Template for Electronic Submission to ACS Journals



Introduction of Aryl Fluorosulfates into the Realm of Catellani Reaction SubstratesVidmantas Bieliūnas and Wim M. De Borggraeve*Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium.wim.deborggraeve@kuleuven.beSupporting Information PlaceholderABSTRACT: Application of activated phenol fluorosulfates as substrates in a Pd/NBE mediated sequential alkylation-arylation, commonly known as a Catellani reaction, is presented. These substrates provide a level of complementarity to the commonly used aryl halides and, in combination with a plethora of existing Catellani reaction variations, enable even wider application of this powerful synthetic tool.Two decades ago, Catellani et al for the first time described the use of norbornene (NBE) as transient mediator to facilitate aromatic C-H activation via palladacycle formation – a discovery that enabled one-pot sequential ortho/ipso functionalization of iodoarenes. ADDIN EN.CITE <EndNote><Cite><Author>Catellani</Author><Year>1997</Year><RecNum>36</RecNum><DisplayText><style face="superscript">1</style></DisplayText><record><rec-number>36</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554803341">36</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Catellani, Marta</author><author>Frignani, Franco</author><author>Rangoni, Armando</author></authors></contributors><titles><title>A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o′-Disubstituted Vinylarenes</title><secondary-title>Angewandte Chemie International Edition in English</secondary-title></titles><periodical><full-title>Angewandte Chemie International Edition in English</full-title><abbr-1>Angew. Chem. Int. Ed.</abbr-1></periodical><pages>119-122</pages><volume>36</volume><number>12</number><section>119</section><dates><year>1997</year></dates><isbn>0570-0833&#xD;1521-3773</isbn><urls></urls><electronic-resource-num>10.1002/anie.199701191</electronic-resource-num></record></Cite></EndNote>1 Since then this catalytic system has gathered significant interest and inspired researchers to develop novel variations of the reaction.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5ZZTwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJlY051

bT4xNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI8L3N0

eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2

ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk4MjAwIj4xNjwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+WWUsIEouPC9hdXRob3I+PGF1dGhvcj5MYXV0ZW5zLCBNLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRhdmVucG9ydCBM

YWJvcmF0b3JpZXMsIERlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5LCBVbml2ZXJzaXR5IG9mIFRvcm9u

dG8sIDgwIFN0IEdlb3JnZSBTdHJlZXQsIFRvcm9udG8sIE9udGFyaW8gTTVTIDNINiwgQ2FuYWRh

LjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBhbGxhZGl1bS1DYXRhbHlzZWQgTm9yYm9y

bmVuZS1NZWRpYXRlZCBDLUggRnVuY3Rpb25hbGl6YXRpb24gb2YgQXJlbmVzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPk5hdCBDaGVtPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+TmF0IENoZW08L2Z1bGwtdGl0bGU+PGFiYnItMT5OYXQuIENoZW0uPC9h

YmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz44NjMtNzA8L3BhZ2VzPjx2b2x1bWU+Nzwvdm9sdW1l

PjxudW1iZXI+MTE8L251bWJlcj48ZWRpdGlvbj4yMDE1LzEwLzIzPC9lZGl0aW9uPjxkYXRlcz48

eWVhcj4yMDE1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRhdGVzPjwv

ZGF0ZXM+PGlzYm4+MTc1NS00MzQ5IChFbGVjdHJvbmljKSYjeEQ7MTc1NS00MzMwIChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4yNjQ5MjAwNTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjY0OTIw

MDU8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwMzgvbmNoZW0uMjM3MjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+RGVsbGEgQ2E8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+

MTc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4dnZkdzlkZGVm

d2F2IiB0aW1lc3RhbXA9IjE1NTQ3OTgzMjciPjE3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5EZWxsYSBDYSwgTi48L2F1dGhvcj48YXV0aG9yPkZvbnRhbmEsIE0uPC9h

dXRob3I+PGF1dGhvcj5Nb3R0aSwgRS48L2F1dGhvcj48YXV0aG9yPkNhdGVsbGFuaSwgTS48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EaXBhcnRpbWVudG8g

ZGkgQ2hpbWljYSBhbmQgQ0lSQ0MsIFVuaXZlcnNpdGEgZGkgUGFybWEgLCBQYXJjbyBBcmVhIGRl

bGxlIFNjaWVuemUgMTcvQSwgSS00MzEyNCBQYXJtYSwgSXRhbHkuPC9hdXRoLWFkZHJlc3M+PHRp

dGxlcz48dGl0bGU+UGQvTm9yYm9ybmVuZTogQSBXaW5uaW5nIENvbWJpbmF0aW9uIGZvciBTZWxl

Y3RpdmUgQXJvbWF0aWMgRnVuY3Rpb25hbGl6YXRpb24gdmlhIEMtSCBCb25kIEFjdGl2YXRpb248

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QWNjIENoZW0gUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90

aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QWNjb3VudHMgb2YgQ2hlbWljYWwgUmVzZWFy

Y2g8L2Z1bGwtdGl0bGU+PGFiYnItMT5BY2MuIENoZW0uIFJlcy48L2FiYnItMT48YWJici0yPkFj

YyBDaGVtIFJlczwvYWJici0yPjxhYmJyLTM+QUNSPC9hYmJyLTM+PC9wZXJpb2RpY2FsPjxwYWdl

cz4xMzg5LTQwMDwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxl

ZGl0aW9uPjIwMTYvMDYvMjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5KdWwgMTk8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIwLTQ4

OTggKEVsZWN0cm9uaWMpJiN4RDswMDAxLTQ4NDIgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24t

bnVtPjI3MzMzMjk5PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

czovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNzMzMzI5OTwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hY3MuYWNjb3VudHMu

NmIwMDE2NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+V2VnbWFubjwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+PFJlY051bT40ODwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVz

dGFtcD0iMTU1NTY3ODgwMCI+NDg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0

aG9yPldlZ21hbm4sIE0uPC9hdXRob3I+PGF1dGhvcj5IZW5rZWwsIE0uPC9hdXRob3I+PGF1dGhv

cj5CYWNoLCBULjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNz

PkRlcGFydG1lbnQgQ2hlbWllIGFuZCBDYXRhbHlzaXMgUmVzZWFyY2ggQ2VudGVyIChDUkMpLCBU

ZWNobmlzY2hlIFVuaXZlcnNpdGF0IE11bmNoZW4sIExpY2h0ZW5iZXJnc3RyLiA0LCA4NTc0NyBH

YXJjaGluZywgR2VybWFueS4gbWFyY3VzLndlZ21hbm5AbXl0dW0uZGUgdGhvcnN0ZW4uYmFjaEBj

aC50dW0uZGUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+Qy1IIGFsa3lsYXRpb24gcmVh

Y3Rpb25zIG9mIGluZG9sZXMgbWVkaWF0ZWQgYnkgUGQoSUkpIGFuZCBub3Jib3JuZW5lOiBhcHBs

aWNhdGlvbnMgYW5kIHJlY2VudCBkZXZlbG9wbWVudHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

T3JnIEJpb21vbCBDaGVtPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+T3JnIEJpb21vbCBDaGVtPC9mdWxsLXRpdGxlPjxhYmJyLTE+T3JnLiBCaW9tb2wu

IENoZW0uPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz41Mzc2LTUzODU8L3BhZ2VzPjx2b2x1

bWU+MTY8L3ZvbHVtZT48bnVtYmVyPjMwPC9udW1iZXI+PGVkaXRpb24+MjAxOC8wNy8xMjwvZWRp

dGlvbj48ZGF0ZXM+PHllYXI+MjAxODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZyAxPC9kYXRl

PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTQ3Ny0wNTM5IChFbGVjdHJvbmljKSYjeEQ7MTQ3

Ny0wNTIwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4yOTk5MzA4NDwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9wdWJtZWQvMjk5OTMwODQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjEwLjEwMzkvYzhvYjAxMDI1azwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q2hlbmc8L0F1dGhvcj48WWVhcj4yMDE5PC9Z

ZWFyPjxSZWNOdW0+NDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQxPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhm

cnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTUzMjkwMDYiPjQxPC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5DaGVuZywgSC4gRy48L2F1dGhvcj48YXV0aG9yPkNo

ZW4sIFMuPC9hdXRob3I+PGF1dGhvcj5DaGVuLCBSLjwvYXV0aG9yPjxhdXRob3I+WmhvdSwgUS48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Db2xsZWdlIG9m

IENoZW1pc3RyeSBhbmQgTW9sZWN1bGFyIFNjaWVuY2VzLCBJbnN0aXR1dGUgZm9yIEFkdmFuY2Vk

IFN0dWRpZXMgKElBUyksIFd1aGFuIFVuaXZlcnNpdHksIDQzMDA3MiwgV3VoYW4sIFAuIFIuIENo

aW5hLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBkKElJKS1Jbml0aWF0ZWQgQ2F0ZWxs

YW5pLVR5cGUgUmVhY3Rpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFuZ2V3IENoZW0gSW50

