volume>98</Volume><ZZ_JournalStdAbbrev><f name="System">J.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>39,40 Starting from the equilibrated systems, individual production simulations were propagated for a total of 10 ?s, with configurations sampled every 5 ps. For α-Glc and GlcA, simulations were extended by a further 10 ?s due to poor sampling of chair interconversion events.msesMD simulations. The same overall msesMD simulation approach employed in our recent work was used here. ADDIN REFMGR.CITE <Refman><Cite><Author>Alibay</Author><Year>2018</Year><RecNum>1121</RecNum><IDText>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1121</Ref_ID><Title_Primary>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</Title_Primary><Authors_Primary>Alibay,Irfan</Authors_Primary><Authors_Primary>Burusco,Kepa K.</Authors_Primary><Authors_Primary>Bruce,Neil J.</Authors_Primary><Authors_Primary>Bryce,Richard A.</Authors_Primary><Date_Primary>2018/3/8</Date_Primary><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>DYNAMICS</Keywords><Keywords>IDENTIFICATION</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>2462</Start_Page><End_Page>2474</End_Page><Periodical>J.Phys.Chem.B</Periodical><Volume>122</Volume><Issue>9</Issue><Web_URL> name="System">J.Phys.Chem.B</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>23 Briefly, eight replicas were coupled using our previously published swarm biasing potential with the parameters A = 3.195 kcal/mol, B = 2.625 rad-1, C = 0.75 kcal/mol and D = 0.5 rad-1. For all monosaccharides, the msesMD potential was applied to two non-overlapping ring torsions, O5-C1-C2-C3 and C3-C4-C5-O5. These boost coordinates were chosen due to their successful previous use in Hamiltonian replica exchange studies of uronic acid puckering by Babin and Sagui. ADDIN REFMGR.CITE <Refman><Cite><Author>Babin</Author><Year>2010</Year><RecNum>1131</RecNum><IDText>Conformational free energies of methyl-a-L-iduronic and methyl-b-D-glucuronic acids in water</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1131</Ref_ID><Title_Primary>Conformational free energies of methyl-<f name="Symbol">a</f>-L-iduronic and methyl-<f name="Symbol">b</f>-D-glucuronic acids in water</Title_Primary><Authors_Primary>Babin,Volodymyr</Authors_Primary><Authors_Primary>Sagui,Celeste</Authors_Primary><Date_Primary>2010/3/11</Date_Primary><Keywords>ACID</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>water</Keywords><Reprint>Not in File</Reprint><Start_Page>104108</Start_Page><Periodical>J.Chem.Phys.</Periodical><Volume>132</Volume><Issue>10</Issue><Web_URL> name="System">J.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>19 It is however noted that other puckering coordinates, such as Hill-Reilly ADDIN REFMGR.CITE <Refman><Cite><Author>Hill</Author><Year>2007</Year><RecNum>1148</RecNum><IDText>Puckering coordinates of monocyclic rings by triangular decomposition</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1148</Ref_ID><Title_Primary>Puckering coordinates of monocyclic rings by triangular decomposition</Title_Primary><Authors_Primary>Hill,Anthony D.</Authors_Primary><Authors_Primary>Reilly,Peter J.</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>decomposition</Keywords><Keywords>puckering</Keywords><Keywords>RING</Keywords><Reprint>Not in File</Reprint><Start_Page>1031</Start_Page><End_Page>1035</End_Page><Periodical>J.Chem.Inf.Model.</Periodical><Volume>47</Volume><Issue>3</Issue><ZZ_JournalFull><f name="System">Journal of Chemical Information and Modeling</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">J.Chem.Inf.Model.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>41 or Cremer-Pople angles, ADDIN REFMGR.CITE <Refman><Cite><Author>Cremer</Author><Year>1975</Year><RecNum>1134</RecNum><IDText>General definition of ring puckering coordinates</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1134</Ref_ID><Title_Primary>General definition of ring puckering coordinates</Title_Primary><Authors_Primary>Cremer,D.</Authors_Primary><Authors_Primary>Pople,J.A.</Authors_Primary><Date_Primary>1975/3/1</Date_Primary><Keywords>puckering</Keywords><Keywords>RING</Keywords><Reprint>Not in File</Reprint><Start_Page>1354</Start_Page><End_Page>1358</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>97</Volume><Issue>6</Issue><Web_URL> name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>6 have also been found to be effective in previous enhanced sampling studiesPFJlZm1hbj48Q2l0ZT48QXV0aG9yPk5haWRvbzwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJl

Y051bT4xMTMzPC9SZWNOdW0+PElEVGV4dD5GRUFSQ0YgYSBtdWx0aWRpbWVuc2lvbmFsIGZyZWUg

ZW5lcmd5IG1ldGhvZCBmb3IgaW52ZXN0aWdhdGluZyBjb25mb3JtYXRpb25hbCBsYW5kc2NhcGVz

IGFuZCBjaGVtaWNhbCByZWFjdGlvbiBtZWNoYW5pc21zPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEzMzwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PkZFQVJDRiBhIG11bHRpZGltZW5zaW9uYWwgZnJlZSBlbmVyZ3kgbWV0

aG9kIGZvciBpbnZlc3RpZ2F0aW5nIGNvbmZvcm1hdGlvbmFsIGxhbmRzY2FwZXMgYW5kIGNoZW1p

Y2FsIHJlYWN0aW9uIG1lY2hhbmlzbXM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5O

YWlkb28sS2V2aW4gSi48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTE8L0RhdGVf

UHJpbWFyeT48S2V5d29yZHM+QVNTT0NJQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5DT01QTEVY

PC9LZXl3b3Jkcz48S2V5d29yZHM+Q09NUExFWEVTPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09ORk9S

TUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+RUZGSUNJRU5DWTwvS2V5d29yZHM+PEtleXdvcmRz

PkVGRklDSUVOVDwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdv

cmRzPjxLZXl3b3Jkcz5JTVBMRU1FTlRBVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPk1FQU4gRk9S

Q0U8L0tleXdvcmRzPjxLZXl3b3Jkcz5NRUNIQU5JU008L0tleXdvcmRzPjxLZXl3b3Jkcz5QUkVQ

SEVOQVRFPC9LZXl3b3Jkcz48S2V5d29yZHM+cHVja2VyaW5nPC9LZXl3b3Jkcz48S2V5d29yZHM+

UklORzwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5T

SU1VTEFUSU9OUzwvS2V5d29yZHM+PEtleXdvcmRzPlNVUkZBQ0U8L0tleXdvcmRzPjxLZXl3b3Jk

cz5WT0xVTUVTPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRf

UGFnZT4xOTYyPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4xOTczPC9FbmRfUGFnZT48UGVyaW9kaWNh

bD5TY2llbmNlIENoaW5hIENoZW1pc3RyeTwvUGVyaW9kaWNhbD48Vm9sdW1lPjU0PC9Wb2x1bWU+

PElzc3VlPjEyPC9Jc3N1ZT48V2ViX1VSTD5odHRwczovL2RvaS5vcmcvMTAuMTAwNy9zMTE0MjYt

MDExLTQ0MjMtNzwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0i

PlNjaWVuY2UgQ2hpbmEgQ2hlbWlzdHJ5PC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkF1dGll

cmk8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MTEyODwvUmVjTnVtPjxJRFRleHQ+

UHVja2VyaW5nIGZyZWUgZW5lcmd5IG9mIHB5cmFub3NlczogQSBOTVIgYW5kIG1ldGFkeW5hbWlj

cy11bWJyZWxsYSBzYW1wbGluZyBpbnZlc3RpZ2F0aW9uPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyODwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PlB1Y2tlcmluZyBmcmVlIGVuZXJneSBvZiBweXJhbm9zZXM6IEEgTk1S

IGFuZCBtZXRhZHluYW1pY3MtdW1icmVsbGEgc2FtcGxpbmcgaW52ZXN0aWdhdGlvbjwvVGl0bGVf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkF1dGllcmksRW1tYW51ZWw8L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PlNlZ2EsTWFyY2VsbG88L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlBlZGVyaXZhLEZyYW5jZXNjbzwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+R3VlbGxhLEdyYXppYW5vPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEw

PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5F

UkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5G

UkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxL

ZXl3b3Jkcz5wdWNrZXJpbmc8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50

PjxTdGFydF9QYWdlPjA5QjYwNDwvU3RhcnRfUGFnZT48UGVyaW9kaWNhbD5KLkNoZW0uUGh5cy48

L1BlcmlvZGljYWw+PFZvbHVtZT4xMzM8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFpaX0pvdXJu

YWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5KLkNoZW0uUGh5cy48L2Y+PC9aWl9Kb3VybmFs

U3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwv

UmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPk5haWRvbzwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJl

Y051bT4xMTMzPC9SZWNOdW0+PElEVGV4dD5GRUFSQ0YgYSBtdWx0aWRpbWVuc2lvbmFsIGZyZWUg

ZW5lcmd5IG1ldGhvZCBmb3IgaW52ZXN0aWdhdGluZyBjb25mb3JtYXRpb25hbCBsYW5kc2NhcGVz

IGFuZCBjaGVtaWNhbCByZWFjdGlvbiBtZWNoYW5pc21zPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEzMzwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PkZFQVJDRiBhIG11bHRpZGltZW5zaW9uYWwgZnJlZSBlbmVyZ3kgbWV0

aG9kIGZvciBpbnZlc3RpZ2F0aW5nIGNvbmZvcm1hdGlvbmFsIGxhbmRzY2FwZXMgYW5kIGNoZW1p

Y2FsIHJlYWN0aW9uIG1lY2hhbmlzbXM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5O

YWlkb28sS2V2aW4gSi48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTE8L0RhdGVf

UHJpbWFyeT48S2V5d29yZHM+QVNTT0NJQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5DT01QTEVY

PC9LZXl3b3Jkcz48S2V5d29yZHM+Q09NUExFWEVTPC9LZXl3b3Jkcz48S2V5d29yZHM+Q09ORk9S

TUFUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+RUZGSUNJRU5DWTwvS2V5d29yZHM+PEtleXdvcmRz

PkVGRklDSUVOVDwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29y

ZHM+RU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdv

cmRzPjxLZXl3b3Jkcz5JTVBMRU1FTlRBVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPk1FQU4gRk9S

Q0U8L0tleXdvcmRzPjxLZXl3b3Jkcz5NRUNIQU5JU008L0tleXdvcmRzPjxLZXl3b3Jkcz5QUkVQ

SEVOQVRFPC9LZXl3b3Jkcz48S2V5d29yZHM+cHVja2VyaW5nPC9LZXl3b3Jkcz48S2V5d29yZHM+

UklORzwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5T

SU1VTEFUSU9OUzwvS2V5d29yZHM+PEtleXdvcmRzPlNVUkZBQ0U8L0tleXdvcmRzPjxLZXl3b3Jk

cz5WT0xVTUVTPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRf

UGFnZT4xOTYyPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4xOTczPC9FbmRfUGFnZT48UGVyaW9kaWNh

bD5TY2llbmNlIENoaW5hIENoZW1pc3RyeTwvUGVyaW9kaWNhbD48Vm9sdW1lPjU0PC9Wb2x1bWU+

PElzc3VlPjEyPC9Jc3N1ZT48V2ViX1VSTD5odHRwczovL2RvaS5vcmcvMTAuMTAwNy9zMTE0MjYt

MDExLTQ0MjMtNzwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0i

PlNjaWVuY2UgQ2hpbmEgQ2hlbWlzdHJ5PC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29y

a2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkF1dGll

cmk8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MTEyODwvUmVjTnVtPjxJRFRleHQ+

UHVja2VyaW5nIGZyZWUgZW5lcmd5IG9mIHB5cmFub3NlczogQSBOTVIgYW5kIG1ldGFkeW5hbWlj

cy11bWJyZWxsYSBzYW1wbGluZyBpbnZlc3RpZ2F0aW9uPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0i

Sm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyODwvUmVmX0lE

PjxUaXRsZV9QcmltYXJ5PlB1Y2tlcmluZyBmcmVlIGVuZXJneSBvZiBweXJhbm9zZXM6IEEgTk1S

IGFuZCBtZXRhZHluYW1pY3MtdW1icmVsbGEgc2FtcGxpbmcgaW52ZXN0aWdhdGlvbjwvVGl0bGVf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkF1dGllcmksRW1tYW51ZWw8L0F1dGhvcnNfUHJpbWFy

eT48QXV0aG9yc19QcmltYXJ5PlNlZ2EsTWFyY2VsbG88L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlBlZGVyaXZhLEZyYW5jZXNjbzwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+R3VlbGxhLEdyYXppYW5vPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEw

PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5F

UkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5G

UkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxL

ZXl3b3Jkcz5wdWNrZXJpbmc8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50

PjxTdGFydF9QYWdlPjA5QjYwNDwvU3RhcnRfUGFnZT48UGVyaW9kaWNhbD5KLkNoZW0uUGh5cy48

L1BlcmlvZGljYWw+PFZvbHVtZT4xMzM8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFpaX0pvdXJu

YWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5KLkNoZW0uUGh5cy48L2Y+PC9aWl9Kb3VybmFs

U3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwv

UmVmbWFuPm==

ADDIN EN.CITE.DATA 14,15 and could equally have been employed in the current work. On completing the unbiased MD equilibration process, eight independent trajectories were propagated over a 1 ns period. The msesMD potential was then slowly introduced across the replicas over a 600 ps period and the system allowed to re-equilibrate for a further 5.4 ns under the full influence of the potential. This was then followed by 195 ns per replica of production simulation with configurations sampled every picosecond.Analysis. Cremer-Pople θ and ? angles were calculated to characterise monosaccharide pucker. To quantify differences in occupation of ring conformations (1C4, 4C1, half-chair/envelope and boat/skew-boat), free energy surfaces were computed both as a function of θ and of θ and ?. For this, the relative Helmholtz free energy ΔΑ was computed from the normalised microstate probability density ρx according to ΔΑ = kBTlnρx, where kB is the Boltzmann constant and T is temperature. Estimates for ρx were obtained via the “counting approach” for unbiased MD simulations, ADDIN REFMGR.CITE <Refman><Cite><Author>Meirovitch</Author><Year>2007</Year><RecNum>1152</RecNum><IDText>Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1152</Ref_ID><Title_Primary>Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation</Title_Primary><Authors_Primary>Meirovitch,Hagai</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>computer simulation</Keywords><Keywords>COMPUTER-SIMULATION</Keywords><Keywords>DYNAMICS</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>methodology</Keywords><Keywords>molecular dynamics</Keywords><Keywords>molecular dynamics method</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Keywords>PEPTIDE</Keywords><Keywords>POTENTIAL-ENERGY</Keywords><Keywords>PROTEIN</Keywords><Keywords>protein folding</Keywords><Keywords>PROTEINS</Keywords><Keywords>SIMULATION</Keywords><Keywords>SURFACE</Keywords><Keywords>SYSTEMS</Keywords><Keywords>Thermodynamic integration</Keywords><Reprint>Not in File</Reprint><Start_Page>181</Start_Page><End_Page>186</End_Page><Periodical>Curr.Opin.Struct.Biol.</Periodical><Volume>17</Volume><Issue>2</Issue><Web_URL> name="System">Curr.Opin.Struct.Biol.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>42 and for msesMD through the approach of Torrie and Valleau ADDIN REFMGR.CITE <Refman><Cite><Author>Torrie</Author><Year>1977</Year><RecNum>100</RecNum><IDText>Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>100</Ref_ID><Title_Primary>Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling</Title_Primary><Authors_Primary>Torrie,G.M.</Authors_Primary><Authors_Primary>Valleau,J.P.</Authors_Primary><Date_Primary>1977</Date_Primary><Keywords>Monte Carlo</Keywords><Keywords>MONTE-CARLO</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE ENERGY</Keywords><Reprint>Not in File</Reprint><Start_Page>187</Start_Page><End_Page>199</End_Page><Periodical>put.Phys.</Periodical><Volume>23</Volume><ZZ_JournalStdAbbrev><f name="System">put.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>43 as detailed previously.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkFsaWJheTwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+PFJl

Y051bT4xMTIxPC9SZWNOdW0+PElEVGV4dD5JZGVudGlmaWNhdGlvbiBvZiBSYXJlIExld2lzIE9s

aWdvc2FjY2hhcmlkZSBDb25mb3JtZXJzIGluIEFxdWVvdXMgU29sdXRpb24gVXNpbmcgRW5oYW5j

ZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91

cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyMTwvUmVmX0lEPjxU

aXRsZV9QcmltYXJ5PklkZW50aWZpY2F0aW9uIG9mIFJhcmUgTGV3aXMgT2xpZ29zYWNjaGFyaWRl

IENvbmZvcm1lcnMgaW4gQXF1ZW91cyBTb2x1dGlvbiBVc2luZyBFbmhhbmNlZCBTYW1wbGluZyBN

b2xlY3VsYXIgRHluYW1pY3M8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5BbGliYXks

SXJmYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJ1cnVzY28sS2VwYSBLLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ1Y2UsTmVpbCBKLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ5Y2UsUmljaGFyZCBBLjwvQXV0aG9yc19QcmltYXJ5

PjxEYXRlX1ByaW1hcnk+MjAxOC8zLzg8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QVFVRU9VUy1T

T0xVVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+

SURFTlRJRklDQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1pY3M8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxSZXByaW50Pk5v

dCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI0NjI8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdl

PjI0NzQ8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouUGh5cy5DaGVtLkI8L1BlcmlvZGljYWw+PFZv

bHVtZT4xMjI8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3Jn

LzEwLjEwMjEvYWNzLmpwY2IuN2IwOTg0MTwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48

ZiBuYW1lPSJTeXN0ZW0iPkouUGh5cy5DaGVtLkI8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2Pjxa

Wl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+

QnVydXNjbzwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJlY051bT4xMTUzPC9SZWNOdW0+PElE

VGV4dD5GcmVlIEVuZXJneSBDYWxjdWxhdGlvbnMgdXNpbmcgYSBTd2FybS1FbmhhbmNlZCBTYW1w

bGluZyBNb2xlY3VsYXIgRHluYW1pY3MgQXBwcm9hY2g8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJK

b3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTUzPC9SZWZfSUQ+

PFRpdGxlX1ByaW1hcnk+RnJlZSBFbmVyZ3kgQ2FsY3VsYXRpb25zIHVzaW5nIGEgU3dhcm0tRW5o

YW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzIEFwcHJvYWNoPC9UaXRsZV9QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+QnVydXNjbyxLZXBhIEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5CcnVjZSxOZWlsIEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5BbGliYXksSXJmYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJyeWNlLFJp

Y2hhcmQgQS48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTUvMTAvMTwvRGF0ZV9Q

cmltYXJ5PjxLZXl3b3Jkcz5DT05GT1JNQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5DT05GT1JN

QVRJT05TPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tleXdvcmRzPjxLZXl3b3Jkcz5F

RkZJQ0lFTkNZPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5FTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5lbmhhbmNlZCBzYW1wbGluZzwvS2V5d29yZHM+

PEtleXdvcmRzPkZSRUUgRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RnJlZSBlbmVyZ3kgY2Fs

Y3VsYXRpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5mcmVlIGVuZXJneSBjYWxjdWxhdGlvbnM8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1F

TkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5raW5ldGljIHN1YnN0YXRlczwvS2V5d29yZHM+PEtl

eXdvcmRzPm1vbGVjdWxhciBkeW5hbWljczwvS2V5d29yZHM+PEtleXdvcmRzPk1PTEVDVUxBUi1E

WU5BTUlDUzwvS2V5d29yZHM+PEtleXdvcmRzPlBIQVNFPC9LZXl3b3Jkcz48S2V5d29yZHM+U0lN

VUxBVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT05TPC9LZXl3b3Jkcz48S2V5d29y

ZHM+c3dhcm08L0tleXdvcmRzPjxLZXl3b3Jkcz5TWVNURU1TPC9LZXl3b3Jkcz48S2V5d29yZHM+

VGhlcm1vZHluYW1pYyBpbnRlZ3JhdGlvbjwvS2V5d29yZHM+PEtleXdvcmRzPlRPT0w8L0tleXdv

cmRzPjxLZXl3b3Jkcz5UUkFOU0lUSU9OUzwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8

L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MzIzMzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+MzI0MTwvRW5k

X1BhZ2U+PFBlcmlvZGljYWw+Q2hlbXBoeXNjaGVtPC9QZXJpb2RpY2FsPjxWb2x1bWU+MTY8L1Zv

bHVtZT48SXNzdWU+MTU8L0lzc3VlPjxXZWJfVVJMPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDAyL2Nw

aGMuMjAxNTAwNTI0PC9XZWJfVVJMPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkNo

ZW1waHlzY2hlbTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtm

b3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkFsaWJheTwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+PFJl

Y051bT4xMTIxPC9SZWNOdW0+PElEVGV4dD5JZGVudGlmaWNhdGlvbiBvZiBSYXJlIExld2lzIE9s

aWdvc2FjY2hhcmlkZSBDb25mb3JtZXJzIGluIEFxdWVvdXMgU29sdXRpb24gVXNpbmcgRW5oYW5j

ZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91

cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTEyMTwvUmVmX0lEPjxU

aXRsZV9QcmltYXJ5PklkZW50aWZpY2F0aW9uIG9mIFJhcmUgTGV3aXMgT2xpZ29zYWNjaGFyaWRl

IENvbmZvcm1lcnMgaW4gQXF1ZW91cyBTb2x1dGlvbiBVc2luZyBFbmhhbmNlZCBTYW1wbGluZyBN

b2xlY3VsYXIgRHluYW1pY3M8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5BbGliYXks

SXJmYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJ1cnVzY28sS2VwYSBLLjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ1Y2UsTmVpbCBKLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QnJ5Y2UsUmljaGFyZCBBLjwvQXV0aG9yc19QcmltYXJ5

PjxEYXRlX1ByaW1hcnk+MjAxOC8zLzg8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QVFVRU9VUy1T

T0xVVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPkRZTkFNSUNTPC9LZXl3b3Jkcz48S2V5d29yZHM+

SURFTlRJRklDQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5tb2xlY3VsYXIgZHluYW1pY3M8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5NT0xFQ1VMQVItRFlOQU1JQ1M8L0tleXdvcmRzPjxSZXByaW50Pk5v

dCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI0NjI8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdl

PjI0NzQ8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkouUGh5cy5DaGVtLkI8L1BlcmlvZGljYWw+PFZv

bHVtZT4xMjI8L1ZvbHVtZT48SXNzdWU+OTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3Jn

LzEwLjEwMjEvYWNzLmpwY2IuN2IwOTg0MTwvV2ViX1VSTD48WlpfSm91cm5hbFN0ZEFiYnJldj48

ZiBuYW1lPSJTeXN0ZW0iPkouUGh5cy5DaGVtLkI8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2Pjxa

Wl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+

QnVydXNjbzwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJlY051bT4xMTUzPC9SZWNOdW0+PElE

VGV4dD5GcmVlIEVuZXJneSBDYWxjdWxhdGlvbnMgdXNpbmcgYSBTd2FybS1FbmhhbmNlZCBTYW1w

bGluZyBNb2xlY3VsYXIgRHluYW1pY3MgQXBwcm9hY2g8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJK

b3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTUzPC9SZWZfSUQ+

PFRpdGxlX1ByaW1hcnk+RnJlZSBFbmVyZ3kgQ2FsY3VsYXRpb25zIHVzaW5nIGEgU3dhcm0tRW5o

YW5jZWQgU2FtcGxpbmcgTW9sZWN1bGFyIER5bmFtaWNzIEFwcHJvYWNoPC9UaXRsZV9QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+QnVydXNjbyxLZXBhIEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5CcnVjZSxOZWlsIEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5BbGliYXksSXJmYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkJyeWNlLFJp

Y2hhcmQgQS48L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTUvMTAvMTwvRGF0ZV9Q

cmltYXJ5PjxLZXl3b3Jkcz5DT05GT1JNQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5DT05GT1JN

QVRJT05TPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tleXdvcmRzPjxLZXl3b3Jkcz5F

RkZJQ0lFTkNZPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jk

cz5FTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5lbmhhbmNlZCBzYW1wbGluZzwvS2V5d29yZHM+

PEtleXdvcmRzPkZSRUUgRU5FUkdZPC9LZXl3b3Jkcz48S2V5d29yZHM+RnJlZSBlbmVyZ3kgY2Fs

Y3VsYXRpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5mcmVlIGVuZXJneSBjYWxjdWxhdGlvbnM8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1F

TkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5raW5ldGljIHN1YnN0YXRlczwvS2V5d29yZHM+PEtl

eXdvcmRzPm1vbGVjdWxhciBkeW5hbWljczwvS2V5d29yZHM+PEtleXdvcmRzPk1PTEVDVUxBUi1E

WU5BTUlDUzwvS2V5d29yZHM+PEtleXdvcmRzPlBIQVNFPC9LZXl3b3Jkcz48S2V5d29yZHM+U0lN

VUxBVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT05TPC9LZXl3b3Jkcz48S2V5d29y

ZHM+c3dhcm08L0tleXdvcmRzPjxLZXl3b3Jkcz5TWVNURU1TPC9LZXl3b3Jkcz48S2V5d29yZHM+

VGhlcm1vZHluYW1pYyBpbnRlZ3JhdGlvbjwvS2V5d29yZHM+PEtleXdvcmRzPlRPT0w8L0tleXdv

cmRzPjxLZXl3b3Jkcz5UUkFOU0lUSU9OUzwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8

L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MzIzMzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+MzI0MTwvRW5k

X1BhZ2U+PFBlcmlvZGljYWw+Q2hlbXBoeXNjaGVtPC9QZXJpb2RpY2FsPjxWb2x1bWU+MTY8L1Zv

bHVtZT48SXNzdWU+MTU8L0lzc3VlPjxXZWJfVVJMPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDAyL2Nw

aGMuMjAxNTAwNTI0PC9XZWJfVVJMPjxaWl9Kb3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkNo

ZW1waHlzY2hlbTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtm

b3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA 23,25 A histogram bin size of 6 was used, with maximum energy cutoffs of 12 and 8 kcal/mol for the 1D and 2D surfaces respectively. Relative free energies of different puckering states (Tables 1 and 2) present the lowest free energy bin value in the 2D Cremer-Pople θ??range defining that particular puckering state. Ensemble average estimate errors for the msesMD simulations were calculated via bootstrap analysis, randomly resampling the simulation data from all frames 100,000 times and calculating the error as the standard deviation in the bin energy estimates across all resamples. ADDIN REFMGR.CITE <Refman><Cite><Author>Alibay</Author><Year>2018</Year><RecNum>1121</RecNum><IDText>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1121</Ref_ID><Title_Primary>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</Title_Primary><Authors_Primary>Alibay,Irfan</Authors_Primary><Authors_Primary>Burusco,Kepa K.</Authors_Primary><Authors_Primary>Bruce,Neil J.</Authors_Primary><Authors_Primary>Bryce,Richard A.</Authors_Primary><Date_Primary>2018/3/8</Date_Primary><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>DYNAMICS</Keywords><Keywords>IDENTIFICATION</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>2462</Start_Page><End_Page>2474</End_Page><Periodical>J.Phys.Chem.B</Periodical><Volume>122</Volume><Issue>9</Issue><Web_URL> name="System">J.Phys.Chem.B</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>23 From unbiased MD trajectories, stochastic transition matrices were constructed to examine the probability of moving from one pucker state to another, at a resolution of 5 ps. These analyses were performed via in-house python scripts, using the NumPy () and SciPy libraries (); and the cpptraj program from AmberTools16. ADDIN REFMGR.CITE <Refman><Cite><Author>Roe</Author><Year>2013</Year><RecNum>1150</RecNum><IDText>PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1150</Ref_ID><Title_Primary>PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data</Title_Primary><Authors_Primary>Roe,Daniel R.</Authors_Primary><Authors_Primary>Cheatham,Thomas E.</Authors_Primary><Date_Primary>2013/7/9</Date_Primary><Keywords>analysis</Keywords><Keywords>DYNAMICS</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>3084</Start_Page><End_Page>3095</End_Page><Periodical>J.Chem.Theory Comput.</Periodical><Volume>9</Volume><Issue>7</Issue><Web_URL> name="System">J.Chem.Theory Comput.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>44 3. Results and discussion3.1 Comparison of puckering free energy landscapes via MD and msesMDFirstly, we compute the puckering free energy profiles for four biological relevant and computationally well-studied monosaccharides, α-Glc, ?-Glc, α-L-IdoA and ?-D-GlcA (Figure 1). PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJhYmluPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjExMzE8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlvbmFsIGZyZWUgZW5lcmdpZXMgb2Yg

bWV0aHlsLWEtTC1pZHVyb25pYyBhbmQgbWV0aHlsLWItRC1nbHVjdXJvbmljIGFjaWRzIGluIHdh

dGVyPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1Jl

Zl9UeXBlPjxSZWZfSUQ+MTEzMTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkNvbmZvcm1hdGlvbmFs

IGZyZWUgZW5lcmdpZXMgb2YgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YTwvZj4tTC1pZHVyb25p

YyBhbmQgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YjwvZj4tRC1nbHVjdXJvbmljIGFjaWRzIGlu

IHdhdGVyPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFiaW4sVm9sb2R5bXlyPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TYWd1aSxDZWxlc3RlPC9BdXRob3JzX1By

aW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwLzMvMTE8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QUNJ

RDwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZ

PC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVF

LUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz53YXRlcjwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0

X1BhZ2U+MTA0MTA4PC9TdGFydF9QYWdlPjxQZXJpb2RpY2FsPkouQ2hlbS5QaHlzLjwvUGVyaW9k

aWNhbD48Vm9sdW1lPjEzMjwvVm9sdW1lPjxJc3N1ZT4xMDwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6

Ly9kb2kub3JnLzEwLjEwNjMvMS4zMzU1NjIxPC9XZWJfVVJMPjxaWl9Kb3VybmFsU3RkQWJicmV2

PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlBoeXMuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PlBsYXppbnNraTwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJlY051bT4xMTI3PC9SZWNOdW0+

PElEVGV4dD5LaW5ldGljIGNoYXJhY3RlcmlzdGljcyBvZiBjb25mb3JtYXRpb25hbCBjaGFuZ2Vz

IGluIHRoZSBoZXhvcHlyYW5vc2UgcmluZ3M8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFs

Ij48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTI3PC9SZWZfSUQ+PFRpdGxl

X1ByaW1hcnk+S2luZXRpYyBjaGFyYWN0ZXJpc3RpY3Mgb2YgY29uZm9ybWF0aW9uYWwgY2hhbmdl

cyBpbiB0aGUgaGV4b3B5cmFub3NlIHJpbmdzPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+UGxhemluc2tpLFdvamNpZWNoPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5E

cmFjaCxNYXRldXN6PC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDE1PC9EYXRlX1By

aW1hcnk+PEtleXdvcmRzPmNvbmZvcm1hdGlvbmFsIGNoYW5nZTwvS2V5d29yZHM+PEtleXdvcmRz

PkNPTkZPUk1BVElPTkFMLUNIQU5HRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5SSU5HPC9LZXl3b3Jk

cz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT40MTwvU3RhcnRfUGFn

ZT48RW5kX1BhZ2U+NTA8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNhcmJvaHlkci5SZXMuPC9QZXJp

b2RpY2FsPjxWb2x1bWU+NDE2PC9Wb2x1bWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0i

U3lzdGVtIj5DYXJib2h5ZHIuUmVzLjwvZj48L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtm

b3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5QbGF6aW5z

a2k8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+MTEzNjwvUmVjTnVtPjxJRFRleHQ+

VGhlIGR5bmFtaWNzIG9mIHRoZSBjb25mb3JtYXRpb25hbCBjaGFuZ2VzIGluIHRoZSBoZXhvcHly

YW5vc2UgcmluZzogYSB0cmFuc2l0aW9uIHBhdGggc2FtcGxpbmcgYXBwcm9hY2g8L0lEVGV4dD48

TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9J

RD4xMTM2PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+VGhlIGR5bmFtaWNzIG9mIHRoZSBjb25mb3Jt

YXRpb25hbCBjaGFuZ2VzIGluIHRoZSBoZXhvcHlyYW5vc2UgcmluZzogYSB0cmFuc2l0aW9uIHBh

dGggc2FtcGxpbmcgYXBwcm9hY2g8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QbGF6

aW5za2ksV29qY2llY2g8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRyYWNoLE1h

dGV1c3o8L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTQ8L0RhdGVfUHJpbWFyeT48

S2V5d29yZHM+YW5hbHlzaXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5DT05GT1JNQVRJT048L0tleXdv

cmRzPjxLZXl3b3Jkcz5jb25mb3JtYXRpb25hbCBjaGFuZ2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5D

T05GT1JNQVRJT05BTC1DSEFOR0VTPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tleXdv

cmRzPjxLZXl3b3Jkcz5FTkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHWTwvS2V5d29y

ZHM+PEtleXdvcmRzPkZFQVRVUkVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1F

TkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5NRUNIQU5JU008L0tleXdvcmRzPjxLZXl3b3Jkcz5N

SU5JTVVNPC9LZXl3b3Jkcz48S2V5d29yZHM+TU9ERUw8L0tleXdvcmRzPjxLZXl3b3Jkcz5wdWNr

ZXJpbmc8L0tleXdvcmRzPjxLZXl3b3Jkcz5SSU5HPC9LZXl3b3Jkcz48S2V5d29yZHM+U0lNVUxB

VElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT05TPC9LZXl3b3Jkcz48S2V5d29yZHM+

U1RBVEU8L0tleXdvcmRzPjxLZXl3b3Jkcz5TdHJ1Y3R1cmU8L0tleXdvcmRzPjxLZXl3b3Jkcz5T

WVNURU1TPC9LZXl3b3Jkcz48S2V5d29yZHM+VFJBTlNJVElPTi1TVEFURTwvS2V5d29yZHM+PEtl

eXdvcmRzPlRSQU5TSVRJT05TPC9LZXl3b3Jkcz48S2V5d29yZHM+d2F0ZXI8L0tleXdvcmRzPjxS

ZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI1MDI4PC9TdGFydF9QYWdl

PjxFbmRfUGFnZT4yNTAzOTwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+UlNDIEFkdi48L1BlcmlvZGlj

YWw+PFZvbHVtZT40PC9Wb2x1bWU+PElzc3VlPjQ4PC9Jc3N1ZT48V2ViX1VSTD5odHRwOi8vZHgu

ZG9pLm9yZy8xMC4xMDM5L0M0UkEwMzQxMEQ8L1dlYl9VUkw+PFpaX0pvdXJuYWxGdWxsPjxmIG5h

bWU9IlN5c3RlbSI+UlNDIEFkdmFuY2VzPC9mPjwvWlpfSm91cm5hbEZ1bGw+PFpaX0pvdXJuYWxT

dGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5SU0MgQWR2LjwvZj48L1paX0pvdXJuYWxTdGRBYmJy

ZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1

dGhvcj5TcGl3b2s8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MTEzNzwvUmVjTnVt

PjxJRFRleHQ+TW9kZWxsaW5nIG9mIGEtRC1nbHVjb3B5cmFub3NlIHJpbmcgZGlzdG9ydGlvbiBp

biBkaWZmZXJlbnQgZm9yY2UgZmllbGRzOiBhIG1ldGFkeW5hbWljcyBzdHVkeTwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lE

PjExMzc8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5Nb2RlbGxpbmcgb2YgPGYgbmFtZT0iU3ltYm9s

Ij5hPC9mPi1ELWdsdWNvcHlyYW5vc2UgcmluZyBkaXN0b3J0aW9uIGluIGRpZmZlcmVudCBmb3Jj

ZSBmaWVsZHM6IGEgbWV0YWR5bmFtaWNzIHN0dWR5PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+U3Bpd29rLFZvanQtJiN4Rjg7Y2g8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PktyYWxvdmEsQmxhbmthPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UdmFy

b3NrYSxJZ29yPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwPC9EYXRlX1ByaW1h

cnk+PEtleXdvcmRzPkNhcmJvaHlkcmF0ZSBjb25mb3JtYXRpb248L0tleXdvcmRzPjxLZXl3b3Jk

cz5DT05GT1JNQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5DT05GT1JNQVRJT05TPC9LZXl3b3Jk

cz48S2V5d29yZHM+RU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5FTkVSR1k8L0tleXdvcmRz

PjxLZXl3b3Jkcz5GT1JDRSBGSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPmZvcmNlIGZpZWxkczwv

S2V5d29yZHM+PEtleXdvcmRzPkZPUkNFLUZJRUxEPC9LZXl3b3Jkcz48S2V5d29yZHM+Rk9SQ0Ut

RklFTERTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jk

cz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRz

PjxLZXl3b3Jkcz5HTFlDQU0wNjwvS2V5d29yZHM+PEtleXdvcmRzPkdST01PUzwvS2V5d29yZHM+

PEtleXdvcmRzPk1ldGFkeW5hbWljczwvS2V5d29yZHM+PEtleXdvcmRzPk1PREVMPC9LZXl3b3Jk

cz48S2V5d29yZHM+bW9sZWN1bGFyIGR5bmFtaWNzIHNpbXVsYXRpb248L0tleXdvcmRzPjxLZXl3

b3Jkcz5QeXJhbm9zZSByaW5nIGRpc3RvcnRpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5SSU5HPC9L

ZXl3b3Jkcz48S2V5d29yZHM+U1VSRkFDRTwvS2V5d29yZHM+PEtleXdvcmRzPndhdGVyPC9LZXl3

b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT41MzA8L1N0YXJ0

X1BhZ2U+PEVuZF9QYWdlPjUzNzwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Q2FyYm9oeWRyLlJlcy48

L1BlcmlvZGljYWw+PFZvbHVtZT4zNDU8L1ZvbHVtZT48SXNzdWU+NDwvSXNzdWU+PFdlYl9VUkw+

aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2FydGljbGUvcGlpL1MwMDA4NjIx

NTA5MDA1OTUzPC9XZWJfVVJMPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+

Q2FyYm9oeWRyLlJlcy48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8

L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkJhYmluPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjExMzE8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlvbmFsIGZyZWUgZW5lcmdpZXMgb2Yg

bWV0aHlsLWEtTC1pZHVyb25pYyBhbmQgbWV0aHlsLWItRC1nbHVjdXJvbmljIGFjaWRzIGluIHdh

dGVyPC9JRFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1Jl

Zl9UeXBlPjxSZWZfSUQ+MTEzMTwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkNvbmZvcm1hdGlvbmFs

IGZyZWUgZW5lcmdpZXMgb2YgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YTwvZj4tTC1pZHVyb25p

YyBhbmQgbWV0aHlsLTxmIG5hbWU9IlN5bWJvbCI+YjwvZj4tRC1nbHVjdXJvbmljIGFjaWRzIGlu

IHdhdGVyPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmFiaW4sVm9sb2R5bXlyPC9B

dXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5TYWd1aSxDZWxlc3RlPC9BdXRob3JzX1By

aW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwLzMvMTE8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+QUNJ

RDwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RU5FUkdZ

PC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5GUkVF

LUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRzPjxLZXl3

b3Jkcz53YXRlcjwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0

X1BhZ2U+MTA0MTA4PC9TdGFydF9QYWdlPjxQZXJpb2RpY2FsPkouQ2hlbS5QaHlzLjwvUGVyaW9k

aWNhbD48Vm9sdW1lPjEzMjwvVm9sdW1lPjxJc3N1ZT4xMDwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6

Ly9kb2kub3JnLzEwLjEwNjMvMS4zMzU1NjIxPC9XZWJfVVJMPjxaWl9Kb3VybmFsU3RkQWJicmV2

PjxmIG5hbWU9IlN5c3RlbSI+Si5DaGVtLlBoeXMuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PlBsYXppbnNraTwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJlY051bT4xMTI3PC9SZWNOdW0+

PElEVGV4dD5LaW5ldGljIGNoYXJhY3RlcmlzdGljcyBvZiBjb25mb3JtYXRpb25hbCBjaGFuZ2Vz

IGluIHRoZSBoZXhvcHlyYW5vc2UgcmluZ3M8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFs

Ij48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTI3PC9SZWZfSUQ+PFRpdGxl

X1ByaW1hcnk+S2luZXRpYyBjaGFyYWN0ZXJpc3RpY3Mgb2YgY29uZm9ybWF0aW9uYWwgY2hhbmdl

cyBpbiB0aGUgaGV4b3B5cmFub3NlIHJpbmdzPC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+UGxhemluc2tpLFdvamNpZWNoPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5E

cmFjaCxNYXRldXN6PC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDE1PC9EYXRlX1By

aW1hcnk+PEtleXdvcmRzPmNvbmZvcm1hdGlvbmFsIGNoYW5nZTwvS2V5d29yZHM+PEtleXdvcmRz

PkNPTkZPUk1BVElPTkFMLUNIQU5HRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5SSU5HPC9LZXl3b3Jk

cz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT40MTwvU3RhcnRfUGFn

ZT48RW5kX1BhZ2U+NTA8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkNhcmJvaHlkci5SZXMuPC9QZXJp

b2RpY2FsPjxWb2x1bWU+NDE2PC9Wb2x1bWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0i