IEVkIEVuZ2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5BbmdldyBDaGVtIEludCBFZCBFbmdsPC9mdWxsLXRpdGxlPjxhYmJyLTE+QW5nZXcuIENoZW0u

IEludC4gRWQuPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz41ODMyLTU4NDQ8L3BhZ2VzPjx2

b2x1bWU+NTg8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGVkaXRpb24+MjAxOC8xMi8yODwv

ZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2F0ZWxsYW5pIHJlYWN0aW9uPC9rZXl3b3JkPjxr

ZXl3b3JkPkMtSCBmdW5jdGlvbmFsaXphdGlvbjwva2V5d29yZD48a2V5d29yZD5jb29wZXJhdGl2

ZSBjYXRhbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+bm9yYm9ybmVuZTwva2V5d29yZD48a2V5d29y

ZD5wYWxsYWRpdW0gY2F0YWx5c2lzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIw

MTk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHIgMjM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4xNTIxLTM3NzMgKEVsZWN0cm9uaWMpJiN4RDsxNDMzLTc4NTEgKExpbmtpbmcpPC9p

c2JuPjxhY2Nlc3Npb24tbnVtPjMwNTg5MTg0PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8zMDU4OTE4NDwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAw

Mi9hbmllLjIwMTgxMzQ5MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+V2FuZzwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+PFJlY051bT42Mzwv

UmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48

a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYi

IHRpbWVzdGFtcD0iMTU1NjM3Nzc0NiI+NjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y

cz48YXV0aG9yPldhbmcsIEouPC9hdXRob3I+PGF1dGhvcj5Eb25nLCBHLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5

ICwgVW5pdmVyc2l0eSBvZiBDaGljYWdvICwgQ2hpY2FnbyAsIElsbGlub2lzIDYwNjM3ICwgVW5p

dGVkIFN0YXRlcy48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5QYWxsYWRpdW0vTm9yYm9y

bmVuZSBDb29wZXJhdGl2ZSBDYXRhbHlzaXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbSBS

ZXY8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVt

aWNhbCBSZXZpZXdzPC9mdWxsLXRpdGxlPjxhYmJyLTE+Q2hlbS4gUmV2LjwvYWJici0xPjxhYmJy

LTI+Q2hlbSBSZXY8L2FiYnItMj48YWJici0zPkNSVjwvYWJici0zPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NzQ3OC03NTI4PC9wYWdlcz48dm9sdW1lPjExOTwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJl

cj48ZWRpdGlvbj4yMDE5LzA0LzI2PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDE5PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+QXByIDI1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUy

MC02ODkwIChFbGVjdHJvbmljKSYjeEQ7MDAwOS0yNjY1IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4zMTAyMTYwNjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMzEwMjE2MDY8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvYWNzLmNoZW1y

ZXYuOWIwMDA3OTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5k

Tm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5ZZTwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJlY051

bT4xNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI8L3N0

eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2

ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk4MjAwIj4xNjwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+WWUsIEouPC9hdXRob3I+PGF1dGhvcj5MYXV0ZW5zLCBNLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRhdmVucG9ydCBM

YWJvcmF0b3JpZXMsIERlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5LCBVbml2ZXJzaXR5IG9mIFRvcm9u

dG8sIDgwIFN0IEdlb3JnZSBTdHJlZXQsIFRvcm9udG8sIE9udGFyaW8gTTVTIDNINiwgQ2FuYWRh

LjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBhbGxhZGl1bS1DYXRhbHlzZWQgTm9yYm9y

bmVuZS1NZWRpYXRlZCBDLUggRnVuY3Rpb25hbGl6YXRpb24gb2YgQXJlbmVzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPk5hdCBDaGVtPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+TmF0IENoZW08L2Z1bGwtdGl0bGU+PGFiYnItMT5OYXQuIENoZW0uPC9h

YmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz44NjMtNzA8L3BhZ2VzPjx2b2x1bWU+Nzwvdm9sdW1l

PjxudW1iZXI+MTE8L251bWJlcj48ZWRpdGlvbj4yMDE1LzEwLzIzPC9lZGl0aW9uPjxkYXRlcz48

eWVhcj4yMDE1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRhdGVzPjwv

ZGF0ZXM+PGlzYm4+MTc1NS00MzQ5IChFbGVjdHJvbmljKSYjeEQ7MTc1NS00MzMwIChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4yNjQ5MjAwNTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjY0OTIw

MDU8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwMzgvbmNoZW0uMjM3MjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+RGVsbGEgQ2E8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+

MTc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4dnZkdzlkZGVm

d2F2IiB0aW1lc3RhbXA9IjE1NTQ3OTgzMjciPjE3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5EZWxsYSBDYSwgTi48L2F1dGhvcj48YXV0aG9yPkZvbnRhbmEsIE0uPC9h

dXRob3I+PGF1dGhvcj5Nb3R0aSwgRS48L2F1dGhvcj48YXV0aG9yPkNhdGVsbGFuaSwgTS48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EaXBhcnRpbWVudG8g

ZGkgQ2hpbWljYSBhbmQgQ0lSQ0MsIFVuaXZlcnNpdGEgZGkgUGFybWEgLCBQYXJjbyBBcmVhIGRl

bGxlIFNjaWVuemUgMTcvQSwgSS00MzEyNCBQYXJtYSwgSXRhbHkuPC9hdXRoLWFkZHJlc3M+PHRp

dGxlcz48dGl0bGU+UGQvTm9yYm9ybmVuZTogQSBXaW5uaW5nIENvbWJpbmF0aW9uIGZvciBTZWxl

Y3RpdmUgQXJvbWF0aWMgRnVuY3Rpb25hbGl6YXRpb24gdmlhIEMtSCBCb25kIEFjdGl2YXRpb248

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QWNjIENoZW0gUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90

aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QWNjb3VudHMgb2YgQ2hlbWljYWwgUmVzZWFy

Y2g8L2Z1bGwtdGl0bGU+PGFiYnItMT5BY2MuIENoZW0uIFJlcy48L2FiYnItMT48YWJici0yPkFj

YyBDaGVtIFJlczwvYWJici0yPjxhYmJyLTM+QUNSPC9hYmJyLTM+PC9wZXJpb2RpY2FsPjxwYWdl

cz4xMzg5LTQwMDwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxl

ZGl0aW9uPjIwMTYvMDYvMjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5KdWwgMTk8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIwLTQ4

OTggKEVsZWN0cm9uaWMpJiN4RDswMDAxLTQ4NDIgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24t

bnVtPjI3MzMzMjk5PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

czovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNzMzMzI5OTwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hY3MuYWNjb3VudHMu

NmIwMDE2NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+V2VnbWFubjwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+PFJlY051bT40ODwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVz

dGFtcD0iMTU1NTY3ODgwMCI+NDg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0

aG9yPldlZ21hbm4sIE0uPC9hdXRob3I+PGF1dGhvcj5IZW5rZWwsIE0uPC9hdXRob3I+PGF1dGhv

cj5CYWNoLCBULjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNz

PkRlcGFydG1lbnQgQ2hlbWllIGFuZCBDYXRhbHlzaXMgUmVzZWFyY2ggQ2VudGVyIChDUkMpLCBU

ZWNobmlzY2hlIFVuaXZlcnNpdGF0IE11bmNoZW4sIExpY2h0ZW5iZXJnc3RyLiA0LCA4NTc0NyBH

YXJjaGluZywgR2VybWFueS4gbWFyY3VzLndlZ21hbm5AbXl0dW0uZGUgdGhvcnN0ZW4uYmFjaEBj

aC50dW0uZGUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+Qy1IIGFsa3lsYXRpb24gcmVh

Y3Rpb25zIG9mIGluZG9sZXMgbWVkaWF0ZWQgYnkgUGQoSUkpIGFuZCBub3Jib3JuZW5lOiBhcHBs

aWNhdGlvbnMgYW5kIHJlY2VudCBkZXZlbG9wbWVudHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

T3JnIEJpb21vbCBDaGVtPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+T3JnIEJpb21vbCBDaGVtPC9mdWxsLXRpdGxlPjxhYmJyLTE+T3JnLiBCaW9tb2wu

IENoZW0uPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz41Mzc2LTUzODU8L3BhZ2VzPjx2b2x1

bWU+MTY8L3ZvbHVtZT48bnVtYmVyPjMwPC9udW1iZXI+PGVkaXRpb24+MjAxOC8wNy8xMjwvZWRp

dGlvbj48ZGF0ZXM+PHllYXI+MjAxODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZyAxPC9kYXRl

PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTQ3Ny0wNTM5IChFbGVjdHJvbmljKSYjeEQ7MTQ3

Ny0wNTIwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4yOTk5MzA4NDwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9wdWJtZWQvMjk5OTMwODQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjEwLjEwMzkvYzhvYjAxMDI1azwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q2hlbmc8L0F1dGhvcj48WWVhcj4yMDE5PC9Z

ZWFyPjxSZWNOdW0+NDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQxPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhm

cnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTUzMjkwMDYiPjQxPC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5DaGVuZywgSC4gRy48L2F1dGhvcj48YXV0aG9yPkNo

ZW4sIFMuPC9hdXRob3I+PGF1dGhvcj5DaGVuLCBSLjwvYXV0aG9yPjxhdXRob3I+WmhvdSwgUS48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Db2xsZWdlIG9m

IENoZW1pc3RyeSBhbmQgTW9sZWN1bGFyIFNjaWVuY2VzLCBJbnN0aXR1dGUgZm9yIEFkdmFuY2Vk

IFN0dWRpZXMgKElBUyksIFd1aGFuIFVuaXZlcnNpdHksIDQzMDA3MiwgV3VoYW4sIFAuIFIuIENo

aW5hLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBkKElJKS1Jbml0aWF0ZWQgQ2F0ZWxs

YW5pLVR5cGUgUmVhY3Rpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFuZ2V3IENoZW0gSW50

IEVkIEVuZ2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5BbmdldyBDaGVtIEludCBFZCBFbmdsPC9mdWxsLXRpdGxlPjxhYmJyLTE+QW5nZXcuIENoZW0u

IEludC4gRWQuPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz41ODMyLTU4NDQ8L3BhZ2VzPjx2

b2x1bWU+NTg8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGVkaXRpb24+MjAxOC8xMi8yODwv

ZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2F0ZWxsYW5pIHJlYWN0aW9uPC9rZXl3b3JkPjxr

ZXl3b3JkPkMtSCBmdW5jdGlvbmFsaXphdGlvbjwva2V5d29yZD48a2V5d29yZD5jb29wZXJhdGl2

ZSBjYXRhbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+bm9yYm9ybmVuZTwva2V5d29yZD48a2V5d29y

ZD5wYWxsYWRpdW0gY2F0YWx5c2lzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIw

MTk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHIgMjM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4xNTIxLTM3NzMgKEVsZWN0cm9uaWMpJiN4RDsxNDMzLTc4NTEgKExpbmtpbmcpPC9p

c2JuPjxhY2Nlc3Npb24tbnVtPjMwNTg5MTg0PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8zMDU4OTE4NDwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAw

Mi9hbmllLjIwMTgxMzQ5MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+V2FuZzwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+PFJlY051bT42Mzwv

UmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48

a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYi

IHRpbWVzdGFtcD0iMTU1NjM3Nzc0NiI+NjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y

cz48YXV0aG9yPldhbmcsIEouPC9hdXRob3I+PGF1dGhvcj5Eb25nLCBHLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5

ICwgVW5pdmVyc2l0eSBvZiBDaGljYWdvICwgQ2hpY2FnbyAsIElsbGlub2lzIDYwNjM3ICwgVW5p

dGVkIFN0YXRlcy48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5QYWxsYWRpdW0vTm9yYm9y

bmVuZSBDb29wZXJhdGl2ZSBDYXRhbHlzaXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbSBS

ZXY8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVt

aWNhbCBSZXZpZXdzPC9mdWxsLXRpdGxlPjxhYmJyLTE+Q2hlbS4gUmV2LjwvYWJici0xPjxhYmJy

LTI+Q2hlbSBSZXY8L2FiYnItMj48YWJici0zPkNSVjwvYWJici0zPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NzQ3OC03NTI4PC9wYWdlcz48dm9sdW1lPjExOTwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJl

cj48ZWRpdGlvbj4yMDE5LzA0LzI2PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDE5PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+QXByIDI1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUy

MC02ODkwIChFbGVjdHJvbmljKSYjeEQ7MDAwOS0yNjY1IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4zMTAyMTYwNjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMzEwMjE2MDY8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvYWNzLmNoZW1y

ZXYuOWIwMDA3OTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5k

Tm90ZT4A

ADDIN EN.CITE.DATA 2 Even though the range of compatible terminal reagents and introducible functionalities expanded rapidly, the substrate scope remained largely limited to aryl iodides. Indeed, only recent reports detail the application of aryl bromidesPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Eb25nPC9BdXRob3I+PFllYXI+MjAxODwvWWVhcj48UmVj

TnVtPjQ8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4zPC9z

dHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2

ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0NzA5NzA1Ij40PC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5Eb25nLCBaLjwvYXV0aG9yPjxhdXRob3I+THUsIEcuPC9hdXRo

b3I+PGF1dGhvcj5XYW5nLCBKLjwvYXV0aG9yPjxhdXRob3I+TGl1LCBQLjwvYXV0aG9yPjxhdXRo

b3I+RG9uZywgRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVz

cz5EZXBhcnRtZW50IG9mIENoZW1pc3RyeSAsIFVuaXZlcnNpdHkgb2YgQ2hpY2FnbyAsIENoaWNh

Z28gLCBJbGxpbm9pcyA2MDYzNyAsIFVuaXRlZCBTdGF0ZXMuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSAsIFVuaXZlcnNpdHkgb2YgUGl0dHNidXJnaCAsIFBpdHRzYnVyZ2ggLCBQZW5uc3ls

dmFuaWEgMTUyNjAgLCBVbml0ZWQgU3RhdGVzLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxl

Pk1vZHVsYXIgaXBzby9vcnRobyBEaWZ1bmN0aW9uYWxpemF0aW9uIG9mIEFyeWwgQnJvbWlkZXMg

dmlhIFBhbGxhZGl1bS9Ob3Jib3JuZW5lIENvb3BlcmF0aXZlIENhdGFseXNpczwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5KIEFtIENoZW0gU29jPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29j

aWV0eTwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBDaGVtLiBTb2MuPC9hYmJyLTE+PGFiYnIt

Mj5KIEFtIENoZW0gU29jPC9hYmJyLTI+PGFiYnItMz5KQTwvYWJici0zPjwvcGVyaW9kaWNhbD48

cGFnZXM+ODU1MS04NTYyPC9wYWdlcz48dm9sdW1lPjE0MDwvdm9sdW1lPjxudW1iZXI+Mjc8L251

bWJlcj48ZWRpdGlvbj4yMDE4LzA2LzE2PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDE4PC95ZWFy

PjxwdWItZGF0ZXM+PGRhdGU+SnVsIDExPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+

MTUyMC01MTI2IChFbGVjdHJvbmljKSYjeEQ7MDAwMi03ODYzIChMaW5raW5nKTwvaXNibj48YWNj

ZXNzaW9uLW51bT4yOTkwNjEwOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjk5MDYxMDk8L3VybD48L3Jl

bGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+UE1DNjQzMDYxMzwvY3VzdG9tMj48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYWNzLjhiMDQxNTM8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkVsc2F5ZWQ8L0F1dGhvcj48WWVhcj4y

MDE4PC9ZZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBz

YWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0NzA5ODA0Ij41PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FbHNheWVkLCBNLiBTLiBBLjwvYXV0aG9yPjxh

dXRob3I+R3JpZ2dzLCBCLjwvYXV0aG9yPjxhdXRob3I+Q3VzaG1hbiwgTS48L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljaW5h

bCBDaGVtaXN0cnkgYW5kIE1vbGVjdWxhciBQaGFybWFjb2xvZ3ksIENvbGxlZ2Ugb2YgUGhhcm1h

Y3ksIGFuZCBUaGUgUHVyZHVlIENlbnRlciBmb3IgQ2FuY2VyIFJlc2VhcmNoICwgUHVyZHVlIFVu

aXZlcnNpdHkgLCBXZXN0IExhZmF5ZXR0ZSAsIEluZGlhbmEgNDc5MDcgLCBVbml0ZWQgU3RhdGVz

LjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlN5bnRoZXNpcyBvZiBCZW56b1sxLDZdbmFw

aHRoeXJpZGlub25lcyBVc2luZyB0aGUgQ2F0ZWxsYW5pIFJlYWN0aW9uPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPk9yZyBMZXR0PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+T3JnYW5pYyBMZXR0ZXJzPC9mdWxsLXRpdGxlPjxhYmJyLTE+T3JnLiBMZXR0

LjwvYWJici0xPjxhYmJyLTI+T3JnIExldHQ8L2FiYnItMj48YWJici0zPk9MPC9hYmJyLTM+PC9w

ZXJpb2RpY2FsPjxwYWdlcz41MjI4LTUyMzI8L3BhZ2VzPjx2b2x1bWU+MjA8L3ZvbHVtZT48bnVt

YmVyPjE3PC9udW1iZXI+PGVkaXRpb24+MjAxOC8wOC8xNDwvZWRpdGlvbj48ZGF0ZXM+PHllYXI+

MjAxODwveWVhcj48cHViLWRhdGVzPjxkYXRlPlNlcCA3PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0

ZXM+PGlzYm4+MTUyMy03MDUyIChFbGVjdHJvbmljKSYjeEQ7MTUyMy03MDUyIChMaW5raW5nKTwv

aXNibj48YWNjZXNzaW9uLW51bT4zMDEwMjU0MzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMzAxMDI1NDM8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MjEvYWNzLm9yZ2xldHQuOGIwMjE3MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Eb25nPC9BdXRob3I+PFllYXI+MjAxODwvWWVhcj48UmVj