U3lzdGVtIj5DYXJib2h5ZHIuUmVzLjwvZj48L1paX0pvdXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtm

b3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1dGhvcj5QbGF6aW5z

a2k8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+MTEzNjwvUmVjTnVtPjxJRFRleHQ+

VGhlIGR5bmFtaWNzIG9mIHRoZSBjb25mb3JtYXRpb25hbCBjaGFuZ2VzIGluIHRoZSBoZXhvcHly

YW5vc2UgcmluZzogYSB0cmFuc2l0aW9uIHBhdGggc2FtcGxpbmcgYXBwcm9hY2g8L0lEVGV4dD48

TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9J

RD4xMTM2PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+VGhlIGR5bmFtaWNzIG9mIHRoZSBjb25mb3Jt

YXRpb25hbCBjaGFuZ2VzIGluIHRoZSBoZXhvcHlyYW5vc2UgcmluZzogYSB0cmFuc2l0aW9uIHBh

dGggc2FtcGxpbmcgYXBwcm9hY2g8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5QbGF6

aW5za2ksV29qY2llY2g8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkRyYWNoLE1h

dGV1c3o8L0F1dGhvcnNfUHJpbWFyeT48RGF0ZV9QcmltYXJ5PjIwMTQ8L0RhdGVfUHJpbWFyeT48

S2V5d29yZHM+YW5hbHlzaXM8L0tleXdvcmRzPjxLZXl3b3Jkcz5DT05GT1JNQVRJT048L0tleXdv

cmRzPjxLZXl3b3Jkcz5jb25mb3JtYXRpb25hbCBjaGFuZ2U8L0tleXdvcmRzPjxLZXl3b3Jkcz5D

T05GT1JNQVRJT05BTC1DSEFOR0VTPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tleXdv

cmRzPjxLZXl3b3Jkcz5FTkVSR0lFUzwvS2V5d29yZHM+PEtleXdvcmRzPkVORVJHWTwvS2V5d29y

ZHM+PEtleXdvcmRzPkZFQVRVUkVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1F

TkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jkcz5NRUNIQU5JU008L0tleXdvcmRzPjxLZXl3b3Jkcz5N

SU5JTVVNPC9LZXl3b3Jkcz48S2V5d29yZHM+TU9ERUw8L0tleXdvcmRzPjxLZXl3b3Jkcz5wdWNr

ZXJpbmc8L0tleXdvcmRzPjxLZXl3b3Jkcz5SSU5HPC9LZXl3b3Jkcz48S2V5d29yZHM+U0lNVUxB

VElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlNJTVVMQVRJT05TPC9LZXl3b3Jkcz48S2V5d29yZHM+

U1RBVEU8L0tleXdvcmRzPjxLZXl3b3Jkcz5TdHJ1Y3R1cmU8L0tleXdvcmRzPjxLZXl3b3Jkcz5T

WVNURU1TPC9LZXl3b3Jkcz48S2V5d29yZHM+VFJBTlNJVElPTi1TVEFURTwvS2V5d29yZHM+PEtl

eXdvcmRzPlRSQU5TSVRJT05TPC9LZXl3b3Jkcz48S2V5d29yZHM+d2F0ZXI8L0tleXdvcmRzPjxS

ZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjI1MDI4PC9TdGFydF9QYWdl

PjxFbmRfUGFnZT4yNTAzOTwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+UlNDIEFkdi48L1BlcmlvZGlj

YWw+PFZvbHVtZT40PC9Wb2x1bWU+PElzc3VlPjQ4PC9Jc3N1ZT48V2ViX1VSTD5odHRwOi8vZHgu

ZG9pLm9yZy8xMC4xMDM5L0M0UkEwMzQxMEQ8L1dlYl9VUkw+PFpaX0pvdXJuYWxGdWxsPjxmIG5h

bWU9IlN5c3RlbSI+UlNDIEFkdmFuY2VzPC9mPjwvWlpfSm91cm5hbEZ1bGw+PFpaX0pvdXJuYWxT

dGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5SU0MgQWR2LjwvZj48L1paX0pvdXJuYWxTdGRBYmJy

ZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PENpdGU+PEF1

dGhvcj5TcGl3b2s8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+MTEzNzwvUmVjTnVt

PjxJRFRleHQ+TW9kZWxsaW5nIG9mIGEtRC1nbHVjb3B5cmFub3NlIHJpbmcgZGlzdG9ydGlvbiBp

biBkaWZmZXJlbnQgZm9yY2UgZmllbGRzOiBhIG1ldGFkeW5hbWljcyBzdHVkeTwvSURUZXh0PjxN

REwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lE

PjExMzc8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5Nb2RlbGxpbmcgb2YgPGYgbmFtZT0iU3ltYm9s

Ij5hPC9mPi1ELWdsdWNvcHlyYW5vc2UgcmluZyBkaXN0b3J0aW9uIGluIGRpZmZlcmVudCBmb3Jj

ZSBmaWVsZHM6IGEgbWV0YWR5bmFtaWNzIHN0dWR5PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1By

aW1hcnk+U3Bpd29rLFZvanQtJiN4Rjg7Y2g8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Qcmlt

YXJ5PktyYWxvdmEsQmxhbmthPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UdmFy

b3NrYSxJZ29yPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDEwPC9EYXRlX1ByaW1h

cnk+PEtleXdvcmRzPkNhcmJvaHlkcmF0ZSBjb25mb3JtYXRpb248L0tleXdvcmRzPjxLZXl3b3Jk

cz5DT05GT1JNQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5DT05GT1JNQVRJT05TPC9LZXl3b3Jk

cz48S2V5d29yZHM+RU5FUkdJRVM8L0tleXdvcmRzPjxLZXl3b3Jkcz5FTkVSR1k8L0tleXdvcmRz

PjxLZXl3b3Jkcz5GT1JDRSBGSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPmZvcmNlIGZpZWxkczwv

S2V5d29yZHM+PEtleXdvcmRzPkZPUkNFLUZJRUxEPC9LZXl3b3Jkcz48S2V5d29yZHM+Rk9SQ0Ut

RklFTERTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRSBFTkVSR1k8L0tleXdvcmRzPjxLZXl3b3Jk

cz5GUkVFLUVORVJHSUVTPC9LZXl3b3Jkcz48S2V5d29yZHM+RlJFRS1FTkVSR1k8L0tleXdvcmRz

PjxLZXl3b3Jkcz5HTFlDQU0wNjwvS2V5d29yZHM+PEtleXdvcmRzPkdST01PUzwvS2V5d29yZHM+

PEtleXdvcmRzPk1ldGFkeW5hbWljczwvS2V5d29yZHM+PEtleXdvcmRzPk1PREVMPC9LZXl3b3Jk

cz48S2V5d29yZHM+bW9sZWN1bGFyIGR5bmFtaWNzIHNpbXVsYXRpb248L0tleXdvcmRzPjxLZXl3

b3Jkcz5QeXJhbm9zZSByaW5nIGRpc3RvcnRpb248L0tleXdvcmRzPjxLZXl3b3Jkcz5SSU5HPC9L

ZXl3b3Jkcz48S2V5d29yZHM+U1VSRkFDRTwvS2V5d29yZHM+PEtleXdvcmRzPndhdGVyPC9LZXl3

b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFnZT41MzA8L1N0YXJ0

X1BhZ2U+PEVuZF9QYWdlPjUzNzwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Q2FyYm9oeWRyLlJlcy48

L1BlcmlvZGljYWw+PFZvbHVtZT4zNDU8L1ZvbHVtZT48SXNzdWU+NDwvSXNzdWU+PFdlYl9VUkw+

aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2FydGljbGUvcGlpL1MwMDA4NjIx

NTA5MDA1OTUzPC9XZWJfVVJMPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+

Q2FyYm9oeWRyLlJlcy48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8

L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA 10,18,19,45 These pucker profiles (Figure 2) were computed as a function of Cremer-Pople angle θ, a coordinate which describes the change in conformation from the 4C1 chair (θ 0°) through boat/skew-boat (θ 90°) to the 1C4 chair pucker (θ 180°). Unbiased MD studies of ring puckering in monosaccharides have previously suggested that simulation lengths of 5 - 10 μs are necessary to achieve converged puckering free energy profiles. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2010</Year><RecNum>1113</RecNum><IDText>Free energy landscapes of iduronic acid and related monosaccharides</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1113</Ref_ID><Title_Primary>Free energy landscapes of iduronic acid and related monosaccharides</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Gardiner,John</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>ACID</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Reprint>Not in File</Reprint><Start_Page>13132</Start_Page><End_Page>13134</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>132</Volume><Issue>38</Issue><ZZ_JournalStdAbbrev><f name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Sattelle</Author><Year>2011</Year><RecNum>1118</RecNum><IDText>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1118</Ref_ID><Title_Primary>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1651</Start_Page><End_Page>1662</End_Page><Periodical>glycob</Periodical><Volume>21</Volume><Issue>12</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>12,28 Interestingly, here we observe that explicit solvent MD simulations in excess of 15 ?s were required to obtain a converged computed free energy profile of α-Glc (Figure 2a). Examination of the sampling of the ? pucker angle for α-Glc (Figure 3a) indicates infrequent transitions between the preferred 4C1 chair and the higher energy 1C4 (? ~170°) states, via the boat/skew-boat pucker region at θ values of ~90°. The computed profiles for β-Glc and IdoA are broadly similar to that of α-Glc (Figure 2b,c); however, more frequent transitions to the 1C4 pucker are exhibited for these monosaccharides (Figure 3c,e). For GlcA, the computed barrier to the 1C4 pucker seems highest of the four monosaccharides (Figure 2d), with only two transient excursions to this conformation over the 20 ?s trajectory (Figure 3g). Despite the infrequent sampling of the 1C4 state, there is reasonable agreement in the glucose 4C1/1C4 energy preference computed here with previous enhanced sampling MD studies. From our 20 ?s unbiased MD simulations, the computed pucker landscapes indicate that for both ?-Glc and ?-Glc, the expected 4C1 chair conformer is favored (Figure 2a,b); the 4C1 preference is computed as 3.5 kcal/mol for ?-Glc, but only 0.2 kcal/mol for the ?-anomer (Table 1). This 3.3 kcal/mol reduction in 4C1 preference by ?-Glc is reflected by a MD study ADDIN REFMGR.CITE <Refman><Cite><Author>Wang</Author><Year>2018</Year><RecNum>1130</RecNum><IDText>Efficient sampling of puckering states of monosaccharides through replica exchange with solute tempering and bond softening</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1130</Ref_ID><Title_Primary>Efficient sampling of puckering states of monosaccharides through replica exchange with solute tempering and bond softening</Title_Primary><Authors_Primary>Wang,Lingle</Authors_Primary><Authors_Primary>Berne,B.J.</Authors_Primary><Date_Primary>2018/5/8</Date_Primary><Keywords>EFFICIENT</Keywords><Keywords>puckering</Keywords><Keywords>Replica Exchange</Keywords><Keywords>STATE</Keywords><Reprint>Not in File</Reprint><Start_Page>072306</Start_Page><Periodical>J.Chem.Phys.</Periodical><Volume>149</Volume><Issue>7</Issue><Web_URL> name="System">J.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>20 using replica exchange with solute tempering/bond softening (REST/BOS) in conjunction with the OPLS3 ADDIN REFMGR.CITE <Refman><Cite><Author>Harder</Author><Year>2016</Year><RecNum>1164</RecNum><IDText>OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1164</Ref_ID><Title_Primary>OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins</Title_Primary><Authors_Primary>Harder,Edward</Authors_Primary><Authors_Primary>Damm,Wolfgang</Authors_Primary><Authors_Primary>Maple,Jon</Authors_Primary><Authors_Primary>Wu,Chuanjie</Authors_Primary><Authors_Primary>Reboul,Mark</Authors_Primary><Authors_Primary>Xiang,Jin Yu</Authors_Primary><Authors_Primary>Wang,Lingle</Authors_Primary><Authors_Primary>Lupyan,Dmitry</Authors_Primary><Authors_Primary>Dahlgren,Markus K.</Authors_Primary><Authors_Primary>Knight,Jennifer L.</Authors_Primary><Authors_Primary>Kaus,Joseph W.</Authors_Primary><Authors_Primary>Cerutti,David S.</Authors_Primary><Authors_Primary>Krilov,Goran</Authors_Primary><Authors_Primary>Jorgensen,William L.</Authors_Primary><Authors_Primary>Abel,Robert</Authors_Primary><Authors_Primary>Friesner,Richard A.</Authors_Primary><Date_Primary>2016/1/12</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>PROTEIN</Keywords><Keywords>PROTEINS</Keywords><Keywords>SMALL MOLECULES</Keywords><Reprint>Not in File</Reprint><Start_Page>281</Start_Page><End_Page>296</End_Page><Periodical>J.Chem.Theory Comput.</Periodical><Volume>12</Volume><Issue>1</Issue><Web_URL> name="System">J.Chem.Theory Comput.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>46 and SPC force fields; this study also found a reduction in stabilisation of 4C1 for ??Glc, by 2.2 kcal/mol, to the extent of 1C4 being the preferred state for the ?-anomer by 0.6 kcal/mol. Other in silico estimates yield a lower stability of the 1C4 state. In their MM3(92) modelling study, Dowd et al. obtained an energy difference of 5.2 kcal/mol. More recently, a free energy preference of 4.3 kcal/mol for 4C1 over 1C4 was computed for ?-Glc using the GROMOS 56A6CARBO force field. ADDIN REFMGR.CITE <Refman><Cite><Author>Plazinski</Author><Year>2016</Year><RecNum>1161</RecNum><IDText>Revision of the GROMOS 56A6CARBO force field: Improving the description of ring-conformational equilibria in hexopyranose-based carbohydrates chains</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1161</Ref_ID><Title_Primary>Revision of the GROMOS 56A6CARBO force field: Improving the description of ring-conformational equilibria in hexopyranose-based carbohydrates chains</Title_Primary><Authors_Primary>Plazinski,Wojciech</Authors_Primary><Authors_Primary>Lonardi,Alice</Authors_Primary><Authors_Primary>H++nenberger,Philippe H.</Authors_Primary><Date_Primary>2016/1/30</Date_Primary><Keywords>carbohydrate</Keywords><Keywords>CONFORMATION</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FLEXIBILITY</Keywords><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>GROMOS</Keywords><Keywords>GROMOS force field</Keywords><Keywords>hexopyranose</Keywords><Keywords>molecular dynamics</Keywords><Keywords>Property</Keywords><Keywords>RING</Keywords><Keywords>ring conformers</Keywords><Reprint>Not in File</Reprint><Start_Page>354</Start_Page><End_Page>365</End_Page><Periodical>put.Chem.</Periodical><Volume>37</Volume><Issue>3</Issue><Web_URL> name="System">put.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>47 Indeed, Angyal inferred from NMR experiments a difference in free energy of 4.2 kcal/mol favouring the 4C1 conformer over 1C4, ADDIN REFMGR.CITE <Refman><Cite><Author>Angyal</Author><Year>1968</Year><RecNum>1186</RecNum><IDText>Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and &amp;#945; : &amp;#946; ratios of aldopyranoses in aqueous solution</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1186</Ref_ID><Title_Primary>Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and &amp;#945; : &amp;#946; ratios of aldopyranoses in aqueous solution</Title_Primary><Authors_Primary>Angyal,S.J.</Authors_Primary><Date_Primary>1968</Date_Primary><Keywords>analysis</Keywords><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>carbohydrate</Keywords><Keywords>CONFORMATION</Keywords><Keywords>conformational analysis</Keywords><Keywords>CONFORMATIONAL-ANALYSIS</Keywords><Keywords>CONFORMATIONS</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>INTERACTION ENERGIES</Keywords><Reprint>Not in File</Reprint><Start_Page>2737</Start_Page><End_Page>2746</End_Page><Periodical>Australian Journal of Chemistry</Periodical><Volume>21</Volume><Issue>11</Issue><Web_URL> name="System">Australian Journal of Chemistry</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>48 albeit 1.8 kcal/mol less than for ?-Glc. For α-L-IdoA, our unbiased MD simulations predict its 4C1 and 1C4 forms are also similar in energy, with a preference for 1C4 of 0.3 kcal/mol (Figure 2c, Table 1). This is in accord with the observation of lability in IdoA ring pucker observed from previous MD simulation and NMR of the methyl aglycone. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2010</Year><RecNum>1113</RecNum><IDText>Free energy landscapes of iduronic acid and related monosaccharides</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1113</Ref_ID><Title_Primary>Free energy landscapes of iduronic acid and related monosaccharides</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Gardiner,John</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>ACID</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Reprint>Not in File</Reprint><Start_Page>13132</Start_Page><End_Page>13134</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>132</Volume><Issue>38</Issue><ZZ_JournalStdAbbrev><f name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>12 For GlcA, the C5 epimer of IdoA, MD simulation predicts 4C1 chair as the dominant ring pucker conformation (Figure 2d), by 2.8 kcal/mol over the inverted chair structure (Table 1). This 4C1 preference is in accord with observation of GlcA residues in oligosaccharides from previous MD and NMR studies. ADDIN REFMGR.CITE <Refman><Cite><Author>Wang</Author><Year>2017</Year><RecNum>1116</RecNum><IDText>Synthesis of 3-O-sulfated oligosaccharides to understand the relationship between structures and functions of heparan sulfate</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1116</Ref_ID><Title_Primary>Synthesis of 3-O-sulfated oligosaccharides to understand the relationship between structures and functions of heparan sulfate</Title_Primary><Authors_Primary>Wang,Zhangjie</Authors_Primary><Authors_Primary>Hsieh,Po Hung</Authors_Primary><Authors_Primary>Xu,Yongmei</Authors_Primary><Authors_Primary>Thieker,David</Authors_Primary><Authors_Primary>Chai,Evangeline Juan En</Authors_Primary><Authors_Primary>Xie,Shaoshuai</Authors_Primary><Authors_Primary>Cooley,Brian</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Authors_Primary>Chi,Lianli</Authors_Primary><Authors_Primary>Liu,Jian</Authors_Primary><Date_Primary>2017</Date_Primary><Keywords>Structure</Keywords><Reprint>Not in File</Reprint><Start_Page>5249</Start_Page><End_Page>5256</End_Page><Periodical>Journal of the American Chemical Society</Periodical><Volume>139</Volume><Issue>14</Issue><ZZ_JournalFull><f name="System">Journal of the American Chemical Society</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>49, ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2010</Year><RecNum>1113</RecNum><IDText>Free energy landscapes of iduronic acid and related monosaccharides</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1113</Ref_ID><Title_Primary>Free energy landscapes of iduronic acid and related monosaccharides</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Gardiner,John</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>ACID</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Reprint>Not in File</Reprint><Start_Page>13132</Start_Page><End_Page>13134</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>132</Volume><Issue>38</Issue><ZZ_JournalStdAbbrev><f name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>12We next turn to consider ring pucker profiles for the four monosaccharides computed using msesMD enhanced sampling simulations. Free energy landscapes were determined based on msesMD simulation lengths of 45, 95, 145 and 195 ns (Figure 4); good convergence was found by 145 - 195 ns (Figure 4). Bootstrap sampling analysis of these 1D free energy profiles from 195 ns msesMD simulations (Supporting Information, Figure S1) indicates errors lying within 0.2 kcal/mol, although on occasion ranging up to 0.5 kcal/mol for very high energy half-chair and envelope transitional conformers. Overall, however, the free energy profiles recovered from the msesMD simulations appear well converged.Based on the 195 ns msesMD simulations, the free energy landscapes for the pucker conformations agree closely with the most exhaustive of the multi-microsecond unbiased MD simulations (Figure 2). For example, the profile of ?-Glc captures the relatively small 0.2 kcal/mol preference for the 4C1 form (Figure 2a, Table 1) that was predicted by the 15 and 20 ?s MD simulations but not 1, 5 and 10 ?s MD trajectories. The msesMD simulation of IdoA also correctly depicts a puckering free energy surface with a slight favoring of the 1C4 conformer (Figure 2c, Table 1). For the four sugars, agreement in the 4C1/1C4 energy difference between unbiased MD and msesMD simulations differs by at most 0.4 kcal/mol; this highest deviation is found for GlcA (Table 1). Indeed, the GlcA profile contains a high energy barrier of ~10 kcal/mol between boat/skew-boat forms and 1C4 (Figure 2d). Modelling the GlcA pucker profile appears to pose a challenge for the unbiased simulations; as described above, the 1C4 chair conformation region is only sampled twice for a few nanoseconds over the duration of the 20 ?s MD simulation (Figure 3g). This contrasts with comprehensive sampling by msesMD replicas over the 195 ns simulation (Figure 3h). To examine in more detail non-chair puckering states, we resolve the puckering free energy surface according to both Cremer-Pople angles, ? and ?. As for the free energy profiles based solely on??, the ???puckering profiles from msesMD have low bootstrap errors (Figure S2) and are in good agreement with unbiased MD predictions (Figure 5). The differing boat/skew-boat populations of the four monosaccharides on the puckering hypersurface is evident and reproduced by msesMD (Figure 5). The predicted identity of the lowest lying non-chair conformer agrees well in all four cases (Table 1). Interestingly, the epimers IdoA and GlcA exhibit a marked difference in preferred intermediate conformer, switching from 2SO for IdoA (Figure 5e,f) to 1S3 for GlcA (Figure 5g,h; Table 1). The ability of IdoA to readily access the 2SO conformer has been observed in previous MD simulations and NMR of oligosaccharides. ADDIN REFMGR.CITE <Refman><Cite><Author>Hsieh</Author><Year>2016</Year><RecNum>1115</RecNum><IDText>Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1115</Ref_ID><Title_Primary>Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate</Title_Primary><Authors_Primary>Hsieh,Po Hung</Authors_Primary><Authors_Primary>Thieker,David F.</Authors_Primary><Authors_Primary>Guerrini,Marco</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Authors_Primary>Liu,Jian</Authors_Primary><Date_Primary>2016</Date_Primary><Keywords>ACID</Keywords><Keywords>CONFORMATION</Keywords><Reprint>Not in File</Reprint><Start_Page>29602</Start_Page><Periodical>Sci.Rep.</Periodical><Volume>6</Volume><ZZ_JournalStdAbbrev><f name="System">Sci.Rep.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Hricovini</Author><Year>2001</Year><RecNum>1120</RecNum><IDText>Conformation of heparin pentasaccharide bound to antithrombin III</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1120</Ref_ID><Title_Primary>Conformation of heparin pentasaccharide bound to antithrombin III</Title_Primary><Authors_Primary>Hricovini,M.</Authors_Primary><Authors_Primary>Guerrini,Marco</Authors_Primary><Authors_Primary>Bisio,Antonella</Authors_Primary><Authors_Primary>Torri,Giangiacomo</Authors_Primary><Authors_Primary>Petitou</Authors_Primary><Authors_Primary>Benito,C.A.S.U.</Authors_Primary><Date_Primary>2001</Date_Primary><Keywords>CONFORMATION</Keywords><Reprint>Not in File</Reprint><Start_Page>265</Start_Page><End_Page>272</End_Page><Periodical>Biochem.J.</Periodical><Volume>359</Volume><Issue>2</Issue><ZZ_JournalStdAbbrev><f name="System">Biochem.J.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>29,50 From our unbiased MD simulation of IdoA, we also observe that interconversion between conformers along the equator of its ???puckering hypersurface is occurring. To quantify this behavior, we construct a stochastic transition matrix from the 10 ?s trajectory of IdoA; we obtain probability values for the pairwise transitions from 2SO → 2,5B → 5S1 → B1,4 → 3S1 of 0.13, 0.04, 0.21 and 0.58 respectively (Supplemental Data). Interconversion between boat/skew-boat conformers is also observed for ?-Glc, ?-Glc and GlcA (Supplemental Data).For each of the four monosaccharides, the relative free energy of the lowest lying non-chair conformer from MD and msesMD agrees to within 0.1 kcal/mol (Table 1). The exception is for α-Glc, where a difference of 0.5 kcal/mol is found between MD and msesMD estimates for 1S5 (Table 1), a conformer which lies in the θ? region of (90°, 250-300°). In overall terms, however, there is good agreement between multi-microsecond MD and msesMD methods in predicted ? and ?? free energy profiles for ring puckering of α-Glc, ?-Glc, IdoA and GlcA. The detailed shifts in populated puckering states as a function of anomer and epimer are reproduced.3.2 Effect of sulfation on puckering free energy landscape Based on this assessment, we next apply our msesMD simulations to evaluate the pucker profiles of a range of biologically relevant monosaccharides derived from IdoA, GlcA, ??GlcNAc???-GlcNAc and ?-GalNAc residues with varying degrees of sulfation (Figure 1a). As before, an assessment of convergence in the free energy profiles computed by the msesMD simulations was performed; for the fifteen monosaccharide systems, the pucker free energy profiles typically had converged to within 0.2 kcal/mol by 195 ns (Figures S3-S7), with bootstrap errors also generally on the order of 0.2 kcal/mol (Figures S8-S17). Notable exceptions to this are β-Gal and β-Gal(6S), which show differences of up to 0.8 kcal/mol between the 145 and 195 ns profiles in the 1C4 region.We first consider the 2-O-sulfated forms of IdoA and GlcA, residues commonly found in GAGs; these are denoted IdoA2S and GlcA2S respectively (Figure 1a). The ring pucker profiles computed from 195 ns msesMD simulations predict that 2-O-sulfation of IdoA produces a subtle switch in preference (Figure 6a); this change is from a free energy difference of 0.5 kcal/mol favoring the 1C4 form over 4C1 in IdoA, to a 0.2 kcal/mol preference for the 4C1 over 1C4 pucker in IdoA2S (Table 1). This, however, appears to differ somewhat from an analysis of NMR data for the methyl aglycone of IdoA2S, which suggests the reverse preference. ADDIN REFMGR.CITE <Refman><Cite><Author>Hricov+?ni</Author><Year>2007</Year><RecNum>1185</RecNum><IDText>Relationship between structure and three-bond protonG??proton coupling constants in glycosaminoglycans</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1185</Ref_ID><Title_Primary>Relationship between structure and three-bond proton<f name="Symbol">G</f>&#xC7;&#xF4;proton coupling constants in glycosaminoglycans</Title_Primary><Authors_Primary>Hricov+&#xA1;ni,M.</Authors_Primary><Authors_Primary>B+&#xA1;zik,F.</Authors_Primary><Date_Primary>2007</Date_Primary><Keywords>CONFORMATION</Keywords><Keywords>DFT</Keywords><Keywords>DFT calculations</Keywords><Keywords>GEOMETRIES</Keywords><Keywords>Glycosaminoglycans</Keywords><Keywords>Structure</Keywords><Keywords>theoretical calculation</Keywords><Keywords>Three-bond coupling constants</Keywords><Reprint>Not in File</Reprint><Start_Page>779</Start_Page><End_Page>783</End_Page><Periodical>CARBOHYDRATE RESEARCH</Periodical><Volume>342</Volume><Issue>6</Issue><Web_URL> name="System">CARBOHYDRATE RESEARCH</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>51 The msesMD simulation of IdoA2S predicts stabilisation of the two main skew-boat forms, 3S1 and 2SO (Figure 7a,b): on sulfation, the relative free energy of 2SO is lowered from 1.6 to 1.3 kcal/mol, although we note this 0.3 kcal/mol difference is towards the limit of estimate accuracy (Tables 1 and 2). For 3S1, the relative free energy is reduced from 1.8 to 1.1 kcal/mol on sulfation. As mentioned above, the 2SO conformation of the IdoA2S residue is significant, with NMR indicating this pucker is adopted by oligosaccharides that bind antithrombin III, including heparin.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkd1ZXJyaW5pPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48