TnVtPjQ8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4zPC9z

dHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2

ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0NzA5NzA1Ij40PC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5Eb25nLCBaLjwvYXV0aG9yPjxhdXRob3I+THUsIEcuPC9hdXRo

b3I+PGF1dGhvcj5XYW5nLCBKLjwvYXV0aG9yPjxhdXRob3I+TGl1LCBQLjwvYXV0aG9yPjxhdXRo

b3I+RG9uZywgRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVz

cz5EZXBhcnRtZW50IG9mIENoZW1pc3RyeSAsIFVuaXZlcnNpdHkgb2YgQ2hpY2FnbyAsIENoaWNh

Z28gLCBJbGxpbm9pcyA2MDYzNyAsIFVuaXRlZCBTdGF0ZXMuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSAsIFVuaXZlcnNpdHkgb2YgUGl0dHNidXJnaCAsIFBpdHRzYnVyZ2ggLCBQZW5uc3ls

dmFuaWEgMTUyNjAgLCBVbml0ZWQgU3RhdGVzLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxl

Pk1vZHVsYXIgaXBzby9vcnRobyBEaWZ1bmN0aW9uYWxpemF0aW9uIG9mIEFyeWwgQnJvbWlkZXMg

dmlhIFBhbGxhZGl1bS9Ob3Jib3JuZW5lIENvb3BlcmF0aXZlIENhdGFseXNpczwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5KIEFtIENoZW0gU29jPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29j

aWV0eTwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBDaGVtLiBTb2MuPC9hYmJyLTE+PGFiYnIt

Mj5KIEFtIENoZW0gU29jPC9hYmJyLTI+PGFiYnItMz5KQTwvYWJici0zPjwvcGVyaW9kaWNhbD48

cGFnZXM+ODU1MS04NTYyPC9wYWdlcz48dm9sdW1lPjE0MDwvdm9sdW1lPjxudW1iZXI+Mjc8L251

bWJlcj48ZWRpdGlvbj4yMDE4LzA2LzE2PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDE4PC95ZWFy

PjxwdWItZGF0ZXM+PGRhdGU+SnVsIDExPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+

MTUyMC01MTI2IChFbGVjdHJvbmljKSYjeEQ7MDAwMi03ODYzIChMaW5raW5nKTwvaXNibj48YWNj

ZXNzaW9uLW51bT4yOTkwNjEwOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjk5MDYxMDk8L3VybD48L3Jl

bGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+UE1DNjQzMDYxMzwvY3VzdG9tMj48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYWNzLjhiMDQxNTM8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkVsc2F5ZWQ8L0F1dGhvcj48WWVhcj4y

MDE4PC9ZZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBz

YWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0NzA5ODA0Ij41PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FbHNheWVkLCBNLiBTLiBBLjwvYXV0aG9yPjxh

dXRob3I+R3JpZ2dzLCBCLjwvYXV0aG9yPjxhdXRob3I+Q3VzaG1hbiwgTS48L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljaW5h

bCBDaGVtaXN0cnkgYW5kIE1vbGVjdWxhciBQaGFybWFjb2xvZ3ksIENvbGxlZ2Ugb2YgUGhhcm1h

Y3ksIGFuZCBUaGUgUHVyZHVlIENlbnRlciBmb3IgQ2FuY2VyIFJlc2VhcmNoICwgUHVyZHVlIFVu

aXZlcnNpdHkgLCBXZXN0IExhZmF5ZXR0ZSAsIEluZGlhbmEgNDc5MDcgLCBVbml0ZWQgU3RhdGVz

LjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlN5bnRoZXNpcyBvZiBCZW56b1sxLDZdbmFw

aHRoeXJpZGlub25lcyBVc2luZyB0aGUgQ2F0ZWxsYW5pIFJlYWN0aW9uPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPk9yZyBMZXR0PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+T3JnYW5pYyBMZXR0ZXJzPC9mdWxsLXRpdGxlPjxhYmJyLTE+T3JnLiBMZXR0

LjwvYWJici0xPjxhYmJyLTI+T3JnIExldHQ8L2FiYnItMj48YWJici0zPk9MPC9hYmJyLTM+PC9w

ZXJpb2RpY2FsPjxwYWdlcz41MjI4LTUyMzI8L3BhZ2VzPjx2b2x1bWU+MjA8L3ZvbHVtZT48bnVt

YmVyPjE3PC9udW1iZXI+PGVkaXRpb24+MjAxOC8wOC8xNDwvZWRpdGlvbj48ZGF0ZXM+PHllYXI+

MjAxODwveWVhcj48cHViLWRhdGVzPjxkYXRlPlNlcCA3PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0

ZXM+PGlzYm4+MTUyMy03MDUyIChFbGVjdHJvbmljKSYjeEQ7MTUyMy03MDUyIChMaW5raW5nKTwv

aXNibj48YWNjZXNzaW9uLW51bT4zMDEwMjU0MzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMzAxMDI1NDM8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MjEvYWNzLm9yZ2xldHQuOGIwMjE3MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 3 or arylboronic acids,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DaGVuPC9BdXRob3I+PFllYXI+MjAxODwvWWVhcj48UmVj

TnVtPjQ3PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+NDwv

c3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ3PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4

dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTU2NzcxODAiPjQ3PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5DaGVuLCBTLjwvYXV0aG9yPjxhdXRob3I+TGl1LCBaLiBT

LjwvYXV0aG9yPjxhdXRob3I+WWFuZywgVC48L2F1dGhvcj48YXV0aG9yPkh1YSwgWS48L2F1dGhv

cj48YXV0aG9yPlpob3UsIFouPC9hdXRob3I+PGF1dGhvcj5DaGVuZywgSC4gRy48L2F1dGhvcj48

YXV0aG9yPlpob3UsIFEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFk

ZHJlc3M+Q29sbGVnZSBvZiBDaGVtaXN0cnkgYW5kIE1vbGVjdWxhciBTY2llbmNlcywgV3VoYW4g

VW5pdmVyc2l0eSwgV3VoYW4sIDQzMDA3MiwgQ2hpbmEuJiN4RDtUaGUgSW5zdGl0dXRlIGZvciBB

ZHZhbmNlZCBTdHVkaWVzLCBXdWhhbiBVbml2ZXJzaXR5LCBXdWhhbiwgNDMwMDcyLCBDaGluYS48

L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5UaGUgRGlzY292ZXJ5IG9mIGEgUGFsbGFkaXVt

KElJKS1Jbml0aWF0ZWQgQm9yb25vLUNhdGVsbGFuaSBSZWFjdGlvbjwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5BbmdldyBDaGVtIEludCBFZCBFbmdsPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5nZXcgQ2hlbSBJbnQgRWQgRW5nbDwvZnVsbC10aXRs

ZT48YWJici0xPkFuZ2V3LiBDaGVtLiBJbnQuIEVkLjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NzE2MS03MTY1PC9wYWdlcz48dm9sdW1lPjU3PC92b2x1bWU+PG51bWJlcj4yNDwvbnVtYmVy

PjxlZGl0aW9uPjIwMTgvMDQvMjc8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPmJvcm9uaWMg

YWNpZDwva2V5d29yZD48a2V5d29yZD5jb29wZXJhdGl2ZSBjYXRhbHlzaXM8L2tleXdvcmQ+PGtl

eXdvcmQ+Y3Jvc3MtY291cGxpbmc8L2tleXdvcmQ+PGtleXdvcmQ+bXVsdGljb21wb25lbnQgcmVh

Y3Rpb248L2tleXdvcmQ+PGtleXdvcmQ+cGFsbGFkaXVtPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh

dGVzPjx5ZWFyPjIwMTg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdW4gMTE8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIxLTM3NzMgKEVsZWN0cm9uaWMpJiN4RDsxNDMzLTc4NTEg

KExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI5Njk2NzY4PC9hY2Nlc3Npb24tbnVtPjx1

cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1l

ZC8yOTY5Njc2ODwvdXJsPjx1cmw+aHR0cHM6Ly9vbmxpbmVsaWJyYXJ5LndpbGV5LmNvbS9kb2kv

cGRmLzEwLjEwMDIvYW5pZS4yMDE4MDM4NjU8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMDIvYW5pZS4yMDE4MDM4NjU8L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNoaTwvQXV0aG9yPjxZ

ZWFyPjIwMTg8L1llYXI+PFJlY051bT4yNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjU8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3By

czJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1NDc5ODYwMyI+MjU8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNoaSwgR3VhbmdmYTwvYXV0aG9y

PjxhdXRob3I+U2hhbywgQ2hhbmdkb25nPC9hdXRob3I+PGF1dGhvcj5NYSwgWGlhb3RpYW48L2F1

dGhvcj48YXV0aG9yPkd1LCBZaWNoYW88L2F1dGhvcj48YXV0aG9yPlpoYW5nLCBZYW5naHVpPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlBkKElJKS1DYXRh

bHl6ZWQgQ2F0ZWxsYW5pLVR5cGUgRG9taW5vIFJlYWN0aW9uIFV0aWxpemluZyBBcnlsYm9yb25p

YyBBY2lkcyBhcyBTdWJzdHJhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBDYXRhbHlz

aXM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BQ1Mg

Q2F0YWx5c2lzPC9mdWxsLXRpdGxlPjxhYmJyLTE+QUNTIENhdGFsLjwvYWJici0xPjwvcGVyaW9k

aWNhbD48cGFnZXM+Mzc3NS0zNzc5PC9wYWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjU8