UmVjTnVtPjExMTc8L1JlY051bT48SURUZXh0PkFuIHVudXN1YWwgYW50aXRocm9tYmluLWJpbmRp

bmcgaGVwYXJpbiBvY3Rhc2FjY2hhcmlkZSB3aXRoIGFuIGFkZGl0aW9uYWwgMy1PLXN1bGZhdGVk

IGdsdWNvc2FtaW5lIGluIHRoZSBhY3RpdmUgcGVudGFzYWNjaGFyaWRlIHNlcXVlbmNlPC9JRFRl

eHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxS

ZWZfSUQ+MTExNzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkFuIHVudXN1YWwgYW50aXRocm9tYmlu

LWJpbmRpbmcgaGVwYXJpbiBvY3Rhc2FjY2hhcmlkZSB3aXRoIGFuIGFkZGl0aW9uYWwgMy1PLXN1

bGZhdGVkIGdsdWNvc2FtaW5lIGluIHRoZSBhY3RpdmUgcGVudGFzYWNjaGFyaWRlIHNlcXVlbmNl

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTWFyY288L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVsbGksU3RlZmFubzwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+TW91cmllcixQaWVycmU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PlJ1ZGQsVGltb3RoeSBSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

R2F1ZGVzaSxEYXZpZGU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNhc3UsQmVu

aXRvPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Cb3VkaWVyLENocmlzdGlhbjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VG9ycmksR2lhbmdpYWNvbW88L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZpc2tvdixDaHJpc3RpYW48L0F1dGhvcnNfUHJp

bWFyeT48RGF0ZV9QcmltYXJ5PjIwMTM8L0RhdGVfUHJpbWFyeT48UmVwcmludD5Ob3QgaW4gRmls

ZTwvUmVwcmludD48U3RhcnRfUGFnZT4zNDM8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjM1MTwvRW5k

X1BhZ2U+PFBlcmlvZGljYWw+QmlvY2hlbS5KLjwvUGVyaW9kaWNhbD48Vm9sdW1lPjQ0OTwvVm9s

dW1lPjxJc3N1ZT4yPC9Jc3N1ZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0i

PkJpb2NoZW0uSi48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1pa

X1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+SHJpY292aW5pPC9BdXRob3I+

PFllYXI+MjAwMTwvWWVhcj48UmVjTnVtPjExMjA8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlv

biBvZiBoZXBhcmluIHBlbnRhc2FjY2hhcmlkZSBib3VuZCB0byBhbnRpdGhyb21iaW4gSUlJPC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+MTEyMDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkNvbmZvcm1hdGlvbiBvZiBoZXBh

cmluIHBlbnRhc2FjY2hhcmlkZSBib3VuZCB0byBhbnRpdGhyb21iaW4gSUlJPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SHJpY292aW5pLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5HdWVycmluaSxNYXJjbzwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+QmlzaW8sQW50b25lbGxhPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Ub3Jy

aSxHaWFuZ2lhY29tbzwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGV0aXRvdTwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmVuaXRvLEMuQS5TLlUuPC9BdXRob3Jz

X1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDAxPC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkNPTkZP

Uk1BVElPTjwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1Bh

Z2U+MjY1PC9TdGFydF9QYWdlPjxFbmRfUGFnZT4yNzI8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkJp

b2NoZW0uSi48L1BlcmlvZGljYWw+PFZvbHVtZT4zNTk8L1ZvbHVtZT48SXNzdWU+MjwvSXNzdWU+

PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5CaW9jaGVtLkouPC9mPjwvWlpf

Sm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwv

Q2l0ZT48L1JlZm1hbj5=

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPkd1ZXJyaW5pPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48

UmVjTnVtPjExMTc8L1JlY051bT48SURUZXh0PkFuIHVudXN1YWwgYW50aXRocm9tYmluLWJpbmRp

bmcgaGVwYXJpbiBvY3Rhc2FjY2hhcmlkZSB3aXRoIGFuIGFkZGl0aW9uYWwgMy1PLXN1bGZhdGVk

IGdsdWNvc2FtaW5lIGluIHRoZSBhY3RpdmUgcGVudGFzYWNjaGFyaWRlIHNlcXVlbmNlPC9JRFRl

eHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxS

ZWZfSUQ+MTExNzwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkFuIHVudXN1YWwgYW50aXRocm9tYmlu

LWJpbmRpbmcgaGVwYXJpbiBvY3Rhc2FjY2hhcmlkZSB3aXRoIGFuIGFkZGl0aW9uYWwgMy1PLXN1

bGZhdGVkIGdsdWNvc2FtaW5lIGluIHRoZSBhY3RpdmUgcGVudGFzYWNjaGFyaWRlIHNlcXVlbmNl

PC9UaXRsZV9QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTWFyY288L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkVsbGksU3RlZmFubzwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+TW91cmllcixQaWVycmU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5PlJ1ZGQsVGltb3RoeSBSLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

R2F1ZGVzaSxEYXZpZGU8L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkNhc3UsQmVu

aXRvPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Cb3VkaWVyLENocmlzdGlhbjwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+VG9ycmksR2lhbmdpYWNvbW88L0F1dGhv

cnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZpc2tvdixDaHJpc3RpYW48L0F1dGhvcnNfUHJp

bWFyeT48RGF0ZV9QcmltYXJ5PjIwMTM8L0RhdGVfUHJpbWFyeT48UmVwcmludD5Ob3QgaW4gRmls

ZTwvUmVwcmludD48U3RhcnRfUGFnZT4zNDM8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjM1MTwvRW5k

X1BhZ2U+PFBlcmlvZGljYWw+QmlvY2hlbS5KLjwvUGVyaW9kaWNhbD48Vm9sdW1lPjQ0OTwvVm9s

dW1lPjxJc3N1ZT4yPC9Jc3N1ZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0i

PkJpb2NoZW0uSi48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1pa

X1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+SHJpY292aW5pPC9BdXRob3I+

PFllYXI+MjAwMTwvWWVhcj48UmVjTnVtPjExMjA8L1JlY051bT48SURUZXh0PkNvbmZvcm1hdGlv

biBvZiBoZXBhcmluIHBlbnRhc2FjY2hhcmlkZSBib3VuZCB0byBhbnRpdGhyb21iaW4gSUlJPC9J

RFRleHQ+PE1ETCBSZWZfVHlwZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBl

PjxSZWZfSUQ+MTEyMDwvUmVmX0lEPjxUaXRsZV9QcmltYXJ5PkNvbmZvcm1hdGlvbiBvZiBoZXBh

cmluIHBlbnRhc2FjY2hhcmlkZSBib3VuZCB0byBhbnRpdGhyb21iaW4gSUlJPC9UaXRsZV9Qcmlt

YXJ5PjxBdXRob3JzX1ByaW1hcnk+SHJpY292aW5pLE0uPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhv

cnNfUHJpbWFyeT5HdWVycmluaSxNYXJjbzwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+QmlzaW8sQW50b25lbGxhPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5Ub3Jy

aSxHaWFuZ2lhY29tbzwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UGV0aXRvdTwv

QXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QmVuaXRvLEMuQS5TLlUuPC9BdXRob3Jz

X1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDAxPC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkNPTkZP

Uk1BVElPTjwvS2V5d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1Bh

Z2U+MjY1PC9TdGFydF9QYWdlPjxFbmRfUGFnZT4yNzI8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPkJp

b2NoZW0uSi48L1BlcmlvZGljYWw+PFZvbHVtZT4zNTk8L1ZvbHVtZT48SXNzdWU+MjwvSXNzdWU+

PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5CaW9jaGVtLkouPC9mPjwvWlpf

Sm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwv

Q2l0ZT48L1JlZm1hbj5=

ADDIN EN.CITE.DATA 50,52 On 2-O-sulfation of GlcA, the 4C1 chair is predicted to remain as the lowest energy pyranose conformer. This 4C1 preference is in accord with observation by NMR of GlcA2S residue pucker in heparan sulfate hexasaccharides. ADDIN REFMGR.CITE <Refman><Cite><Author>Hsieh</Author><Year>2014</Year><RecNum>1184</RecNum><IDText>Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1184</Ref_ID><Title_Primary>Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides</Title_Primary><Authors_Primary>Hsieh,Po Hung</Authors_Primary><Authors_Primary>Xu,Yongmei</Authors_Primary><Authors_Primary>Keire,David A.</Authors_Primary><Authors_Primary>Liu,Jian</Authors_Primary><Date_Primary>2014/4/25</Date_Primary><Keywords>ACID</Keywords><Keywords>AFFINITIES</Keywords><Keywords>AFFINITY</Keywords><Keywords>BINDING</Keywords><Keywords>BINDING AFFINITIES</Keywords><Keywords>binding affinity</Keywords><Keywords>BINDING-AFFINITY</Keywords><Keywords>SITE</Keywords><Keywords>SITES</Keywords><Keywords>STRUCTURAL-CHARACTERIZATION</Keywords><Keywords>Structure</Keywords><Reprint>Not in File</Reprint><Start_Page>681</Start_Page><End_Page>692</End_Page><Periodical>glycob</Periodical><Volume>24</Volume><Issue>8</Issue><Web_URL> name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>53 There is a smaller impact of sulfation on pucker distribution than for IdoA, both for the chair forms (Figure 6b) and for the intermediate boat/skew-boat populations (Figure 7c,d). For GlcA and GlcA2S, the 1S3 and BO,3 structures lie within ~2 kcal/mol of the lowest energy 4C1 conformation and are more favored than the 1C4 conformer (Tables 1 and 2). The substitution of the O2 hydroxyl group in GlcA with a bulkier O-sulfate in GlcA2S might be expected to lead to a decrease the 1C4 population, as the O2 group is in the axial orientation in the latter case. However the 0.6 kcal/mol increase in stability of the 1C4 pucker on sulfation appears to arise from the compensating presence in msesMD simulations of hydrogen bonding between the O4 hydroxyl of GlcA2S and its axial 2-O-sulfate group (data not shown).We next consider the hexosamine GlcNAc, a widely modified GAG monomer in nature. First, we consider the ?-anomer, and four of its commonly occurring variants (Figure 1): firstly, from N-deacetylation and subsequent N-sulfation of ?-GlcNAc, the N-sulfo glucosamine (?-GlcNS) is obtained. ?-GlcNS can undergo further O-sulfation through the action of heparan sulfate sulfotransferases at either the O3, O6 or both positions, leading to ?-GlcNS(3S), ?-GlcNS(6S) and ?-GlcNS(3S,6S) residues respectively (Figure 1a). For all five compounds, a similar free energy dependence on pucker angle ? is predicted by the 195 ns msesMD simulations (Figure 6c); these profiles indicate a distinct preference for the 4C1 chair form in all cases. This preference for the 4C1 conformation by ?-GlcNS agrees with previous combined MD and NMR analysis of ?-GlcNS conformation within a disaccharide and tetrasaccharide.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNpbmdoPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVj

TnVtPjExNDI8L1JlY051bT48SURUZXh0PkV4dGVuc2lvbiBhbmQgdmFsaWRhdGlvbiBvZiB0aGUg

R0xZQ0FNIGZvcmNlIGZpZWxkIHBhcmFtZXRlcnMgZm9yIG1vZGVsaW5nIGdseWNvc2FtaW5vZ2x5

Y2FuczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9S

ZWZfVHlwZT48UmVmX0lEPjExNDI8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5FeHRlbnNpb24gYW5k

IHZhbGlkYXRpb24gb2YgdGhlIEdMWUNBTSBmb3JjZSBmaWVsZCBwYXJhbWV0ZXJzIGZvciBtb2Rl

bGluZyBnbHljb3NhbWlub2dseWNhbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5T

aW5naCxBcnVuaW1hPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UZXNzaWVyLE1h

dHRoZXcgQi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBlZGVyc29uLEthcmk8

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbmcsWGlhb2Nvbmc8L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZlbm90LEFuZHJlIFAuPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5Cb29ucyxHZWVydCBKYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlByZXN0ZWdhcmQsSmFtZXMgSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Pldvb2RzLFJvYmVydCBKLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAx

Ni8yLzk8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+Rk9SQ0UgRklFTEQ8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GT1JDRS1GSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPlBBUkFNRVRFUlM8L0tleXdvcmRz

PjxLZXl3b3Jkcz5WQUxJREFUSU9OPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVw

cmludD48U3RhcnRfUGFnZT45Mjc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjkzNTwvRW5kX1BhZ2U+

PFBlcmlvZGljYWw+Q2FuLkouQ2hlbS48L1BlcmlvZGljYWw+PFZvbHVtZT45NDwvVm9sdW1lPjxJ

c3N1ZT4xMTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3JnLzEwLjExMzkvY2pjLTIwMTUt

MDYwNjwvV2ViX1VSTD48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5DYW5hZGlhbiBK

b3VybmFsIG9mIENoZW1pc3RyeTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Kb3VybmFsU3RkQWJi

cmV2PjxmIG5hbWU9IlN5c3RlbSI+Q2FuLkouQ2hlbS48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+U2F0dGVsbGU8L0F1dGhvcj48WWVhcj4yMDExPC9ZZWFyPjxSZWNOdW0+MTExODwvUmVjTnVt