L251bWJlcj48c2VjdGlvbj4zNzc1PC9zZWN0aW9uPjxkYXRlcz48eWVhcj4yMDE4PC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MjE1NS01NDM1JiN4RDsyMTU1LTU0MzU8L2lzYm4+PHVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjc2NhdGFsLjhiMDA2Mzc8L2VsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DaGVuPC9BdXRob3I+PFllYXI+MjAxODwvWWVhcj48UmVj

TnVtPjQ3PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+NDwv

c3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ3PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4

dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTU2NzcxODAiPjQ3PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5DaGVuLCBTLjwvYXV0aG9yPjxhdXRob3I+TGl1LCBaLiBT

LjwvYXV0aG9yPjxhdXRob3I+WWFuZywgVC48L2F1dGhvcj48YXV0aG9yPkh1YSwgWS48L2F1dGhv

cj48YXV0aG9yPlpob3UsIFouPC9hdXRob3I+PGF1dGhvcj5DaGVuZywgSC4gRy48L2F1dGhvcj48

YXV0aG9yPlpob3UsIFEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFk

ZHJlc3M+Q29sbGVnZSBvZiBDaGVtaXN0cnkgYW5kIE1vbGVjdWxhciBTY2llbmNlcywgV3VoYW4g

VW5pdmVyc2l0eSwgV3VoYW4sIDQzMDA3MiwgQ2hpbmEuJiN4RDtUaGUgSW5zdGl0dXRlIGZvciBB

ZHZhbmNlZCBTdHVkaWVzLCBXdWhhbiBVbml2ZXJzaXR5LCBXdWhhbiwgNDMwMDcyLCBDaGluYS48

L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5UaGUgRGlzY292ZXJ5IG9mIGEgUGFsbGFkaXVt

KElJKS1Jbml0aWF0ZWQgQm9yb25vLUNhdGVsbGFuaSBSZWFjdGlvbjwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5BbmdldyBDaGVtIEludCBFZCBFbmdsPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5nZXcgQ2hlbSBJbnQgRWQgRW5nbDwvZnVsbC10aXRs

ZT48YWJici0xPkFuZ2V3LiBDaGVtLiBJbnQuIEVkLjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NzE2MS03MTY1PC9wYWdlcz48dm9sdW1lPjU3PC92b2x1bWU+PG51bWJlcj4yNDwvbnVtYmVy

PjxlZGl0aW9uPjIwMTgvMDQvMjc8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPmJvcm9uaWMg

YWNpZDwva2V5d29yZD48a2V5d29yZD5jb29wZXJhdGl2ZSBjYXRhbHlzaXM8L2tleXdvcmQ+PGtl

eXdvcmQ+Y3Jvc3MtY291cGxpbmc8L2tleXdvcmQ+PGtleXdvcmQ+bXVsdGljb21wb25lbnQgcmVh

Y3Rpb248L2tleXdvcmQ+PGtleXdvcmQ+cGFsbGFkaXVtPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh

dGVzPjx5ZWFyPjIwMTg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdW4gMTE8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIxLTM3NzMgKEVsZWN0cm9uaWMpJiN4RDsxNDMzLTc4NTEg

KExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI5Njk2NzY4PC9hY2Nlc3Npb24tbnVtPjx1

cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1l

ZC8yOTY5Njc2ODwvdXJsPjx1cmw+aHR0cHM6Ly9vbmxpbmVsaWJyYXJ5LndpbGV5LmNvbS9kb2kv

cGRmLzEwLjEwMDIvYW5pZS4yMDE4MDM4NjU8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMDIvYW5pZS4yMDE4MDM4NjU8L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNoaTwvQXV0aG9yPjxZ

ZWFyPjIwMTg8L1llYXI+PFJlY051bT4yNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjU8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3By

czJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1NDc5ODYwMyI+MjU8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNoaSwgR3VhbmdmYTwvYXV0aG9y

PjxhdXRob3I+U2hhbywgQ2hhbmdkb25nPC9hdXRob3I+PGF1dGhvcj5NYSwgWGlhb3RpYW48L2F1

dGhvcj48YXV0aG9yPkd1LCBZaWNoYW88L2F1dGhvcj48YXV0aG9yPlpoYW5nLCBZYW5naHVpPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlBkKElJKS1DYXRh

bHl6ZWQgQ2F0ZWxsYW5pLVR5cGUgRG9taW5vIFJlYWN0aW9uIFV0aWxpemluZyBBcnlsYm9yb25p

YyBBY2lkcyBhcyBTdWJzdHJhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBDYXRhbHlz

aXM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BQ1Mg

Q2F0YWx5c2lzPC9mdWxsLXRpdGxlPjxhYmJyLTE+QUNTIENhdGFsLjwvYWJici0xPjwvcGVyaW9k

aWNhbD48cGFnZXM+Mzc3NS0zNzc5PC9wYWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjU8

L251bWJlcj48c2VjdGlvbj4zNzc1PC9zZWN0aW9uPjxkYXRlcz48eWVhcj4yMDE4PC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MjE1NS01NDM1JiN4RDsyMTU1LTU0MzU8L2lzYm4+PHVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjc2NhdGFsLjhiMDA2Mzc8L2VsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 4 while only a few sparse accounts of aryl sulfonate application are available to this day.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MYXV0ZW5zPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48

UmVjTnVtPjk2PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

NTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjk2PC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhm

cnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NzIwMTY1ODYiPjk2PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MYXV0ZW5zLCBNYXJrPC9hdXRob3I+PGF1dGhvcj5H

w7ZiZWwsIE1pY2hhZWw8L2F1dGhvcj48YXV0aG9yPlN0YXJrLCBUaW5hPC9hdXRob3I+PGF1dGhv

cj5TdWhhcnRvbm8sIE1hcmNlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5BIFBhbGxhZGl1bS1DYXRhbHl6ZWQgRG9taW5vIFJlYWN0aW9uIGFzIEtleSBT

dGVwIGZvciB0aGUgU3ludGhlc2lzIG9mIEZ1bmN0aW9uYWxpemVkIEFyb21hdGljIEFtaW5vIEFj

aWRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlN5bmxldHQ8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TeW5sZXR0PC9mdWxsLXRpdGxlPjxhYmJyLTM+

U0w8L2FiYnItMz48L3BlcmlvZGljYWw+PHBhZ2VzPjI3MzAtMjczNDwvcGFnZXM+PHZvbHVtZT4y

NDwvdm9sdW1lPjxudW1iZXI+MjA8L251bWJlcj48c2VjdGlvbj4yNzMwPC9zZWN0aW9uPjxkYXRl

cz48eWVhcj4yMDEzPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDkzNi01MjE0JiN4RDsxNDM3LTIwOTY8

L2lzYm4+PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDU1L3MtMDAz

My0xMzM5ODkyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5CbGFuY2hvdDwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051bT4xNDwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTQ8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRp

bWVzdGFtcD0iMTU1NDc5ODAxNSI+MTQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPkJsYW5jaG90LCBNLjwvYXV0aG9yPjxhdXRob3I+Q2FuZGl0bywgRC4gQS48L2F1dGhv

cj48YXV0aG9yPkxhcm5hdWQsIEYuPC9hdXRob3I+PGF1dGhvcj5MYXV0ZW5zLCBNLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRhdmVucG9ydCBSZXNlYXJj

aCBMYWJvcmF0b3JpZXMsIERlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5LCBVbml2ZXJzaXR5IG9mIFRv

cm9udG8sIFRvcm9udG8sIE9udGFyaW8sIENhbmFkYSwgTTVTIDNINi48L2F1dGgtYWRkcmVzcz48

dGl0bGVzPjx0aXRsZT5Gb3JtYWwgU3ludGhlc2lzIG9mIE5pdGlkaW5lIGFuZCBOSzEwOSB2aWEg

UGFsbGFkaXVtLUNhdGFseXplZCBEb21pbm8gRGlyZWN0IEFyeWxhdGlvbi9OLWFyeWxhdGlvbiBv

ZiBBcnlsIFRyaWZsYXRlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5PcmcgTGV0dDwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk9yZ2FuaWMgTGV0dGVy

czwvZnVsbC10aXRsZT48YWJici0xPk9yZy4gTGV0dC48L2FiYnItMT48YWJici0yPk9yZyBMZXR0

PC9hYmJyLTI+PGFiYnItMz5PTDwvYWJici0zPjwvcGVyaW9kaWNhbD48cGFnZXM+MTQ4Ni0xNDg5

PC9wYWdlcz48dm9sdW1lPjEzPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+PGVkaXRpb24+MjAx