PjxJRFRleHQ+SXMgTi1hY2V0eWwtRC1nbHVjb3NhbWluZSBhIHJpZ2lkIDRDMSBjaGFpcj88L0lE

VGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+

PFJlZl9JRD4xMTE4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+SXMgTi1hY2V0eWwtRC1nbHVjb3Nh

bWluZSBhIHJpZ2lkIDRDMSBjaGFpcj88L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5T

YXR0ZWxsZSxCZW5lZGljdCBNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWxt

b25kLEFuZHJldzwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMTwvRGF0ZV9Qcmlt

YXJ5PjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjE2NTE8L1N0YXJ0

X1BhZ2U+PEVuZF9QYWdlPjE2NjI8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPmdseWNvYjwvUGVyaW9k

aWNhbD48Vm9sdW1lPjIxPC9Wb2x1bWU+PElzc3VlPjEyPC9Jc3N1ZT48WlpfSm91cm5hbEZ1bGw+

PGYgbmFtZT0iU3lzdGVtIj5HTFlDT0JJT0xPR1k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfSm91

cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPmdseWNvYjwvZj48L1paX0pvdXJuYWxTdGRB

YmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PC9SZWZt

YW4+

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNpbmdoPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVj

TnVtPjExNDI8L1JlY051bT48SURUZXh0PkV4dGVuc2lvbiBhbmQgdmFsaWRhdGlvbiBvZiB0aGUg

R0xZQ0FNIGZvcmNlIGZpZWxkIHBhcmFtZXRlcnMgZm9yIG1vZGVsaW5nIGdseWNvc2FtaW5vZ2x5

Y2FuczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9S

ZWZfVHlwZT48UmVmX0lEPjExNDI8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5FeHRlbnNpb24gYW5k

IHZhbGlkYXRpb24gb2YgdGhlIEdMWUNBTSBmb3JjZSBmaWVsZCBwYXJhbWV0ZXJzIGZvciBtb2Rl

bGluZyBnbHljb3NhbWlub2dseWNhbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5T

aW5naCxBcnVuaW1hPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UZXNzaWVyLE1h

dHRoZXcgQi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBlZGVyc29uLEthcmk8

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbmcsWGlhb2Nvbmc8L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZlbm90LEFuZHJlIFAuPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5Cb29ucyxHZWVydCBKYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlByZXN0ZWdhcmQsSmFtZXMgSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Pldvb2RzLFJvYmVydCBKLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAx

Ni8yLzk8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+Rk9SQ0UgRklFTEQ8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GT1JDRS1GSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPlBBUkFNRVRFUlM8L0tleXdvcmRz

PjxLZXl3b3Jkcz5WQUxJREFUSU9OPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVw

cmludD48U3RhcnRfUGFnZT45Mjc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjkzNTwvRW5kX1BhZ2U+

PFBlcmlvZGljYWw+Q2FuLkouQ2hlbS48L1BlcmlvZGljYWw+PFZvbHVtZT45NDwvVm9sdW1lPjxJ

c3N1ZT4xMTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3JnLzEwLjExMzkvY2pjLTIwMTUt

MDYwNjwvV2ViX1VSTD48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5DYW5hZGlhbiBK

b3VybmFsIG9mIENoZW1pc3RyeTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Kb3VybmFsU3RkQWJi

cmV2PjxmIG5hbWU9IlN5c3RlbSI+Q2FuLkouQ2hlbS48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+U2F0dGVsbGU8L0F1dGhvcj48WWVhcj4yMDExPC9ZZWFyPjxSZWNOdW0+MTExODwvUmVjTnVt

PjxJRFRleHQ+SXMgTi1hY2V0eWwtRC1nbHVjb3NhbWluZSBhIHJpZ2lkIDRDMSBjaGFpcj88L0lE

VGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+

PFJlZl9JRD4xMTE4PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+SXMgTi1hY2V0eWwtRC1nbHVjb3Nh

bWluZSBhIHJpZ2lkIDRDMSBjaGFpcj88L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5T

YXR0ZWxsZSxCZW5lZGljdCBNLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+QWxt

b25kLEFuZHJldzwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMTwvRGF0ZV9Qcmlt

YXJ5PjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjE2NTE8L1N0YXJ0

X1BhZ2U+PEVuZF9QYWdlPjE2NjI8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPmdseWNvYjwvUGVyaW9k

aWNhbD48Vm9sdW1lPjIxPC9Wb2x1bWU+PElzc3VlPjEyPC9Jc3N1ZT48WlpfSm91cm5hbEZ1bGw+

PGYgbmFtZT0iU3lzdGVtIj5HTFlDT0JJT0xPR1k8L2Y+PC9aWl9Kb3VybmFsRnVsbD48WlpfSm91

cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPmdseWNvYjwvZj48L1paX0pvdXJuYWxTdGRB

YmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0NpdGU+PC9SZWZt

YW4+

ADDIN EN.CITE.DATA 27,28 The ability of GlcNAc to sample non-chair conformations has been highlighted previously.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRvcGluPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVj

TnVtPjExMjY8L1JlY051bT48SURUZXh0PlRoZSBoaWRkZW4gY29uZm9ybWF0aW9uIG9mIExld2lz

IHgsIGEgaHVtYW4gaGlzdG8tYmxvb2QgZ3JvdXAgYW50aWdlbiwgaXMgYSBkZXRlcm1pbmFudCBm

b3IgcmVjb2duaXRpb24gYnkgcGF0aG9nZW4gbGVjdGluczwvSURUZXh0PjxNREwgUmVmX1R5cGU9

IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjExMjY8L1JlZl9J

RD48VGl0bGVfUHJpbWFyeT5UaGUgaGlkZGVuIGNvbmZvcm1hdGlvbiBvZiBMZXdpcyB4LCBhIGh1

bWFuIGhpc3RvLWJsb29kIGdyb3VwIGFudGlnZW4sIGlzIGEgZGV0ZXJtaW5hbnQgZm9yIHJlY29n

bml0aW9uIGJ5IHBhdGhvZ2VuIGxlY3RpbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5Ub3BpbixKZSYjeEE2OyYjeEZDO3JlJiN4QTY7JiN4RkM7bWllPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5MZWxpbW91c2luLE1pY2thZSYjeEE2OyYjeEVBO2w8L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFybmF1ZCxKdWxpZTwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+QXVkZnJheSxBeW1lcmljPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5QZSYjeEE2OyYjeEZDO3JleixTZXJnZTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+VmFycm90LEFubmFiZWxsZTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+SW1iZXJ0eSxBbm5lPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDE2PC9EYXRl

X1ByaW1hcnk+PEtleXdvcmRzPkNPTkZPUk1BVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlJFQ09H

TklUSU9OPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFn

ZT4yMDExPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4yMDIwPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5B

Q1MgY2hlbWljYWwgYmlvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjExPC9Wb2x1bWU+PElzc3Vl

Pjc8L0lzc3VlPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+QUNTIGNoZW1p

Y2FsIGJpb2xvZ3k8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1pa

X1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWxpYmF5PC9BdXRob3I+PFll

YXI+MjAxODwvWWVhcj48UmVjTnVtPjExMjE8L1JlY051bT48SURUZXh0PklkZW50aWZpY2F0aW9u

IG9mIFJhcmUgTGV3aXMgT2xpZ29zYWNjaGFyaWRlIENvbmZvcm1lcnMgaW4gQXF1ZW91cyBTb2x1

dGlvbiBVc2luZyBFbmhhbmNlZCBTYW1wbGluZyBNb2xlY3VsYXIgRHluYW1pY3M8L0lEVGV4dD48

TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9J

RD4xMTIxPC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+SWRlbnRpZmljYXRpb24gb2YgUmFyZSBMZXdp

cyBPbGlnb3NhY2NoYXJpZGUgQ29uZm9ybWVycyBpbiBBcXVlb3VzIFNvbHV0aW9uIFVzaW5nIEVu

aGFuY2VkIFNhbXBsaW5nIE1vbGVjdWxhciBEeW5hbWljczwvVGl0bGVfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PkFsaWJheSxJcmZhbjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

QnVydXNjbyxLZXBhIEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CcnVjZSxO

ZWlsIEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CcnljZSxSaWNoYXJkIEEu

PC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDE4LzMvODwvRGF0ZV9QcmltYXJ5PjxL

ZXl3b3Jkcz5BUVVFT1VTLVNPTFVUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5JREVOVElGSUNBVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPm1vbGVj

dWxhciBkeW5hbWljczwvS2V5d29yZHM+PEtleXdvcmRzPk1PTEVDVUxBUi1EWU5BTUlDUzwvS2V5

d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MjQ2MjwvU3Rh

cnRfUGFnZT48RW5kX1BhZ2U+MjQ3NDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Si5QaHlzLkNoZW0u

QjwvUGVyaW9kaWNhbD48Vm9sdW1lPjEyMjwvVm9sdW1lPjxJc3N1ZT45PC9Jc3N1ZT48V2ViX1VS

TD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3MuanBjYi43YjA5ODQxPC9XZWJfVVJMPjxaWl9K

b3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Si5QaHlzLkNoZW0uQjwvZj48L1paX0pv

dXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0Np

dGU+PC9SZWZtYW4+

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlRvcGluPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVj

TnVtPjExMjY8L1JlY051bT48SURUZXh0PlRoZSBoaWRkZW4gY29uZm9ybWF0aW9uIG9mIExld2lz

IHgsIGEgaHVtYW4gaGlzdG8tYmxvb2QgZ3JvdXAgYW50aWdlbiwgaXMgYSBkZXRlcm1pbmFudCBm

b3IgcmVjb2duaXRpb24gYnkgcGF0aG9nZW4gbGVjdGluczwvSURUZXh0PjxNREwgUmVmX1R5cGU9

IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48UmVmX0lEPjExMjY8L1JlZl9J

RD48VGl0bGVfUHJpbWFyeT5UaGUgaGlkZGVuIGNvbmZvcm1hdGlvbiBvZiBMZXdpcyB4LCBhIGh1

bWFuIGhpc3RvLWJsb29kIGdyb3VwIGFudGlnZW4sIGlzIGEgZGV0ZXJtaW5hbnQgZm9yIHJlY29n

bml0aW9uIGJ5IHBhdGhvZ2VuIGxlY3RpbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFy

eT5Ub3BpbixKZSYjeEE2OyYjeEZDO3JlJiN4QTY7JiN4RkM7bWllPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5MZWxpbW91c2luLE1pY2thZSYjeEE2OyYjeEVBO2w8L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkFybmF1ZCxKdWxpZTwvQXV0aG9yc19QcmltYXJ5PjxB

dXRob3JzX1ByaW1hcnk+QXVkZnJheSxBeW1lcmljPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNf

UHJpbWFyeT5QZSYjeEE2OyYjeEZDO3JleixTZXJnZTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+VmFycm90LEFubmFiZWxsZTwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+SW1iZXJ0eSxBbm5lPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDE2PC9EYXRl

X1ByaW1hcnk+PEtleXdvcmRzPkNPTkZPUk1BVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPlJFQ09H

TklUSU9OPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVwcmludD48U3RhcnRfUGFn

ZT4yMDExPC9TdGFydF9QYWdlPjxFbmRfUGFnZT4yMDIwPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5B

Q1MgY2hlbWljYWwgYmlvbG9neTwvUGVyaW9kaWNhbD48Vm9sdW1lPjExPC9Wb2x1bWU+PElzc3Vl

Pjc8L0lzc3VlPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+QUNTIGNoZW1p

Y2FsIGJpb2xvZ3k8L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2PjxaWl9Xb3JrZm9ybUlEPjE8L1pa

X1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWxpYmF5PC9BdXRob3I+PFll

YXI+MjAxODwvWWVhcj48UmVjTnVtPjExMjE8L1JlY051bT48SURUZXh0PklkZW50aWZpY2F0aW9u

IG9mIFJhcmUgTGV3aXMgT2xpZ29zYWNjaGFyaWRlIENvbmZvcm1lcnMgaW4gQXF1ZW91cyBTb2x1

dGlvbiBVc2luZyBFbmhhbmNlZCBTYW1wbGluZyBNb2xlY3VsYXIgRHluYW1pY3M8L0lEVGV4dD48

TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9J

RD4xMTIxPC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+SWRlbnRpZmljYXRpb24gb2YgUmFyZSBMZXdp

cyBPbGlnb3NhY2NoYXJpZGUgQ29uZm9ybWVycyBpbiBBcXVlb3VzIFNvbHV0aW9uIFVzaW5nIEVu

aGFuY2VkIFNhbXBsaW5nIE1vbGVjdWxhciBEeW5hbWljczwvVGl0bGVfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PkFsaWJheSxJcmZhbjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+

QnVydXNjbyxLZXBhIEsuPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CcnVjZSxO

ZWlsIEouPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5CcnljZSxSaWNoYXJkIEEu

PC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4yMDE4LzMvODwvRGF0ZV9QcmltYXJ5PjxL

ZXl3b3Jkcz5BUVVFT1VTLVNPTFVUSU9OPC9LZXl3b3Jkcz48S2V5d29yZHM+RFlOQU1JQ1M8L0tl

eXdvcmRzPjxLZXl3b3Jkcz5JREVOVElGSUNBVElPTjwvS2V5d29yZHM+PEtleXdvcmRzPm1vbGVj

dWxhciBkeW5hbWljczwvS2V5d29yZHM+PEtleXdvcmRzPk1PTEVDVUxBUi1EWU5BTUlDUzwvS2V5

d29yZHM+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1BhZ2U+MjQ2MjwvU3Rh

cnRfUGFnZT48RW5kX1BhZ2U+MjQ3NDwvRW5kX1BhZ2U+PFBlcmlvZGljYWw+Si5QaHlzLkNoZW0u

QjwvUGVyaW9kaWNhbD48Vm9sdW1lPjEyMjwvVm9sdW1lPjxJc3N1ZT45PC9Jc3N1ZT48V2ViX1VS

TD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3MuanBjYi43YjA5ODQxPC9XZWJfVVJMPjxaWl9K

b3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Si5QaHlzLkNoZW0uQjwvZj48L1paX0pv

dXJuYWxTdGRBYmJyZXY+PFpaX1dvcmtmb3JtSUQ+MTwvWlpfV29ya2Zvcm1JRD48L01ETD48L0Np

dGU+PC9SZWZtYW4+

ADDIN EN.CITE.DATA 23,54 Indeed, we find a range of puckers are sampled by GlcNAc in the msesMD simulations (Figure 7e-i). For example, for ?-GlcNAc, a preference for the 4C1 over 1C4 conformation is computed here as 1.4 kcal/mol (Table 2, Figure 7e); this energy difference was estimated as 3.5 kcal/mol from previous analysis of two 10 ?s MD simulations of ?-GlcNAc using the GLYCAM 06 force field. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2011</Year><RecNum>1118</RecNum><IDText>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1118</Ref_ID><Title_Primary>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1651</Start_Page><End_Page>1662</End_Page><Periodical>glycob</Periodical><Volume>21</Volume><Issue>12</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>28 Accessible from this 4C1 minimum are a range of boat/skew-boat forms at ? 90 via a barrier of ~8 kcal/mol (Figure 6c). Here, resolving the equatorial pseudorotation region obtained by msesMD simulation finds a diverse range of boat/skew-boat conformations (Figure 7e-i), with the most stable conformers occupying energies ~4.0 kcal/mol from the 4C1 minimum (Table 2). A similar range of boat and skew-boat conformers were obtained from the 2 x 10 ?s MD study. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2011</Year><RecNum>1118</RecNum><IDText>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1118</Ref_ID><Title_Primary>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1651</Start_Page><End_Page>1662</End_Page><Periodical>glycob</Periodical><Volume>21</Volume><Issue>12</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>28 Nevertheless, sampling the complex puckering landscape of sulfated ?-GlcNAc systems is challenging ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2012</Year><RecNum>1119</RecNum><IDText>Assigning kinetic 3D-signatures to glycocodes</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1119</Ref_ID><Title_Primary>Assigning kinetic 3D-signatures to glycocodes</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2012</Date_Primary><Reprint>Not in File</Reprint><Start_Page>5843</Start_Page><End_Page>5848</End_Page><Periodical>Phys.Chem.Chem.Phys.</Periodical><Volume>14</Volume><Issue>16</Issue><ZZ_JournalStdAbbrev><f name="System">Phys.Chem.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Sattelle</Author><Year>2011</Year><RecNum>1118</RecNum><IDText>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1118</Ref_ID><Title_Primary>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1651</Start_Page><End_Page>1662</End_Page><Periodical>glycob</Periodical><Volume>21</Volume><Issue>12</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>28,55 and in that same study, 2 x 10 ?s MD simulations of ?-GlcNS(3S) and ?-GlcNS(3S,6S) observed no 4C1-to-1C4 transitions, and for the ?-GlcNS(6S) residue, one transition was observed. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2011</Year><RecNum>1118</RecNum><IDText>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1118</Ref_ID><Title_Primary>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1651</Start_Page><End_Page>1662</End_Page><Periodical>glycob</Periodical><Volume>21</Volume><Issue>12</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>28 Here, we observe frequent sampling over the pucker coordinate, leading to computation of a continuous puckering free energy surface across ??(Figure 6c); we do note, however, that not all replicas of the swarm sampled the complete range of ? (Figure S19). We also compute the pucker free energy profiles of the ?-anomer of GlcNAc. As for the ?-anomer, there is a preference for the 4C1 chair conformer; the 1C4 conformer is predicted to be 3.8 kcal/mol less stable, as compared to 1.4 kcal/mol for the ??anomer (Figure 6d, Table 2). The energy barrier to accessing the 1C4 state is also larger. This could be explained by the energetic penalty of the additional axial substituent (the O1 hydroxyl group) in this ?-GlcNAc conformer. For the ?-anomer, there a range of low energy non-chair conformers (Figure 7j, Table 2). Sulfation at the 6-position of ?-GlcNAc is predicted by msesMD simulation to stabilize the 1C4 chair pucker by 0.8 kcal/mol (Figure 6d, Table 2). The ?? profile closely resembles that of ?-GlcNAc (Figure 7j,k) with a broadly similar distribution of puckers (Table 2). Finally, we consider the ring pucker of hexosamine, ?-GalNAc, and three of its derivatives found in GAGs: these are sulfated at O4, O6 or both these positions in ?-GalNAc, and are denoted ?-GalNAc(4S), ?-GalNAc(6S) and ?-GalNAc(4S,6S) respectively (Figure 1). Relatively little work has been performed computationally or experimentally on the study of ?-GalNAc ring pucker, ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2012</Year><RecNum>1119</RecNum><IDText>Assigning kinetic 3D-signatures to glycocodes</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1119</Ref_ID><Title_Primary>Assigning kinetic 3D-signatures to glycocodes</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2012</Date_Primary><Reprint>Not in File</Reprint><Start_Page>5843</Start_Page><End_Page>5848</End_Page><Periodical>Phys.Chem.Chem.Phys.</Periodical><Volume>14</Volume><Issue>16</Issue><ZZ_JournalStdAbbrev><f name="System">Phys.Chem.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>55 and to our knowledge, no work exists on the effect of O-sulfation on its pucker. As for GlcNAc and its derivatives, we find here that msesMD simulation of the four ?-GalNAc-based monosaccharides exhibit a strong preference for the 4C1 chair conformer (Figure 6e). The predicted barrier to accessing the boat/skew-boat region is also similar to that of ?-GlcNAc, with a value of ~7 kcal/mol (Figure 6e). Here, however, the comparison with GlcNAc ends: this boat/skew-boat region of ?-GalNAc and its sulfated forms appears restricted to the 1S3 skew-boat pucker (Figure 8a-d), as opposed to the more diverse range of structures accessible to GlcNAc and its derivatives (Figure 7e-k). Based on the msesMD simulations, the computed stability of the 1S3 form is between 3.5 and 4.4 kcal/mol lower than that of the 4C1 minimum of ?-GalNAc and its derivatives (Table 2). Most striking however is the lack of stability of its 1C4 form. Indeed, the lowest energy 1C4 structures are found for ?-GalNAc(4S) and ?-GalNAc(4S,6S), which lie 5.0 and 8.3 kcal/mol above the 4C1 form respectively. A previous 5 ?s MD simulation of ?-GalNAc in explicit aqueous solvent ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2012</Year><RecNum>1119</RecNum><IDText>Assigning kinetic 3D-signatures to glycocodes</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1119</Ref_ID><Title_Primary>Assigning kinetic 3D-signatures to glycocodes</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2012</Date_Primary><Reprint>Not in File</Reprint><Start_Page>5843</Start_Page><End_Page>5848</End_Page><Periodical>Phys.Chem.Chem.Phys.</Periodical><Volume>14</Volume><Issue>16</Issue><ZZ_JournalStdAbbrev><f name="System">Phys.Chem.Chem.Phys.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>55 observed the inaccessibility of the 1C4 form, where no conformer was sampled over the duration of these simulations. Similarly, no 1C4 conformer is sampled for ?-GalNAc and ?-GalNAc(6S) by msesMD simulations here, although it is sampled in the ?-GalNAc(4S) and ?-GalNAc(4S,6S) sulfated forms (Figure S21). In terms of the physical origin of these observations, we note that a 4C1-to-1C4 transition for ?-GalNAc involves displacing four of its ring substituents from equatorial to axial positions, including the bulky N-acetyl group; this leads to unfavorable 1,3-diaxial interactions in the 1C4 structure of ?-GalNAc. The effect of the N-acetyl group can be evidenced by comparing the pucker free energy profile for ?-GalNAc with that computed for ?-Gal (Figure 6e,f). The 1C4 conformation is stabilised significantly in the absence of the N-acetyl group (Figure 6f), such that it lies 7.4 kcal/mol above the 4C1 state. This compares with an inferred energy preference for 4C1 of 5.2 kcal/mol from the NMR analysis of ?-Gal by Angyal. ADDIN REFMGR.CITE <Refman><Cite><Author>Angyal</Author><Year>1968</Year><RecNum>1186</RecNum><IDText>Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and &amp;#945; : &amp;#946; ratios of aldopyranoses in aqueous solution</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1186</Ref_ID><Title_Primary>Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and &amp;#945; : &amp;#946; ratios of aldopyranoses in aqueous solution</Title_Primary><Authors_Primary>Angyal,S.J.</Authors_Primary><Date_Primary>1968</Date_Primary><Keywords>analysis</Keywords><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>carbohydrate</Keywords><Keywords>CONFORMATION</Keywords><Keywords>conformational analysis</Keywords><Keywords>CONFORMATIONAL-ANALYSIS</Keywords><Keywords>CONFORMATIONS</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Keywords>INTERACTION ENERGIES</Keywords><Reprint>Not in File</Reprint><Start_Page>2737</Start_Page><End_Page>2746</End_Page><Periodical>Australian Journal of Chemistry</Periodical><Volume>21</Volume><Issue>11</Issue><Web_URL> name="System">Australian Journal of Chemistry</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>48 In both ?-GalNAc and ?-Gal, introduction of sulfation at the O6 position only compounds this effect, further destabilising the 1C4 ring pucker (Figure 6e,f). Conversely, msesMD simulation predicts that O4 sulfation of ?-GalNAc significantly stabilises its 1C4 pucker, such that it lies at 5 kcal/mol above the 4C1 chair (Table 2). This is in part due to the bulky O4 sulfate group occupying a strained axial position in the 4C1 chair, thus shifting the conformational equilibrium towards 1C4. The 1C4 form is also stabilised by formation of intra-ring hydrogen bonding between the sulfate and hydroxyls groups in ?-GalNS(4S) (Figure 9a); for ?-GalNS(4S,6S), intra-ring hydrogen bonding is also observed (Figure 9b). However, for this monosaccharide, minimizing electrostatic repulsion between sulfate groups is an additional factor governing ring conformation. In this case, one might expect the presence of increased salt to alleviate electrostatic repulsion within ?-GalNAc(4S,6S). To examine the effect of salt, we performed comparative msesMD simulations of ?-GalNAc, ?-GalNAc(4S), ?-GalNAc(6S) and ?-GalNAc(4S,6S) in the presence of additional NaCl at a concentration of ~150-175 mM. For the neutral ?-GalNAc monosaccharide and the monoanionic ?-GalNAc(6S), the pucker free energy profiles are identical to within error with the msesMD simulations at zero ionic strength (Figures S23 and S24). For ?-GalNAc(4S), there is a small ~ 0.6 kcal/mol destabilisation of the 1C4 conformer in the presence of salt, such that it lies 6 kcal/mol above the 4C1 conformer; we note, however, that this computed change in stability lies towards the limit in convergence of the estimated free energy for ?-GalNAc(4S) via msesMD (Figures S25 and S28). As anticipated due to increased screening of intramolecular charge repulsion within the dianionic ?-GalNAc(4S,6S), there is a larger influence of salt on this monosaccharide: the 1C4 conformer is stabilised by ~ 2 kcal/mol (Figures S23 and S24), such that it lies 6 kcal/mol above the 4C1 conformer, as is the case for ?-GalNAc(4S). Therefore, we predict that the influence of 6-sulfation is largely negated by salt effects; however, the impact of the 4-sulfation on stabilising the 1C4 pucker of ?-GalNAc remains. 4. ConclusionsIn this work, we explore the ring puckering landscape of a range of glycosaminoglycan-related monosaccharides using enhanced sampling molecular dynamics simulations via the msesMD method. We first demonstrate that msesMD efficiently probes the thermodynamics of pyranose rings for four monosaccharides. At an order of magnitude lower computational cost, the application of a swarm biasing potential to two ring dihedrals via msesMD yielded puckering free energy profiles for the four monosaccharides in quantitative agreement with long timescale MD simulations. In the cases of ??Glc and GlcA, unbiased MD simulations over 15 ?s in length were required for adequate sampling; thus, some monosaccharides appear to require longer simulation times than previously thought. ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2011</Year><RecNum>1118</RecNum><IDText>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1118</Ref_ID><Title_Primary>Is N-acetyl-D-glucosamine a rigid 4C1 chair?</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2011</Date_Primary><Reprint>Not in File</Reprint><Start_Page>1651</Start_Page><End_Page>1662</End_Page><Periodical>glycob</Periodical><Volume>21</Volume><Issue>12</Issue><ZZ_JournalFull><f name="System">GLYCOBIOLOGY</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">glycob</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite><Cite><Author>Sattelle</Author><Year>2010</Year><RecNum>1113</RecNum><IDText>Free energy landscapes of iduronic acid and related monosaccharides</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1113</Ref_ID><Title_Primary>Free energy landscapes of iduronic acid and related monosaccharides</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Gardiner,John</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>ACID</Keywords><Keywords>ENERGIES</Keywords><Keywords>ENERGY</Keywords><Keywords>FREE ENERGY</Keywords><Keywords>FREE-ENERGIES</Keywords><Keywords>FREE-ENERGY</Keywords><Reprint>Not in File</Reprint><Start_Page>13132</Start_Page><End_Page>13134</End_Page><Periodical>J.Am.Chem.Soc.</Periodical><Volume>132</Volume><Issue>38</Issue><ZZ_JournalStdAbbrev><f name="System">J.Am.Chem.Soc.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>12,28 For the msesMD simulations, we also note that the parameters for the swarm biasing potential employed in this work are the same as used in previous efficient sampling of glycosidic and peptide backbone torsional degrees of freedom, ADDIN REFMGR.CITE <Refman><Cite><Author>Alibay</Author><Year>2018</Year><RecNum>1121</RecNum><IDText>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1121</Ref_ID><Title_Primary>Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics</Title_Primary><Authors_Primary>Alibay,Irfan</Authors_Primary><Authors_Primary>Burusco,Kepa K.</Authors_Primary><Authors_Primary>Bruce,Neil J.</Authors_Primary><Authors_Primary>Bryce,Richard A.</Authors_Primary><Date_Primary>2018/3/8</Date_Primary><Keywords>AQUEOUS-SOLUTION</Keywords><Keywords>DYNAMICS</Keywords><Keywords>IDENTIFICATION</Keywords><Keywords>molecular dynamics</Keywords><Keywords>MOLECULAR-DYNAMICS</Keywords><Reprint>Not in File</Reprint><Start_Page>2462</Start_Page><End_Page>2474</End_Page><Periodical>J.Phys.Chem.B</Periodical><Volume>122</Volume><Issue>9</Issue><Web_URL> name="System">J.Phys.Chem.B</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>23 suggesting a degree of transferability in this biasing potential. We then applied msesMD simulations to compare the puckering free energy landscapes for a range of glycosaminoglycan-related monosaccharides: we find that for sulfated and unsulfated forms of IdoA, GlcA, GlcNAc and, to a lesser degree, GalNAc, the free energy profiles are rather similar. For IdoA and IdoA2S, an NMR analysis of eight heparin sulfate-based hexasaccharides concluded that the variation in 4C1:2SO:1C4 populations of the IdoA/IdoA2S residue was dictated by the differing sulfation patterns of neighbouring residues. ADDIN REFMGR.CITE <Refman><Cite><Author>Hsieh</Author><Year>2016</Year><RecNum>1115</RecNum><IDText>Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1115</Ref_ID><Title_Primary>Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate</Title_Primary><Authors_Primary>Hsieh,Po Hung</Authors_Primary><Authors_Primary>Thieker,David F.</Authors_Primary><Authors_Primary>Guerrini,Marco</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Authors_Primary>Liu,Jian</Authors_Primary><Date_Primary>2016</Date_Primary><Keywords>ACID</Keywords><Keywords>CONFORMATION</Keywords><Reprint>Not in File</Reprint><Start_Page>29602</Start_Page><Periodical>Sci.Rep.</Periodical><Volume>6</Volume><ZZ_JournalStdAbbrev><f name="System">Sci.Rep.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>29 This suggests that inter-residue hydrogen bonds and other interactions arising from the interplay of sulfated and non-sulfated groups play a key role in dictating the shape and function of GAG polysaccharides.Secondly, our msesMD study of ?-GalNAc derivatives found that, although the galactosamine ring was more rigid than for GlcNAc, 4-O-sulfation of ?-GalNAc led to a somewhat unexpected stabilisation of the 1C4 form and lowering of the energy barrier leading to this conformer (Figure 6d). Although still predicted as 5 – 6 kcal/mol higher in energy than the 4C1 conformer, the potential access to a 1C4 form could be relevant to the structure, interaction and function of polysaccharides such as dermatan sulfate. The anticoagulant activity of dermatan sulfate from Ascidian nigra, possessing 6-O-sulfated ?-GalNAc residues, has been examined; ADDIN REFMGR.CITE <Refman><Cite><Author>Pavao</Author><Year>1995</Year><RecNum>1122</RecNum><IDText>A unique dermatan sulfate-like glycosaminoglycan from ascidian: its structure and the effect of its unusual sulfation pattern on anticoagulant activity</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1122</Ref_ID><Title_Primary>A unique dermatan sulfate-like glycosaminoglycan from ascidian: its structure and the effect of its unusual sulfation pattern on anticoagulant activity</Title_Primary><Authors_Primary>Pavao,Mauro SG</Authors_Primary><Authors_Primary>Mourao,Paulo AS</Authors_Primary><Authors_Primary>Mulloy,Barbara</Authors_Primary><Authors_Primary>Tollefsen,Douglas M.</Authors_Primary><Date_Primary>1995</Date_Primary><Keywords>Structure</Keywords><Reprint>Not in File</Reprint><Start_Page>31027</Start_Page><End_Page>31036</End_Page><Periodical>J.Biol.Chem.</Periodical><Volume>270</Volume><Issue>52</Issue><ZZ_JournalStdAbbrev><f name="System">J.Biol.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>56 this was compared with the activity of the mammalian form, which contains solely 4-O-sulfated ?-GalNAc. It was found that only the mammalian form exhibited anticoagulant activity and potent interaction with heparin cofactor II. This suggests that 4-O-sulfation of ?-GalNAc residues is required for dermatan sulfate’s anticoagulant function. The increased flexibility of the ?-GalNAc(4S) ring predicted here may play a role in this, although the overall conformation and activity of these glycosaminoglycans is likely due to a complex sum of saccharide intra- and interresidue structure, ADDIN REFMGR.CITE <Refman><Cite><Author>Sattelle</Author><Year>2010</Year><RecNum>1188</RecNum><IDText>A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1188</Ref_ID><Title_Primary>A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation</Title_Primary><Authors_Primary>Sattelle,Benedict M.</Authors_Primary><Authors_Primary>Shakeri,Javad</Authors_Primary><Authors_Primary>Roberts,Ian S.</Authors_Primary><Authors_Primary>Almond,Andrew</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>CONFORMATION</Keywords><Keywords>MODEL</Keywords><Reprint>Not in File</Reprint><Start_Page>291</Start_Page><End_Page>302</End_Page><Periodical>CARBOHYDRATE RESEARCH</Periodical><Volume>345</Volume><Issue>2</Issue><ZZ_JournalFull><f name="System">CARBOHYDRATE RESEARCH</f></ZZ_JournalFull><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>57 complementing interactions with heparin cofactor II. ADDIN REFMGR.CITE <Refman><Cite><Author>Pavao</Author><Year>1995</Year><RecNum>1122</RecNum><IDText>A unique dermatan sulfate-like glycosaminoglycan from ascidian: its structure and the effect of its unusual sulfation pattern on anticoagulant activity</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1122</Ref_ID><Title_Primary>A unique dermatan sulfate-like glycosaminoglycan from ascidian: its structure and the effect of its unusual sulfation pattern on anticoagulant activity</Title_Primary><Authors_Primary>Pavao,Mauro SG</Authors_Primary><Authors_Primary>Mourao,Paulo AS</Authors_Primary><Authors_Primary>Mulloy,Barbara</Authors_Primary><Authors_Primary>Tollefsen,Douglas M.</Authors_Primary><Date_Primary>1995</Date_Primary><Keywords>Structure</Keywords><Reprint>Not in File</Reprint><Start_Page>31027</Start_Page><End_Page>31036</End_Page><Periodical>J.Biol.Chem.</Periodical><Volume>270</Volume><Issue>52</Issue><ZZ_JournalStdAbbrev><f name="System">J.Biol.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>56 Work on elucidating the role of geometric conformation in GAGs and how it is encoded by selective chain decoration is still in its early stages. ADDIN REFMGR.CITE <Refman><Cite><Author>Rudd</Author><Year>2010</Year><RecNum>1157</RecNum><IDText>The conformation and structure of GAGs: recent progress and perspectives</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1157</Ref_ID><Title_Primary>The conformation and structure of GAGs: recent progress and perspectives</Title_Primary><Authors_Primary>Rudd,T.R.</Authors_Primary><Authors_Primary>Skidmore,M.A.</Authors_Primary><Authors_Primary>Guerrini,M.</Authors_Primary><Authors_Primary>Hricovini,M.</Authors_Primary><Authors_Primary>Powell,A.K.</Authors_Primary><Authors_Primary>Siligardi,G.</Authors_Primary><Authors_Primary>Yates,E.A.</Authors_Primary><Date_Primary>2010</Date_Primary><Keywords>CONFORMATION</Keywords><Keywords>Structure</Keywords><Reprint>Not in File</Reprint><Start_Page>567</Start_Page><End_Page>574</End_Page><Periodical>Curr.Opin.Struct.Biol.</Periodical><Volume>20</Volume><Issue>5</Issue><ZZ_JournalStdAbbrev><f name="System">Curr.Opin.Struct.Biol.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>5 This is in part due to the synthetic challenges of making point modified polysaccharides ADDIN REFMGR.CITE <Refman><Cite><Author>Jayson</Author><Year>2014</Year><RecNum>1141</RecNum><IDText>The development of anti-angiogenic heparan sulfate oligosaccharides</IDText><MDL Ref_Type="Generic"><Ref_Type>Generic</Ref_Type><Ref_ID>1141</Ref_ID><Title_Primary>The development of anti-angiogenic heparan sulfate oligosaccharides</Title_Primary><Authors_Primary>Jayson,Gordon C.</Authors_Primary><Authors_Primary>Miller,Gavin J.</Authors_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Barath,Marek</Authors_Primary><Authors_Primary>Gardiner,John M.</Authors_Primary><Authors_Primary>Avizienyte,Egle</Authors_Primary><Date_Primary>2014</Date_Primary><Reprint>Not in File</Reprint><Publisher>Portland Press Limited</Publisher><ISSN_ISBN>0300-5127</ISSN_ISBN><ZZ_WorkformID>33</ZZ_WorkformID></MDL></Cite><Cite><Author>Hansen</Author><Year>2012</Year><RecNum>1158</RecNum><IDText>First gram-scale synthesis of a heparin-related dodecasaccharide</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1158</Ref_ID><Title_Primary>First gram-scale synthesis of a heparin-related dodecasaccharide</Title_Primary><Authors_Primary>Hansen,Steen U.</Authors_Primary><Authors_Primary>Miller,Gavin J.</Authors_Primary><Authors_Primary>Jayson,Gordon C.</Authors_Primary><Authors_Primary>Gardiner,John M.</Authors_Primary><Date_Primary>2012</Date_Primary><Reprint>Not in File</Reprint><Start_Page>88</Start_Page><End_Page>91</End_Page><Periodical>Org.Lett.</Periodical><Volume>15</Volume><Issue>1</Issue><ZZ_JournalStdAbbrev><f name="System">Org.Lett.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>58,59 and in part because of the difficulty in accurately simulating these highly charged compounds, both in terms of sampling its complex conformational landscape and in capturing its physical behaviour via a classical potential energy function.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNpbmdoPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVj

TnVtPjExNDI8L1JlY051bT48SURUZXh0PkV4dGVuc2lvbiBhbmQgdmFsaWRhdGlvbiBvZiB0aGUg

R0xZQ0FNIGZvcmNlIGZpZWxkIHBhcmFtZXRlcnMgZm9yIG1vZGVsaW5nIGdseWNvc2FtaW5vZ2x5

Y2FuczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9S

ZWZfVHlwZT48UmVmX0lEPjExNDI8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5FeHRlbnNpb24gYW5k

IHZhbGlkYXRpb24gb2YgdGhlIEdMWUNBTSBmb3JjZSBmaWVsZCBwYXJhbWV0ZXJzIGZvciBtb2Rl

bGluZyBnbHljb3NhbWlub2dseWNhbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5T

aW5naCxBcnVuaW1hPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UZXNzaWVyLE1h

dHRoZXcgQi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBlZGVyc29uLEthcmk8

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbmcsWGlhb2Nvbmc8L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZlbm90LEFuZHJlIFAuPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5Cb29ucyxHZWVydCBKYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlByZXN0ZWdhcmQsSmFtZXMgSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Pldvb2RzLFJvYmVydCBKLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAx

Ni8yLzk8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+Rk9SQ0UgRklFTEQ8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GT1JDRS1GSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPlBBUkFNRVRFUlM8L0tleXdvcmRz

PjxLZXl3b3Jkcz5WQUxJREFUSU9OPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVw

cmludD48U3RhcnRfUGFnZT45Mjc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjkzNTwvRW5kX1BhZ2U+

PFBlcmlvZGljYWw+Q2FuLkouQ2hlbS48L1BlcmlvZGljYWw+PFZvbHVtZT45NDwvVm9sdW1lPjxJ

c3N1ZT4xMTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3JnLzEwLjExMzkvY2pjLTIwMTUt

MDYwNjwvV2ViX1VSTD48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5DYW5hZGlhbiBK

b3VybmFsIG9mIENoZW1pc3RyeTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Kb3VybmFsU3RkQWJi

cmV2PjxmIG5hbWU9IlN5c3RlbSI+Q2FuLkouQ2hlbS48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+RGVNYXJjbzwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT4xMTU2PC9SZWNOdW0+

PElEVGV4dD5TdHJ1Y3R1cmFsIGdseWNvYmlvbG9neTogYSBnYW1lIG9mIHNuYWtlcyBhbmQgbGFk

ZGVyczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9S

ZWZfVHlwZT48UmVmX0lEPjExNTY8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5TdHJ1Y3R1cmFsIGds

eWNvYmlvbG9neTogYSBnYW1lIG9mIHNuYWtlcyBhbmQgbGFkZGVyczwvVGl0bGVfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PkRlTWFyY28sTWFyaSBMLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+V29vZHMsUm9iZXJ0IEouPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4y

MDA4PC9EYXRlX1ByaW1hcnk+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1Bh

Z2U+NDI2PC9TdGFydF9QYWdlPjxFbmRfUGFnZT40NDA8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPmds

eWNvYjwvUGVyaW9kaWNhbD48Vm9sdW1lPjE4PC9Wb2x1bWU+PElzc3VlPjY8L0lzc3VlPjxaWl9K

b3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkdMWUNPQklPTE9HWTwvZj48L1paX0pvdXJuYWxG

dWxsPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Z2x5Y29iPC9mPjwvWlpf

Sm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPlJ1ZGQ8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+