MS8wMi8yNjwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxrYWxvaWRzLypjaGVtaWNhbCBz

eW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPkJlbnpvcGhlbmFudGhyaWRpbmVz

LypjaGVtaWNhbCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPkNhdGFseXNp

czwva2V5d29yZD48a2V5d29yZD5Db21iaW5hdG9yaWFsIENoZW1pc3RyeSBUZWNobmlxdWVzPC9r

ZXl3b3JkPjxrZXl3b3JkPk1lc3lsYXRlcy8qY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPk1v

bGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+UGFsbGFkaXVtLypjaGVtaXN0cnk8

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48cHViLWRhdGVzPjxk

YXRlPk1hciAxODwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE1MjMtNzA1MiAoRWxl

Y3Ryb25pYykmI3hEOzE1MjMtNzA1MiAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MjEz

NDg1MDg8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vd3d3

Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzIxMzQ4NTA4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL29sMjAwMTc0ZzwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MYXV0ZW5zPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48

UmVjTnVtPjk2PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

NTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjk2PC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhm

cnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NzIwMTY1ODYiPjk2PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MYXV0ZW5zLCBNYXJrPC9hdXRob3I+PGF1dGhvcj5H

w7ZiZWwsIE1pY2hhZWw8L2F1dGhvcj48YXV0aG9yPlN0YXJrLCBUaW5hPC9hdXRob3I+PGF1dGhv

cj5TdWhhcnRvbm8sIE1hcmNlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5BIFBhbGxhZGl1bS1DYXRhbHl6ZWQgRG9taW5vIFJlYWN0aW9uIGFzIEtleSBT

dGVwIGZvciB0aGUgU3ludGhlc2lzIG9mIEZ1bmN0aW9uYWxpemVkIEFyb21hdGljIEFtaW5vIEFj

aWRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlN5bmxldHQ8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TeW5sZXR0PC9mdWxsLXRpdGxlPjxhYmJyLTM+

U0w8L2FiYnItMz48L3BlcmlvZGljYWw+PHBhZ2VzPjI3MzAtMjczNDwvcGFnZXM+PHZvbHVtZT4y

NDwvdm9sdW1lPjxudW1iZXI+MjA8L251bWJlcj48c2VjdGlvbj4yNzMwPC9zZWN0aW9uPjxkYXRl

cz48eWVhcj4yMDEzPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDkzNi01MjE0JiN4RDsxNDM3LTIwOTY8

L2lzYm4+PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDU1L3MtMDAz

My0xMzM5ODkyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5CbGFuY2hvdDwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051bT4xNDwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTQ8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRp

bWVzdGFtcD0iMTU1NDc5ODAxNSI+MTQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPkJsYW5jaG90LCBNLjwvYXV0aG9yPjxhdXRob3I+Q2FuZGl0bywgRC4gQS48L2F1dGhv

cj48YXV0aG9yPkxhcm5hdWQsIEYuPC9hdXRob3I+PGF1dGhvcj5MYXV0ZW5zLCBNLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRhdmVucG9ydCBSZXNlYXJj

aCBMYWJvcmF0b3JpZXMsIERlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5LCBVbml2ZXJzaXR5IG9mIFRv

cm9udG8sIFRvcm9udG8sIE9udGFyaW8sIENhbmFkYSwgTTVTIDNINi48L2F1dGgtYWRkcmVzcz48

dGl0bGVzPjx0aXRsZT5Gb3JtYWwgU3ludGhlc2lzIG9mIE5pdGlkaW5lIGFuZCBOSzEwOSB2aWEg

UGFsbGFkaXVtLUNhdGFseXplZCBEb21pbm8gRGlyZWN0IEFyeWxhdGlvbi9OLWFyeWxhdGlvbiBv

ZiBBcnlsIFRyaWZsYXRlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5PcmcgTGV0dDwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk9yZ2FuaWMgTGV0dGVy

czwvZnVsbC10aXRsZT48YWJici0xPk9yZy4gTGV0dC48L2FiYnItMT48YWJici0yPk9yZyBMZXR0

PC9hYmJyLTI+PGFiYnItMz5PTDwvYWJici0zPjwvcGVyaW9kaWNhbD48cGFnZXM+MTQ4Ni0xNDg5

PC9wYWdlcz48dm9sdW1lPjEzPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+PGVkaXRpb24+MjAx

MS8wMi8yNjwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxrYWxvaWRzLypjaGVtaWNhbCBz

eW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPkJlbnpvcGhlbmFudGhyaWRpbmVz

LypjaGVtaWNhbCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPkNhdGFseXNp

czwva2V5d29yZD48a2V5d29yZD5Db21iaW5hdG9yaWFsIENoZW1pc3RyeSBUZWNobmlxdWVzPC9r

ZXl3b3JkPjxrZXl3b3JkPk1lc3lsYXRlcy8qY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPk1v

bGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+UGFsbGFkaXVtLypjaGVtaXN0cnk8

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48cHViLWRhdGVzPjxk

YXRlPk1hciAxODwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE1MjMtNzA1MiAoRWxl

Y3Ryb25pYykmI3hEOzE1MjMtNzA1MiAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MjEz

NDg1MDg8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vd3d3

Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzIxMzQ4NTA4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL29sMjAwMTc0ZzwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 5 The introduction of aryl bromides was a tremendous advancement towards broader application of the Catellani reaction. Yet both bromides and iodides are related chemical entities, often sharing common substitution patterns and formal synthesis routes. Furthermore, terrestrial sources are scarce in naturally occurring halogenated aromatic compounds. ADDIN EN.CITE <EndNote><Cite><Author>Gribble</Author><Year>2003</Year><RecNum>46</RecNum><DisplayText><style face="superscript">6</style></DisplayText><record><rec-number>46</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555627196">46</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Gribble, Gordon W.</author></authors></contributors><titles><title>The Diversity of Naturally Produced Organohalogens</title><secondary-title>Chemosphere</secondary-title></titles><periodical><full-title>Chemosphere</full-title></periodical><pages>289-297</pages><volume>52</volume><number>2</number><section>289</section><dates><year>2003</year></dates><isbn>00456535</isbn><urls></urls><electronic-resource-num>10.1016/s0045-6535(03)00207-8</electronic-resource-num></record></Cite></EndNote>6 Phenols, however, are ubiquitous both in biomass and in fossil materials, ADDIN EN.CITE <EndNote><Cite><Author>Lochab</Author><Year>2014</Year><RecNum>52</RecNum><DisplayText><style face="superscript">7</style></DisplayText><record><rec-number>52</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555681458">52</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lochab, Bimlesh</author><author>Shukla, Swapnil</author><author>Varma, Indra K.</author></authors></contributors><titles><title>Naturally Occurring Phenolic Sources: Monomers and Polymers</title><secondary-title>RSC Adv.</secondary-title></titles><periodical><full-title>RSC Adv.</full-title></periodical><pages>21712-21752</pages><volume>4</volume><number>42</number><section>21712</section><dates><year>2014</year></dates><isbn>2046-2069</isbn><urls></urls><electronic-resource-num>10.1039/c4ra00181h</electronic-resource-num></record></Cite></EndNote>7 are susceptible to pre-functionalization owing to their high reactivity, and can be uneventfully transformed into corresponding sulfonates. ADDIN EN.CITE <EndNote><Cite><Author>Chassaing</Author><Year>2012</Year><RecNum>53</RecNum><DisplayText><style face="superscript">8</style></DisplayText><record><rec-number>53</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555682526">53</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Chassaing, Stefan</author><author>Specklin, Simon</author><author>Weibel, Jean-Marc</author><author>Pale, Patrick</author></authors></contributors><titles><title>Vinyl and Aryl Sulfonates: Preparations and Applications in Total Synthesis</title><secondary-title>Current Organic Synthesis</secondary-title></titles><periodical><full-title>Current Organic Synthesis</full-title><abbr-1>Curr. Org. Synth.</abbr-1></periodical><pages>806-827</pages><volume>9</volume><number>6</number><section>806</section><dates><year>2012</year></dates><isbn>15701794</isbn><urls></urls><electronic-resource-num>10.2174/157017912803901709</electronic-resource-num></record></Cite></EndNote>8Aryl triflates are regarded as the default sulfonates for transition metal-catalyzed reactions, while recent work also demonstrates the application of tosylates and mesylates in combination with complex phosphine ligands.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TbzwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051

bT41NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjk8L3N0

eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41NzwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2

ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU1OTU4OTAwIj41Nzwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+U28sIEMuIE0uPC9hdXRob3I+PGF1dGhvcj5Ld29uZywgRi4g

WS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5TdGF0ZSBL

ZXkgTGFib3JhdG9yeSBmb3IgQ2hpcm9zY2llbmNlcyBhbmQgRGVwYXJ0bWVudCBvZiBBcHBsaWVk

IEJpb2xvZ3kgYW5kIENoZW1pY2FsIFRlY2hub2xvZ3ksIFRoZSBIb25nIEtvbmcgUG9seXRlY2hu

aWMgVW5pdmVyc2l0eSwgSHVuZyBIb20sIEtvd2xvb24sIEhvbmcgS29uZy48L2F1dGgtYWRkcmVz

cz48dGl0bGVzPjx0aXRsZT5QYWxsYWRpdW0tQ2F0YWx5emVkIENyb3NzLUNvdXBsaW5nIFJlYWN0

aW9ucyBvZiBBcnlsIE1lc3lsYXRlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5DaGVtIFNvYyBS