MTE1NzwvUmVjTnVtPjxJRFRleHQ+VGhlIGNvbmZvcm1hdGlvbiBhbmQgc3RydWN0dXJlIG9mIEdB

R3M6IHJlY2VudCBwcm9ncmVzcyBhbmQgcGVyc3BlY3RpdmVzPC9JRFRleHQ+PE1ETCBSZWZfVHlw

ZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE1NzwvUmVm

X0lEPjxUaXRsZV9QcmltYXJ5PlRoZSBjb25mb3JtYXRpb24gYW5kIHN0cnVjdHVyZSBvZiBHQUdz

OiByZWNlbnQgcHJvZ3Jlc3MgYW5kIHBlcnNwZWN0aXZlczwvVGl0bGVfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlJ1ZGQsVC5SLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2tp

ZG1vcmUsTS5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhyaWNvdmluaSxNLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UG93ZWxsLEEuSy48L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PlNpbGlnYXJkaSxHLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+WWF0ZXMsRS5BLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9Q

cmltYXJ5PjxLZXl3b3Jkcz5DT05GT1JNQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5TdHJ1Y3R1

cmU8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjU2

NzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+NTc0PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5DdXJyLk9w

aW4uU3RydWN0LkJpb2wuPC9QZXJpb2RpY2FsPjxWb2x1bWU+MjA8L1ZvbHVtZT48SXNzdWU+NTwv

SXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5DdXJyLk9waW4uU3Ry

dWN0LkJpb2wuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9X

b3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlNpbmdoPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVj

TnVtPjExNDI8L1JlY051bT48SURUZXh0PkV4dGVuc2lvbiBhbmQgdmFsaWRhdGlvbiBvZiB0aGUg

R0xZQ0FNIGZvcmNlIGZpZWxkIHBhcmFtZXRlcnMgZm9yIG1vZGVsaW5nIGdseWNvc2FtaW5vZ2x5

Y2FuczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9S

ZWZfVHlwZT48UmVmX0lEPjExNDI8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5FeHRlbnNpb24gYW5k

IHZhbGlkYXRpb24gb2YgdGhlIEdMWUNBTSBmb3JjZSBmaWVsZCBwYXJhbWV0ZXJzIGZvciBtb2Rl

bGluZyBnbHljb3NhbWlub2dseWNhbnM8L1RpdGxlX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5T

aW5naCxBcnVuaW1hPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJpbWFyeT5UZXNzaWVyLE1h

dHRoZXcgQi48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBlZGVyc29uLEthcmk8

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PldhbmcsWGlhb2Nvbmc8L0F1dGhvcnNf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlZlbm90LEFuZHJlIFAuPC9BdXRob3JzX1ByaW1hcnk+

PEF1dGhvcnNfUHJpbWFyeT5Cb29ucyxHZWVydCBKYW48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlByZXN0ZWdhcmQsSmFtZXMgSC48L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19Q

cmltYXJ5Pldvb2RzLFJvYmVydCBKLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAx

Ni8yLzk8L0RhdGVfUHJpbWFyeT48S2V5d29yZHM+Rk9SQ0UgRklFTEQ8L0tleXdvcmRzPjxLZXl3

b3Jkcz5GT1JDRS1GSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPlBBUkFNRVRFUlM8L0tleXdvcmRz

PjxLZXl3b3Jkcz5WQUxJREFUSU9OPC9LZXl3b3Jkcz48UmVwcmludD5Ob3QgaW4gRmlsZTwvUmVw

cmludD48U3RhcnRfUGFnZT45Mjc8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjkzNTwvRW5kX1BhZ2U+

PFBlcmlvZGljYWw+Q2FuLkouQ2hlbS48L1BlcmlvZGljYWw+PFZvbHVtZT45NDwvVm9sdW1lPjxJ

c3N1ZT4xMTwvSXNzdWU+PFdlYl9VUkw+aHR0cHM6Ly9kb2kub3JnLzEwLjExMzkvY2pjLTIwMTUt

MDYwNjwvV2ViX1VSTD48WlpfSm91cm5hbEZ1bGw+PGYgbmFtZT0iU3lzdGVtIj5DYW5hZGlhbiBK

b3VybmFsIG9mIENoZW1pc3RyeTwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Kb3VybmFsU3RkQWJi

cmV2PjxmIG5hbWU9IlN5c3RlbSI+Q2FuLkouQ2hlbS48L2Y+PC9aWl9Kb3VybmFsU3RkQWJicmV2

PjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dvcmtmb3JtSUQ+PC9NREw+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+RGVNYXJjbzwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT4xMTU2PC9SZWNOdW0+

PElEVGV4dD5TdHJ1Y3R1cmFsIGdseWNvYmlvbG9neTogYSBnYW1lIG9mIHNuYWtlcyBhbmQgbGFk

ZGVyczwvSURUZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9S

ZWZfVHlwZT48UmVmX0lEPjExNTY8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5TdHJ1Y3R1cmFsIGds

eWNvYmlvbG9neTogYSBnYW1lIG9mIHNuYWtlcyBhbmQgbGFkZGVyczwvVGl0bGVfUHJpbWFyeT48

QXV0aG9yc19QcmltYXJ5PkRlTWFyY28sTWFyaSBMLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3Jz

X1ByaW1hcnk+V29vZHMsUm9iZXJ0IEouPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJpbWFyeT4y

MDA4PC9EYXRlX1ByaW1hcnk+PFJlcHJpbnQ+Tm90IGluIEZpbGU8L1JlcHJpbnQ+PFN0YXJ0X1Bh

Z2U+NDI2PC9TdGFydF9QYWdlPjxFbmRfUGFnZT40NDA8L0VuZF9QYWdlPjxQZXJpb2RpY2FsPmds

eWNvYjwvUGVyaW9kaWNhbD48Vm9sdW1lPjE4PC9Wb2x1bWU+PElzc3VlPjY8L0lzc3VlPjxaWl9K

b3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkdMWUNPQklPTE9HWTwvZj48L1paX0pvdXJuYWxG

dWxsPjxaWl9Kb3VybmFsU3RkQWJicmV2PjxmIG5hbWU9IlN5c3RlbSI+Z2x5Y29iPC9mPjwvWlpf

Sm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPlJ1ZGQ8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+

MTE1NzwvUmVjTnVtPjxJRFRleHQ+VGhlIGNvbmZvcm1hdGlvbiBhbmQgc3RydWN0dXJlIG9mIEdB

R3M6IHJlY2VudCBwcm9ncmVzcyBhbmQgcGVyc3BlY3RpdmVzPC9JRFRleHQ+PE1ETCBSZWZfVHlw

ZT0iSm91cm5hbCI+PFJlZl9UeXBlPkpvdXJuYWw8L1JlZl9UeXBlPjxSZWZfSUQ+MTE1NzwvUmVm

X0lEPjxUaXRsZV9QcmltYXJ5PlRoZSBjb25mb3JtYXRpb24gYW5kIHN0cnVjdHVyZSBvZiBHQUdz

OiByZWNlbnQgcHJvZ3Jlc3MgYW5kIHBlcnNwZWN0aXZlczwvVGl0bGVfUHJpbWFyeT48QXV0aG9y

c19QcmltYXJ5PlJ1ZGQsVC5SLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+U2tp

ZG1vcmUsTS5BLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+R3VlcnJpbmksTS48

L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkhyaWNvdmluaSxNLjwvQXV0aG9yc19Q

cmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+UG93ZWxsLEEuSy48L0F1dGhvcnNfUHJpbWFyeT48QXV0

aG9yc19QcmltYXJ5PlNpbGlnYXJkaSxHLjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1h

cnk+WWF0ZXMsRS5BLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxMDwvRGF0ZV9Q

cmltYXJ5PjxLZXl3b3Jkcz5DT05GT1JNQVRJT048L0tleXdvcmRzPjxLZXl3b3Jkcz5TdHJ1Y3R1

cmU8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjU2

NzwvU3RhcnRfUGFnZT48RW5kX1BhZ2U+NTc0PC9FbmRfUGFnZT48UGVyaW9kaWNhbD5DdXJyLk9w

aW4uU3RydWN0LkJpb2wuPC9QZXJpb2RpY2FsPjxWb2x1bWU+MjA8L1ZvbHVtZT48SXNzdWU+NTwv

SXNzdWU+PFpaX0pvdXJuYWxTdGRBYmJyZXY+PGYgbmFtZT0iU3lzdGVtIj5DdXJyLk9waW4uU3Ry

dWN0LkJpb2wuPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48WlpfV29ya2Zvcm1JRD4xPC9aWl9X

b3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48L1JlZm1hbj4A

ADDIN EN.CITE.DATA 5,13,27 In regard to this last point, the simulation study here employed the GLYCAM06 force field ADDIN REFMGR.CITE <Refman><Cite><Author>Kirschner</Author><Year>2008</Year><RecNum>1143</RecNum><IDText>GLYCAM06: a generalizable biomolecular force field. Carbohydrates</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1143</Ref_ID><Title_Primary>GLYCAM06: a generalizable biomolecular force field. Carbohydrates</Title_Primary><Authors_Primary>Kirschner,Karl N.</Authors_Primary><Authors_Primary>Yongye,Austin B.</Authors_Primary><Authors_Primary>Tschampel,Sarah M.</Authors_Primary><Authors_Primary>Gonz+&#xED;lez<f name="Symbol">G</f>&#xC7;&#xC9;Outeiri+&#xA6;o,Jorge</Authors_Primary><Authors_Primary>Daniels,Charlisa R.</Authors_Primary><Authors_Primary>Foley,B.Lachele</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2008</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>GLYCAM06</Keywords><Reprint>Not in File</Reprint><Start_Page>622</Start_Page><End_Page>655</End_Page><Periodical>put.Chem.</Periodical><Volume>29</Volume><Issue>4</Issue><ZZ_JournalStdAbbrev><f name="System">put.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>26 and its recently introduced extension for modelling GAGs. ADDIN REFMGR.CITE <Refman><Cite><Author>Singh</Author><Year>2016</Year><RecNum>1142</RecNum><IDText>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>1142</Ref_ID><Title_Primary>Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans</Title_Primary><Authors_Primary>Singh,Arunima</Authors_Primary><Authors_Primary>Tessier,Matthew B.</Authors_Primary><Authors_Primary>Pederson,Kari</Authors_Primary><Authors_Primary>Wang,Xiaocong</Authors_Primary><Authors_Primary>Venot,Andre P.</Authors_Primary><Authors_Primary>Boons,Geert Jan</Authors_Primary><Authors_Primary>Prestegard,James H.</Authors_Primary><Authors_Primary>Woods,Robert J.</Authors_Primary><Date_Primary>2016/2/9</Date_Primary><Keywords>FORCE FIELD</Keywords><Keywords>FORCE-FIELD</Keywords><Keywords>PARAMETERS</Keywords><Keywords>VALIDATION</Keywords><Reprint>Not in File</Reprint><Start_Page>927</Start_Page><End_Page>935</End_Page><Periodical>Can.J.Chem.</Periodical><Volume>94</Volume><Issue>11</Issue><Web_URL> name="System">Canadian Journal of Chemistry</f></ZZ_JournalFull><ZZ_JournalStdAbbrev><f name="System">Can.J.Chem.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>27 Puckering information was not directly used in the fitting of the force field but was used in its validation. In general, the converged results we obtain from MD and msesMD give reasonable agreement with NMR and other simulation studies. We note, however, from MD and msesMD simulations that the 1C4 conformer of ?-Glc appears to be overstabilized relative to its population inferred from NMR experiments. Similarly, the favoured pucker state of IdoA2S appears at variance with that obtained from NMR of its methyl agylcone. For modelling the complex intra- and intermolecular physics of neutral and charged saccharide molecules in solution, it may be that moving beyond a fixed point charge force field could prove beneficial, as has been found elsewhere.PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlBhdGVsPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjExODk8L1JlY051bT48SURUZXh0PlBvbGFyaXphYmxlIGVtcGlyaWNhbCBmb3JjZSBmaWVs

ZCBmb3IgaGV4b3B5cmFub3NlIG1vbm9zYWNjaGFyaWRlcyBiYXNlZCBvbiB0aGUgY2xhc3NpY2Fs

IGRydWRlIG9zY2lsbGF0b3I8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5

cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTg5PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+

UG9sYXJpemFibGUgZW1waXJpY2FsIGZvcmNlIGZpZWxkIGZvciBoZXhvcHlyYW5vc2UgbW9ub3Nh

Y2NoYXJpZGVzIGJhc2VkIG9uIHRoZSBjbGFzc2ljYWwgZHJ1ZGUgb3NjaWxsYXRvcjwvVGl0bGVf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBhdGVsLERoaWxvbiBTLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+SGUsWGliaW5nPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5NYWNLZXJlbGwgSnIsQWxleGFuZGVyIEQuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJp

bWFyeT4yMDE0PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkZPUkNFIEZJRUxEPC9LZXl3b3Jkcz48

S2V5d29yZHM+Rk9SQ0UtRklFTEQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5oZXhvcHlyYW5vc2U8L0tl

eXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjYzNzwvU3Rh

cnRfUGFnZT48RW5kX1BhZ2U+NjUyPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5UaGUgSm91cm5hbCBv

ZiBQaHlzaWNhbCBDaGVtaXN0cnkgQjwvUGVyaW9kaWNhbD48Vm9sdW1lPjExOTwvVm9sdW1lPjxJ

c3N1ZT4zPC9Jc3N1ZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPlRoZSBK

b3VybmFsIG9mIFBoeXNpY2FsIENoZW1pc3RyeSBCPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PlBhbmRleTwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+PFJlY051bT4xMTgzPC9SZWNOdW0+PElE

VGV4dD5EcnVkZSBwb2xhcml6YWJsZSBmb3JjZSBmaWVsZCBwYXJhbWV0cml6YXRpb24gb2YgQ2Fy

Ym94eWxhdGUgYW5kIE4tYWNldHlsIEFtaW5lIENhcmJvaHlkcmF0ZSBkZXJpdmF0aXZlczwvSURU

ZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48

UmVmX0lEPjExODM8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5EcnVkZSBwb2xhcml6YWJsZSBmb3Jj

ZSBmaWVsZCBwYXJhbWV0cml6YXRpb24gb2YgQ2FyYm94eWxhdGUgYW5kIE4tYWNldHlsIEFtaW5l

IENhcmJvaHlkcmF0ZSBkZXJpdmF0aXZlczwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PlBhbmRleSxQb29uYW08L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkF5dGVuZmlz

dSxBc2FtaW5ldyBILjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWFjS2VyZWxs

IEpyLEFsZXhhbmRlciBELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWFsbGFq

b3N5dWxhLFNhaXJhbSBTLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxOTwvRGF0

ZV9QcmltYXJ5PjxLZXl3b3Jkcz5jYXJib2h5ZHJhdGU8L0tleXdvcmRzPjxLZXl3b3Jkcz5GT1JD

RSBGSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPkZPUkNFLUZJRUxEPC9LZXl3b3Jkcz48S2V5d29y

ZHM+cG9sYXJpemFibGUgZm9yY2UgZmllbGQ8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxl

PC9SZXByaW50PjxTdGFydF9QYWdlPjQ5ODI8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjUwMDA8L0Vu

ZF9QYWdlPjxQZXJpb2RpY2FsPkpvdXJuYWwgb2YgQ2hlbWljYWwgVGhlb3J5IGFuZCBDb21wdXRh

dGlvbjwvUGVyaW9kaWNhbD48Vm9sdW1lPjE1PC9Wb2x1bWU+PElzc3VlPjk8L0lzc3VlPjxaWl9K

b3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkpvdXJuYWwgb2YgQ2hlbWljYWwgVGhlb3J5IGFu

ZCBDb21wdXRhdGlvbjwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dv

cmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN REFMGR.CITE PFJlZm1hbj48Q2l0ZT48QXV0aG9yPlBhdGVsPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjExODk8L1JlY051bT48SURUZXh0PlBvbGFyaXphYmxlIGVtcGlyaWNhbCBmb3JjZSBmaWVs

ZCBmb3IgaGV4b3B5cmFub3NlIG1vbm9zYWNjaGFyaWRlcyBiYXNlZCBvbiB0aGUgY2xhc3NpY2Fs

IGRydWRlIG9zY2lsbGF0b3I8L0lEVGV4dD48TURMIFJlZl9UeXBlPSJKb3VybmFsIj48UmVmX1R5

cGU+Sm91cm5hbDwvUmVmX1R5cGU+PFJlZl9JRD4xMTg5PC9SZWZfSUQ+PFRpdGxlX1ByaW1hcnk+

UG9sYXJpemFibGUgZW1waXJpY2FsIGZvcmNlIGZpZWxkIGZvciBoZXhvcHlyYW5vc2UgbW9ub3Nh

Y2NoYXJpZGVzIGJhc2VkIG9uIHRoZSBjbGFzc2ljYWwgZHJ1ZGUgb3NjaWxsYXRvcjwvVGl0bGVf

UHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PlBhdGVsLERoaWxvbiBTLjwvQXV0aG9yc19QcmltYXJ5

PjxBdXRob3JzX1ByaW1hcnk+SGUsWGliaW5nPC9BdXRob3JzX1ByaW1hcnk+PEF1dGhvcnNfUHJp

bWFyeT5NYWNLZXJlbGwgSnIsQWxleGFuZGVyIEQuPC9BdXRob3JzX1ByaW1hcnk+PERhdGVfUHJp

bWFyeT4yMDE0PC9EYXRlX1ByaW1hcnk+PEtleXdvcmRzPkZPUkNFIEZJRUxEPC9LZXl3b3Jkcz48

S2V5d29yZHM+Rk9SQ0UtRklFTEQ8L0tleXdvcmRzPjxLZXl3b3Jkcz5oZXhvcHlyYW5vc2U8L0tl

eXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxlPC9SZXByaW50PjxTdGFydF9QYWdlPjYzNzwvU3Rh

cnRfUGFnZT48RW5kX1BhZ2U+NjUyPC9FbmRfUGFnZT48UGVyaW9kaWNhbD5UaGUgSm91cm5hbCBv

ZiBQaHlzaWNhbCBDaGVtaXN0cnkgQjwvUGVyaW9kaWNhbD48Vm9sdW1lPjExOTwvVm9sdW1lPjxJ

c3N1ZT4zPC9Jc3N1ZT48WlpfSm91cm5hbFN0ZEFiYnJldj48ZiBuYW1lPSJTeXN0ZW0iPlRoZSBK

b3VybmFsIG9mIFBoeXNpY2FsIENoZW1pc3RyeSBCPC9mPjwvWlpfSm91cm5hbFN0ZEFiYnJldj48

WlpfV29ya2Zvcm1JRD4xPC9aWl9Xb3JrZm9ybUlEPjwvTURMPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PlBhbmRleTwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+PFJlY051bT4xMTgzPC9SZWNOdW0+PElE

VGV4dD5EcnVkZSBwb2xhcml6YWJsZSBmb3JjZSBmaWVsZCBwYXJhbWV0cml6YXRpb24gb2YgQ2Fy

Ym94eWxhdGUgYW5kIE4tYWNldHlsIEFtaW5lIENhcmJvaHlkcmF0ZSBkZXJpdmF0aXZlczwvSURU

ZXh0PjxNREwgUmVmX1R5cGU9IkpvdXJuYWwiPjxSZWZfVHlwZT5Kb3VybmFsPC9SZWZfVHlwZT48

UmVmX0lEPjExODM8L1JlZl9JRD48VGl0bGVfUHJpbWFyeT5EcnVkZSBwb2xhcml6YWJsZSBmb3Jj

ZSBmaWVsZCBwYXJhbWV0cml6YXRpb24gb2YgQ2FyYm94eWxhdGUgYW5kIE4tYWNldHlsIEFtaW5l

IENhcmJvaHlkcmF0ZSBkZXJpdmF0aXZlczwvVGl0bGVfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5

PlBhbmRleSxQb29uYW08L0F1dGhvcnNfUHJpbWFyeT48QXV0aG9yc19QcmltYXJ5PkF5dGVuZmlz

dSxBc2FtaW5ldyBILjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWFjS2VyZWxs

IEpyLEFsZXhhbmRlciBELjwvQXV0aG9yc19QcmltYXJ5PjxBdXRob3JzX1ByaW1hcnk+TWFsbGFq

b3N5dWxhLFNhaXJhbSBTLjwvQXV0aG9yc19QcmltYXJ5PjxEYXRlX1ByaW1hcnk+MjAxOTwvRGF0

ZV9QcmltYXJ5PjxLZXl3b3Jkcz5jYXJib2h5ZHJhdGU8L0tleXdvcmRzPjxLZXl3b3Jkcz5GT1JD

RSBGSUVMRDwvS2V5d29yZHM+PEtleXdvcmRzPkZPUkNFLUZJRUxEPC9LZXl3b3Jkcz48S2V5d29y

ZHM+cG9sYXJpemFibGUgZm9yY2UgZmllbGQ8L0tleXdvcmRzPjxSZXByaW50Pk5vdCBpbiBGaWxl

PC9SZXByaW50PjxTdGFydF9QYWdlPjQ5ODI8L1N0YXJ0X1BhZ2U+PEVuZF9QYWdlPjUwMDA8L0Vu

ZF9QYWdlPjxQZXJpb2RpY2FsPkpvdXJuYWwgb2YgQ2hlbWljYWwgVGhlb3J5IGFuZCBDb21wdXRh

dGlvbjwvUGVyaW9kaWNhbD48Vm9sdW1lPjE1PC9Wb2x1bWU+PElzc3VlPjk8L0lzc3VlPjxaWl9K

b3VybmFsRnVsbD48ZiBuYW1lPSJTeXN0ZW0iPkpvdXJuYWwgb2YgQ2hlbWljYWwgVGhlb3J5IGFu

ZCBDb21wdXRhdGlvbjwvZj48L1paX0pvdXJuYWxGdWxsPjxaWl9Xb3JrZm9ybUlEPjE8L1paX1dv

cmtmb3JtSUQ+PC9NREw+PC9DaXRlPjwvUmVmbWFuPm==

ADDIN EN.CITE.DATA 60,61 However, for a given force field, the use of the msesMD enhanced sampling MD method provides an intuitive and efficient approach for sampling the puckering free energy landscape. As models of GAG monosaccharides are further validated and refined, simulation-based approaches will afford a useful aid to understanding the structure and interactions of their oligomeric and polymeric forms.Supporting Information. Structural, energetic and error analyses of MD simulations of GAG-related monosaccharides. Microsoft excel file with stochastic transition matrices (Supplemental Data). This material is available free of charge via the Internet at thank Kepa Burusco and Rocco Meli for helpful discussions. This project made use of time granted via the UK High-End Computing Consortium for Biomolecular Simulation, HECBioSim (), supported by EPSRC (grant no. EP/L000253/1). The authors would also like to acknowledge the use of the Computational Shared Facility at the University of Manchester. ADDIN REFMGR.REFLIST References(1) Dwek, R. A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev. 1996, 96, 683-720.(2) Jackson, R. L.; Busch, S. J.; Cardin, A. D. Glycosaminoglycans: Molecular Properties, Protein Interactions, and Role in Physiological Processes. Physiolog. Rev. 1991, 71, 481-539.(3) Bishop, J. R.; Schuksz, M.; Esko, J. D. Heparan Sulphate Proteoglycans Fine-Tune Mammalian Physiology. Nature 2007, 446, 1030.(4) Gama, C. I.; Tully, S. E.; Sotogaku, N.; Clark, P. M.; Rawat, M.; Vaidehi, N.; Goddard III, W. A.; Nishi, A.; Hsieh-Wilson, L. C. Sulfation Patterns of Glycosaminoglycans Encode Molecular Recognition and Activity. Nature Chem. Biol. 2006, 2, 467.(5) Rudd, T. R.; Skidmore, M. A.; Guerrini, M.; Hricovini, M.; Powell, A. K.; Siligardi, G.; Yates, E. A. The Conformation and Structure of GAGs: Recent Progress and Perspectives. Curr. Opin. Struct. Biol. 2010, 20, 567-574.(6) Cremer, D.; Pople, J. A. General Definition of Ring Puckering Coordinates. J. Am. Chem. Soc. 1975, 97, 1354-1358.(7) Speciale, G.; Thompson, A. J.; Davies, G. J.; Williams, S. J. Dissecting Conformational Contributions to Glycosidase Catalysis and Inhibition. Curr. Opin. Struct. Biol. 2014, 28, 1-13.(8) Das, S. K.; Mallet, J.; Esnault, J.; Driguez, P.; Duchaussoy, P.; Sizun, P.; Herault, J.; Herbert, J.; Petitou, M.; Sinay, P. Synthesis of Conformationally Locked L-Iduronic Acid Derivatives: Direct Evidence for a Critical Role of the Skew-Boat 2SO Conformer in the Activation of Antithrombin by Heparin. Chem.: Eur. J. 2001, 7, 4821-4834.(9) Topin, J.; Arnaud, J.; Sarkar, A.; Audfray, A.; Gillon, E.; Perez, S.; Jamet, H.; Varrot, A.; Imberty, A.; Thomas, A. Deciphering the Glycan Preference of Bacterial Lectins by Glycan Array and Molecular Docking With Validation by Microcalorimetry and Crystallography. PloS one 2013, 8, e71149.(10) Plazinski, W.; Drach, M. Kinetic Characteristics of Conformational Changes in the Hexopyranose Rings. Carbohydr. Res. 2015, 416, 41-50.(11) Woods, R. J. Predicting the Structures of Glycans, Glycoproteins, and Their Complexes. Chem. Rev. 2018, 118, 8005-8024.(12) Sattelle, B. M.; Hansen, S. U.; Gardiner, J.; Almond, A. Free Energy Landscapes of Iduronic Acid and Related Monosaccharides. J. Am. Chem. Soc. 2010, 132, 13132-13134.(13) DeMarco, M. L.; Woods, R. J. Structural Glycobiology: a Game of Snakes and Ladders. Glycobiology 2008, 18, 426-440.(14) Naidoo, K. J. FEARCF a Multidimensional Free Energy Method for Investigating Conformational Landscapes and Chemical Reaction Mechanisms. Sci. China Chem. 2011, 54, 1962-1973.(15) Autieri, E.; Sega, M.; Pederiva, F.; Guella, G. Puckering Free Energy of Pyranoses: A NMR and Metadynamics-Umbrella Sampling Investigation. J. Chem. Phys. 2010, 133, 09B604.(16) Petersen, L.; Ardvol, A.; Rovira, C.; Reilly, P. J. Mechanism of Cellulose Hydrolysis by Inverting GH8 Endoglucanases: A QM/MM Metadynamics Study. J. Phys. Chem. B 2009, 113, 7331-7339.(17) Qian, X.; Liu, D. Free Energy Landscape for Glucose Condensation and Dehydration Reactions in Dimethyl Sulfoxide and the Effects of Solvent. Carbohydr. Res. 2014, 388, 50-60.(18) Spiwok, V.; Kralova, B.; Tvaroska, I. Modelling of a-D-Glucopyranose Ring Distortion in Different Force Fields: a Metadynamics Study. Carbohydr. Res. 2010, 345, 530-537.(19) Babin, V.; Sagui, C. Conformational Free Energies of Methyl-a-L-Iduronic and Methyl-b-D-Glucuronic Acids in Water. J. Chem. Phys. 2010, 132, 104108.(20) Wang, L.; Berne, B. J. Efficient Sampling of Puckering States of Monosaccharides Through Replica Exchange With Solute Tempering and Bond Softening. J. Chem. Phys. 2018, 149, 072306.(21) Patel, D. S.; Pendrill, R.; Mallajosyula, S. S.; Widmalm, G.; MacKerell Jr, A. D. Conformational Properties of a-or B-(1-6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments. J. Phys. Chem. B 2014, 118, 2851-2871.(22) Galvelis, R.; Re, S.; Sugita, Y. Enhanced Conformational Sampling of N-Glycans in Solution With Replica State Exchange Metadynamics. J. Chem. Theory Comput. 2017, 13, 1934-1942.(23) Alibay, I.; Burusco, K. K.; Bruce, N. J.; Bryce, R. A. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics. J. Phys. Chem. B 2018, 122, 2462-2474.(24) Atzori, A.; Bruce, N. J.; Burusco, K. K.; Wroblowski, B.; Bonnet, P.; Bryce, R. A. Exploring Protein Kinase Conformation Using Swarm-Enhanced Sampling Molecular Dynamics. J. Chem. Inf. Model. 2014, 54, 2764-2775.(25) Burusco, K. K.; Bruce, N. J.; Alibay, I.; Bryce, R. A. Free Energy Calculations Using a Swarm-Enhanced Sampling Molecular Dynamics Approach. ChemPhysChem 2015, 16, 3233-3241.(26) Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; González-Outeiri?o, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J. GLYCAM06: a Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29, 622-655.(27) Singh, A.; Tessier, M. B.; Pederson, K.; Wang, X.; Venot, A. P.; Boons, G. J.; Prestegard, J. H.; Woods, R. J. Extension and Validation of the GLYCAM Force Field Parameters for Modeling Glycosaminoglycans. Can. J. Chem. 2016, 94, 927-935.(28) Sattelle, B. M.; Almond, A. Is N-Acetyl-D-Glucosamine a Rigid 4C1 Chair? Glycobiology 2011, 21, 1651-1662.(29) Hsieh, P. H.; Thieker, D. F.; Guerrini, M.; Woods, R. J.; Liu, J. Uncovering the Relationship Between Sulphation Patterns and Conformation of Iduronic Acid in Heparan Sulphate. Sci. Rep. 2016, 6, 29602.(30) Samsonov, S. A.; Theisgen, S.; Riemer, T.; Huster, D.; Pisabarro, M. T. Glycosaminoglycan Monosaccharide Blocks Analysis by Quantum Mechanics, Molecular Dynamics, and Nuclear Magnetic Resonance. BioMed Res. Int. 2014, 2014, 808071.(31) Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham III, T. E.; Darden, T. A.; Duke, R.; Gohlke, H.; Gotz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolassvary, I.; Kovalenko, A.; Lee, T.-S.; LeGrand, S. M.; Luchko, T.; Luo, R.; Madej, B.; Merz Jr., K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 14. 2014. (32) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935.(33) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; OUP: 1987.(34) Lemons, D. S.; Gythiel, A. Paul Langevin's 1908 Paper "On the Theory of Brownian Motion / Sur La Theorie Du Mouvement Brownien", [CR Acad. Sci.(Paris) 146, 530-533 (1908)]. Am. J. Phys. 1997, 65, 1079-1081.(35) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23, 327-341.(36) Miyamoto, S.; Kollman, P. A. Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952-962.(37) Feenstra, K. A.; Hess, B.; Berendsen, H. J. Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems. J. Comput. Chem. 1999, 20, 786-798.(38) Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E. Long-Time-Step Molecular Dynamics Through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864-1874.(39) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577-8593.(40) Darden, T.; York, D. M.; Pedersen, L. Particle Mesh Ewald: An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089-10092.(41) Hill, A. D.; Reilly, P. J. Puckering Coordinates of Monocyclic Rings by Triangular Decomposition. J. Chem. Inf. Model. 2007, 47, 1031-1035.(42) Meirovitch, H. Recent Developments in Methodologies for Calculating the Entropy and Free Energy of Biological Systems by Computer Simulation. Curr. Opin. Struct. Biol. 2007, 17, 181-186.(43) Torrie, G. M.; Valleau, J. P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23, 187-199.(44) Roe, D. R.; Cheatham, T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084-3095.(45) Plazinski, W.; Drach, M. The Dynamics of the Conformational Changes in the Hexopyranose Ring: a Transition Path Sampling Approach. RSC Adv. 2014, 4, 25028-25039.(46) Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; Kaus, J. W.; Cerutti, D. S.; Krilov, G.; Jorgensen, W. L.; Abel, R.; Friesner, R. A. OPLS3: A Force Field Providing Broad Coverage of Drug-Like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281-296.(47) Plazinski, W.; Lonardi, A.; Hunenberger, P. H. Revision of the GROMOS 56A6CARBO Force Field: Improving the Description of Ring-Conformational Equilibria in Hexopyranose-Based Carbohydrates Chains. J. Comput. Chem. 2016, 37, 354-365.(48) Angyal, S. J. Conformational Analysis in Carbohydrate Chemistry. I. Conformational Free Energies. The Conformations and a : b Ratios of Aldopyranoses in Aqueous Solution. Aus. J. Chem. 1968, 21, 2737-2746.(49) Wang, Z.; Hsieh, P. H.; Xu, Y.; Thieker, D.; Chai, E. J. E.; Xie, S.; Cooley, B.; Woods, R. J.; Chi, L.; Liu, J. Synthesis of 3-O-Sulfated Oligosaccharides to Understand the Relationship Between Structures and Functions of Heparan Sulfate. J. Am. Chem. Soc. 2017, 139, 5249-5256.(50) Hricovini, M.; Guerrini, M.; Bisio, A.; Torri, G.; Petitou; Benito, C. A. S. U. Conformation of Heparin Pentasaccharide Bound to Antithrombin III. Biochem. J. 2001, 359, 265-272.(51) Hricovini, M.; Bizik, F. Relationship Between Structure and Three-Bond Proton-proton Coupling Constants in Glycosaminoglycans. Carbohydr. Res. 2007, 342, 779-783.(52) Guerrini, M.; Elli, S.; Mourier, P.; Rudd, T. R.; Gaudesi, D.; Casu, B.; Boudier, C.; Torri, G.; Viskov, C. An Unusual Antithrombin-Binding Heparin Octasaccharide With an Additional 3-O-Sulfated Glucosamine in the Active Pentasaccharide Sequence. Biochem. J. 2013, 449, 343-351.(53) Hsieh, P. H.; Xu, Y.; Keire, D. A.; Liu, J. Chemoenzymatic Synthesis and Structural Characterization of 2-O-Sulfated Glucuronic Acid-Containing Heparan Sulfate Hexasaccharides. Glycobiology 2014, 24, 681-692.(54) Topin, J.; Lelimousin, M.; Arnaud, J.; Audfray, A.; Perez, S.; Varrot, A.; Imberty, A. The Hidden Conformation of Lewis X, a Human Histo-Blood Group Antigen, Is a Determinant for Recognition by Pathogen Lectins. ACS Chem. Biol. 2016, 11, 2011-2020.(55) Sattelle, B. M.; Almond, A. Assigning Kinetic 3D-Signatures to Glycocodes. Phys. Chem. Chem. Phys. 2012, 14, 5843-5848.(56) Pavao, M. S.; Mourao, P. A.; Mulloy, B.; Tollefsen, D. M. A Unique Dermatan Sulfate-Like Glycosaminoglycan From Ascidian: Its Structure and the Effect of Its Unusual Sulfation Pattern on Anticoagulant Activity. J. Biol. Chem. 1995, 270, 31027-31036.(57) Sattelle, B. M.; Shakeri, J.; Roberts, I. S.; Almond, A. A 3D-Structural Model of Unsulfated Chondroitin From High-Field NMR: 4-Sulfation Has Little Effect on Backbone Conformation. Carbohydr. Res. 2010, 345, 291-302.(58) Jayson, G. C.; Miller, G. J.; Hansen, S. U.; Barath, M.; Gardiner, J. M.; Avizienyte, E. The development of anti-angiogenic heparan sulfate oligosaccharides. 2014. Portland Press Limited. (59) Hansen, S. U.; Miller, G. J.; Jayson, G. C.; Gardiner, J. M. First Gram-Scale Synthesis of a Heparin-Related Dodecasaccharide. Org. Lett. 2012, 15, 88-91.(60) Patel, D. S.; He, X.; MacKerell Jr, A. D. Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator. J. Phys. Chem. B 2014, 119, 637-652.(61) Pandey, P.; Aytenfisu, A. H.; MacKerell Jr, A. D.; Mallajosyula, S. S. Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives. J. Chem. Theory Comput. 2019, 15, 4982-5000. Table 1 Relative free energy of 1C4 and selected non-chair states of monosaccharides relative to 4C1 chair form (kcal/mol), computed via MD and 195 ns msesMD simulations. Non-chair conformers (energies in parentheses) selected within 0.5 kcal/mol of the lowest energy non-chair conformer.Table 2 Relative free energy of 1C4 and selected non-chair conformers of monosaccharides relative to 4C1 chair form (kcal/mol), computed via 195 ns msesMD simulations. Non-chair conformers selected within 0.5 kcal/mol of the lowest energy non-chair conformer.9525006350(a)020000(a)10922005080(b)020000(b)Figure 1 (a) Monosaccharides α-D-glucose (α-Glc), β-D-glucose (β-Glc), α-L-iduronic acid (α-Glc), β-D-glucuronic acid (β-GlcA); ?- and β-GlcNAc, β-GalNAc, β-Gal and their sulfated variants. (b) Schematic diagram of location of selected pyranose ring conformers on Cremer-Pople (?,?) surface. Figure 2 Free energy profiles as a function of Cremer-Pople puckering angle θ for (a) α-Glc, (b) β-Glc, (c) IdoA, and (d) GlcA calculated via unbiased MD trajectories of varying length (colored points) or via 195 ns msesMD simulations (black circle). Energies in kcal/mol. Regions corresponding to chair (C), envelope or half-chair (E/HC) and boat or skew-boat (B/SB) ring conformations are indicated.Figure 3 Time series of Cremer-Pople θ angle computed from respective 20 ?s MD and 195 ns msesMD simulations of (a,b) α-Glc, (c,d) β-Glc, (e,f) IdoA, and (g,h) GlcA. For msesMD simulations, the θ angle values are coloured according to replica. Figure 4 Evaluation of the convergence of relative free energy profiles computed via msesMD simulations of duration 45 ns (black), 95 ns (dark blue), 145 ns (green), and 195 ns (light green), as a function of Cremer-Pople puckering angle θ for (a) α-Glc, (b) β-Glc, (c) IdoA and (d) GlcA. Energies in kcal/mol. Regions corresponding to chair (C), envelope or half-chair (E/HC) and boat or skew-boat (B/SB) ring conformations are indicated.Figure 5 Relative free energy profiles as a function of Cremer-Pople puckering angles θ? computed from respective 20 ?s MD and 195 ns msesMD simulations of (a,b) α-Glc, (c,d) β-Glc, (e,f) α-IdoA and (g,h) β-GlcA. Regions corresponding to chair (C), boat (B), and skew-boat (S) ring conformations are indicated. Displayed relative free energy scale ranges from 0 kcal/mol (black) to 8 kcal/mol (white). Unsampled regions have been given a value of 8 kcal/mol.Figure 6 Relative free energy profiles as a function of Cremer-Pople angle θ evaluating the impact of ring modification of (a) ?-IdoA, (b) ?-GlcA, (c) ?-GlcNAc, (d) ?-GlcNAc, (e) ?-GalNAc and (f) ?-Gal, computed from 195 ns msesMD simulations. Energies in kcal/mol. Regions corresponding to chair (C), envelope or half-chair (E/HC) and boat or skew-boat (B/SB) ring conformations are indicated.Figure 7 Relative free energy profiles as a function of Cremer-Pople puckering angles θ? from 195 ns msesMD simulation of (a) ?-IdoA, (b) ?-IdoA2S, (c) ?-GlcA, (d) ?-GlcA2S, (e) ?-GlcNAc, (f) ?-GlcNS, (g) ??GlcNS(3S), (h) ??GlcNAc(6S), (i) ??GlcNAc(3S,6S), (j) ?-GlcNAc, and (k) ?-GlcNAc(6S). Regions corresponding to chair (C), boat (B) and skew-boat (S) ring conformations are indicated. Displayed relative free energy scale ranges from 0 kcal/mol (black) to 8 kcal/mol (white). Unsampled regions have been given a value of 8 kcal/mol.Figure 8 Relative free energy profiles as a function of Cremer-Pople puckering angles θ? from 195 ns msesMD simulation of (a) ?-GalNAc, (b) ?-GalNAc(4S), (c) ?-GalNAc(6S), (d) ?-GalNAc(4S,6S), (e) ?-Gal and (f) ?-Gal(6S). Regions corresponding to chair (C), boat (B) and skew-boat (S) ring conformations are indicated. Displayed relative free energy scale ranges from 0 kcal/mol (black) to 8 kcal/mol (white). Unsampled regions have been given a value of 8 kcal/mol.Figure 9 Selected conformations of 1C4 conformers of (a) ?-GalNAc(4S) and (b) ?-GalNAc(4S,6S) indicating the type of intra-molecular hydrogen bond pattern which can be accessed (with representative distances in ?). Atoms are annotated by colour for; carbon (green), oxygen (red), nitrogen (blue), sulfur (yellow), and hydrogen (white).TOC graphic ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download