ZXY8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVt

aWNhbCBTb2NpZXR5IFJldmlld3M8L2Z1bGwtdGl0bGU+PGFiYnItMT5DaGVtLiBTb2MuIFJldi48

L2FiYnItMT48YWJici0yPkNoZW0gU29jIFJldjwvYWJici0yPjxhYmJyLTM+Q1NSPC9hYmJyLTM+

PC9wZXJpb2RpY2FsPjxwYWdlcz40OTYzLTcyPC9wYWdlcz48dm9sdW1lPjQwPC92b2x1bWU+PG51

bWJlcj4xMDwvbnVtYmVyPjxlZGl0aW9uPjIwMTEvMDgvMjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFy

PjIwMTE8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4xNDYwLTQ3NDQgKEVsZWN0cm9uaWMpJiN4RDswMzA2LTAwMTIgKExpbmtpbmcpPC9p

c2JuPjxhY2Nlc3Npb24tbnVtPjIxODU4MzExPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yMTg1ODMxMTwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAz

OS9jMWNzMTUxMTRiPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5aZW5nPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVjTnVtPjU2PC9SZWNO

dW0+PHJlY29yZD48cmVjLW51bWJlcj41NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg

YXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGlt

ZXN0YW1wPSIxNTU1OTU4NzM5Ij41Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1l

PSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxh

dXRob3I+WmVuZywgSHVpeWluZzwvYXV0aG9yPjxhdXRob3I+UWl1LCBaaWhhbmc8L2F1dGhvcj48

YXV0aG9yPkRvbcOtbmd1ZXotSHVlcnRhLCBBbGVqYW5kcmE8L2F1dGhvcj48YXV0aG9yPkhlYXJu

ZSwgWm/DqzwvYXV0aG9yPjxhdXRob3I+Q2hlbiwgWmhlbmd3YW5nPC9hdXRob3I+PGF1dGhvcj5M

aSwgQ2hhby1KdW48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+QW4gQWR2ZW50dXJlIGluIFN1c3RhaW5hYmxlIENyb3NzLUNvdXBsaW5nIG9mIFBoZW5vbHMg

YW5kIERlcml2YXRpdmVzIHZpYSBDYXJib27igJNPeHlnZW4gQm9uZCBDbGVhdmFnZTwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5BQ1MgQ2F0YWx5c2lzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QUNTIENhdGFseXNpczwvZnVsbC10aXRsZT48YWJici0x

PkFDUyBDYXRhbC48L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjUxMC01MTk8L3BhZ2VzPjx2

b2x1bWU+Nzwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxzZWN0aW9uPjUxMDwvc2VjdGlvbj48

ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48L2RhdGVzPjxpc2JuPjIxNTUtNTQzNSYjeEQ7MjE1NS01

NDM1PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9h

Y3NjYXRhbC42YjAyOTY0PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+

PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TbzwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051

bT41NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjk8L3N0

eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41NzwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2

ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU1OTU4OTAwIj41Nzwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+U28sIEMuIE0uPC9hdXRob3I+PGF1dGhvcj5Ld29uZywgRi4g

WS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5TdGF0ZSBL

ZXkgTGFib3JhdG9yeSBmb3IgQ2hpcm9zY2llbmNlcyBhbmQgRGVwYXJ0bWVudCBvZiBBcHBsaWVk

IEJpb2xvZ3kgYW5kIENoZW1pY2FsIFRlY2hub2xvZ3ksIFRoZSBIb25nIEtvbmcgUG9seXRlY2hu

aWMgVW5pdmVyc2l0eSwgSHVuZyBIb20sIEtvd2xvb24sIEhvbmcgS29uZy48L2F1dGgtYWRkcmVz

cz48dGl0bGVzPjx0aXRsZT5QYWxsYWRpdW0tQ2F0YWx5emVkIENyb3NzLUNvdXBsaW5nIFJlYWN0

aW9ucyBvZiBBcnlsIE1lc3lsYXRlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5DaGVtIFNvYyBS

ZXY8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVt

aWNhbCBTb2NpZXR5IFJldmlld3M8L2Z1bGwtdGl0bGU+PGFiYnItMT5DaGVtLiBTb2MuIFJldi48

L2FiYnItMT48YWJici0yPkNoZW0gU29jIFJldjwvYWJici0yPjxhYmJyLTM+Q1NSPC9hYmJyLTM+

PC9wZXJpb2RpY2FsPjxwYWdlcz40OTYzLTcyPC9wYWdlcz48dm9sdW1lPjQwPC92b2x1bWU+PG51

bWJlcj4xMDwvbnVtYmVyPjxlZGl0aW9uPjIwMTEvMDgvMjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFy

PjIwMTE8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4xNDYwLTQ3NDQgKEVsZWN0cm9uaWMpJiN4RDswMzA2LTAwMTIgKExpbmtpbmcpPC9p

c2JuPjxhY2Nlc3Npb24tbnVtPjIxODU4MzExPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yMTg1ODMxMTwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAz

OS9jMWNzMTUxMTRiPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5aZW5nPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVjTnVtPjU2PC9SZWNO

dW0+PHJlY29yZD48cmVjLW51bWJlcj41NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg

YXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGlt

ZXN0YW1wPSIxNTU1OTU4NzM5Ij41Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1l

PSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxh

dXRob3I+WmVuZywgSHVpeWluZzwvYXV0aG9yPjxhdXRob3I+UWl1LCBaaWhhbmc8L2F1dGhvcj48

YXV0aG9yPkRvbcOtbmd1ZXotSHVlcnRhLCBBbGVqYW5kcmE8L2F1dGhvcj48YXV0aG9yPkhlYXJu

ZSwgWm/DqzwvYXV0aG9yPjxhdXRob3I+Q2hlbiwgWmhlbmd3YW5nPC9hdXRob3I+PGF1dGhvcj5M

aSwgQ2hhby1KdW48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+QW4gQWR2ZW50dXJlIGluIFN1c3RhaW5hYmxlIENyb3NzLUNvdXBsaW5nIG9mIFBoZW5vbHMg

YW5kIERlcml2YXRpdmVzIHZpYSBDYXJib27igJNPeHlnZW4gQm9uZCBDbGVhdmFnZTwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5BQ1MgQ2F0YWx5c2lzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QUNTIENhdGFseXNpczwvZnVsbC10aXRsZT48YWJici0x

PkFDUyBDYXRhbC48L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjUxMC01MTk8L3BhZ2VzPjx2

b2x1bWU+Nzwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxzZWN0aW9uPjUxMDwvc2VjdGlvbj48

ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48L2RhdGVzPjxpc2JuPjIxNTUtNTQzNSYjeEQ7MjE1NS01

NDM1PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9h

Y3NjYXRhbC42YjAyOTY0PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+

PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 9 However, the revived interest in aryl fluorosulfate chemistry offers an attractive alternative.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3RoPC9BdXRob3I+PFllYXI+MTk5MTwvWWVhcj48UmVj

TnVtPjM1PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+MTA8

L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4zNTwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0

eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk5NDg2Ij4zNTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um90aCwgR3JlZ29yeSBQLjwvYXV0aG9yPjxhdXRob3I+

RnVsbGVyLCBDYXJsIEUuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPlBhbGxhZGl1bSBDcm9zcy1Db3VwbGluZyBSZWFjdGlvbnMgb2YgQXJ5bCBGbHVvcm9z

dWxmb25hdGVzOiBBbiBBbHRlcm5hdGl2ZSB0byBUcmlmbGF0ZSBDaGVtaXN0cnk8L3RpdGxlPjxz

ZWNvbmRhcnktdGl0bGU+VGhlIEpvdXJuYWwgb2YgT3JnYW5pYyBDaGVtaXN0cnk8L3NlY29uZGFy

eS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UaGUgSm91cm5hbCBvZiBP

cmdhbmljIENoZW1pc3RyeTwvZnVsbC10aXRsZT48YWJici0xPkouIE9yZy4gQ2hlbS48L2FiYnIt

MT48L3BlcmlvZGljYWw+PHBhZ2VzPjM0OTMtMzQ5NjwvcGFnZXM+PHZvbHVtZT41Njwvdm9sdW1l

PjxudW1iZXI+MTE8L251bWJlcj48c2VjdGlvbj4zNDkzPC9zZWN0aW9uPjxkYXRlcz48eWVhcj4x

OTkxPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAyMi0zMjYzJiN4RDsxNTIwLTY5MDQ8L2lzYm4+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vcHVicy5hY3Mub3JnL2RvaS9hYnMvMTAuMTAy

MS9qbzAwMDExYTAxMDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+MTAuMTAyMS9qbzAwMDExYTAxMDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGlhbmc8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFy

PjxSZWNOdW0+NDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQzPC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4

dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTU2MjI5NDgiPjQzPC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MaWFuZywgUS48L2F1dGhvcj48YXV0aG9yPlhpbmcsIFAu

PC9hdXRob3I+PGF1dGhvcj5IdWFuZywgWi48L2F1dGhvcj48YXV0aG9yPkRvbmcsIEouPC9hdXRo

b3I+PGF1dGhvcj5TaGFycGxlc3MsIEsuIEIuPC9hdXRob3I+PGF1dGhvcj5MaSwgWC48L2F1dGhv

cj48YXV0aG9yPkppYW5nLCBCLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0

aC1hZGRyZXNzPmRhZ2dlclNoYW5naGFpIEFkdmFuY2VkIFJlc2VhcmNoIEluc3RpdHV0ZSwgQ2hp

bmVzZSBBY2FkZW15IG9mIFNjaWVuY2VzLCA5OSBIYWlrZSBSb2FkLCBTaGFuZ2hhaSAyMDEyMTAs

IENoaW5hLiYjeEQ7ZG91YmxlIGRhZ2dlckNBUyBLZXkgTGFib3JhdG9yeSBvZiBTeW50aGV0aWMg

Q2hlbWlzdHJ5IG9mIE5hdHVyYWwgU3Vic3RhbmNlcywgU2hhbmdoYWkgSW5zdGl0dXRlIG9mIE9y

Z2FuaWMgQ2hlbWlzdHJ5LCBDaGluZXNlIEFjYWRlbXkgb2YgU2NpZW5jZXMsIDM0NSBMaW5nbGlu

ZyBSb2FkLCBTaGFuZ2hhaSAyMDAwMzIsIENoaW5hLiYjeEQ7c2VjdGlvbiBzaWduRGVwYXJ0bWVu

dCBvZiBDaGVtaXN0cnksIFRoZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9y

dGggVG9ycmV5IFBpbmVzIFJvYWQsIExhIEpvbGxhLCBDYWxpZm9ybmlhIDkyMDM3LCBVbml0ZWQg

U3RhdGVzLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBhbGxhZGl1bS1DYXRhbHl6ZWQs

IExpZ2FuZC1GcmVlIFN1enVraSBSZWFjdGlvbiBpbiBXYXRlciBVc2luZyBBcnlsIEZsdW9yb3N1

bGZhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk9yZyBMZXR0PC9zZWNvbmRhcnktdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+T3JnYW5pYyBMZXR0ZXJzPC9mdWxsLXRp

dGxlPjxhYmJyLTE+T3JnLiBMZXR0LjwvYWJici0xPjxhYmJyLTI+T3JnIExldHQ8L2FiYnItMj48

YWJici0zPk9MPC9hYmJyLTM+PC9wZXJpb2RpY2FsPjxwYWdlcz4xOTQyLTU8L3BhZ2VzPjx2b2x1

bWU+MTc8L3ZvbHVtZT48bnVtYmVyPjg8L251bWJlcj48ZWRpdGlvbj4yMDE1LzA0LzEwPC9lZGl0

aW9uPjxkYXRlcz48eWVhcj4yMDE1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDE3PC9kYXRl

PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUyMy03MDUyIChFbGVjdHJvbmljKSYjeEQ7MTUy

My03MDUyIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4yNTg1NjQxNjwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9wdWJtZWQvMjU4NTY0MTY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjEwLjEwMjEvYWNzLm9yZ2xldHQuNWIwMDY1NDwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SGFubGV5PC9BdXRob3I+PFll

YXI+MjAxNjwvWWVhcj48UmVjTnVtPjMzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zMzwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJz

MnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk5MjcxIj4zMzwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SGFubGV5LCBQYXRyaWNrIFMuPC9h

dXRob3I+PGF1dGhvcj5DbGFyaywgVGhvbWFzIFAuPC9hdXRob3I+PGF1dGhvcj5LcmFzb3Zza2l5

LCBBcmthZHkgTC48L2F1dGhvcj48YXV0aG9yPk9iZXIsIE1hdHRoaWFzIFMuPC9hdXRob3I+PGF1

dGhvcj5P4oCZQnJpZW4sIEpvaG4gUC48L2F1dGhvcj48YXV0aG9yPlN0YXRvbiwgVGluYSBTLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5QYWxsYWRpdW0t

IGFuZCBOaWNrZWwtQ2F0YWx5emVkIEFtaW5hdGlvbiBvZiBBcnlsIEZsdW9yb3N1bGZvbmF0ZXM8

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QUNTIENhdGFseXNpczwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFDUyBDYXRhbHlzaXM8L2Z1bGwtdGl0bGU+

PGFiYnItMT5BQ1MgQ2F0YWwuPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNTE1LTM1MTk8

L3BhZ2VzPjx2b2x1bWU+Njwvdm9sdW1lPjxudW1iZXI+NjwvbnVtYmVyPjxzZWN0aW9uPjM1MTU8

L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PC9kYXRlcz48aXNibj4yMTU1LTU0MzUm

I3hEOzIxNTUtNTQzNTwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly9wdWJz

LmFjcy5vcmcvZG9pL3BkZnBsdXMvMTAuMTAyMS9hY3NjYXRhbC42YjAwODY1PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjc2NhdGFs

LjZiMDA4NjU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48

QXV0aG9yPkxpbTwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+PFJlY051bT4zMjwvUmVjTnVtPjxy

ZWNvcmQ+PHJlYy1udW1iZXI+MzI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFt

cD0iMTU1NDc5OTE3OSI+MzI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkxpbSwgVGFlaHl1bjwvYXV0aG9yPjxhdXRob3I+Qnl1biwgU2FuZ21vb248L2F1dGhvcj48YXV0

aG9yPktpbSwgQi4gTW9vbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5QZChQUGgzKTQtQ2F0YWx5emVkIEJ1Y2h3YWxkLUhhcnR3aWcgQW1pbmF0aW9uIG9m

IEFyeWwgRmx1b3Jvc3VsZm9uYXRlcyB3aXRoIEFyeWwgQW1pbmVzPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkFzaWFuIEpvdXJuYWwgb2YgT3JnYW5pYyBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Bc2lhbiBKb3VybmFsIG9mIE9yZ2Fu

aWMgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjxhYmJyLTE+QXNpYW4gSi4gT3JnLiBDaGVtLjwvYWJi

ci0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTIyMi0xMjI1PC9wYWdlcz48dm9sdW1lPjY8L3ZvbHVt

ZT48bnVtYmVyPjk8L251bWJlcj48c2VjdGlvbj4xMjIyPC9zZWN0aW9uPjxkYXRlcz48eWVhcj4y

MDE3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MjE5MzU4MDc8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJs

cz48dXJsPmh0dHBzOi8vb25saW5lbGlicmFyeS53aWxleS5jb20vZG9pL3BkZi8xMC4xMDAyL2Fq

b2MuMjAxNzAwMDY0PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT4xMC4xMDAyL2Fqb2MuMjAxNzAwMDY0PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48

L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYTwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+

PFJlY051bT43NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzU8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2

dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2MzM4NTYyNSI+NzU8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hLCBDLjwvYXV0aG9yPjxhdXRob3I+WmhhbywgQy4gUS48

L2F1dGhvcj48YXV0aG9yPlh1LCBYLiBULjwvYXV0aG9yPjxhdXRob3I+TGksIFouIE0uPC9hdXRo

b3I+PGF1dGhvcj5XYW5nLCBYLiBZLjwvYXV0aG9yPjxhdXRob3I+WmhhbmcsIEsuPC9hdXRob3I+

PGF1dGhvcj5NZWksIFQuIFMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+U3RhdGUgS2V5IExhYm9yYXRvcnkgb2YgT3JnYW5vbWV0YWxsaWMgQ2hlbWlzdHJ5

LCBDZW50ZXIgZm9yIEV4Y2VsbGVuY2UgaW4gTW9sZWN1bGFyIFN5bnRoZXNpcywgU2hhbmdoYWkg

SW5zdGl0dXRlIG9mIE9yZ2FuaWMgQ2hlbWlzdHJ5ICwgQ2hpbmVzZSBBY2FkZW15IG9mIFNjaWVu

Y2VzICwgMzQ1IExpbmdsaW5nIEx1ICwgU2hhbmdoYWkgMjAwMDMyICwgQ2hpbmEuJiN4RDtTY2hv

b2wgb2YgQ2hlbWljYWwgJmFtcDsgRW52aXJvbm1lbnRhbCBFbmdpbmVlcmluZyAsIFd1eWkgVW5p

dmVyc2l0eSAsIEppYW5nbWVuIDUyOTAyMCAsIENoaW5hLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+

PHRpdGxlPk5pY2tlbC1DYXRhbHl6ZWQgQ2FyYm94eWxhdGlvbiBvZiBBcnlsIGFuZCBIZXRlcm9h

cnlsIEZsdW9yb3N1bGZhdGVzIFVzaW5nIENhcmJvbiBEaW94aWRlPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPk9yZyBMZXR0PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+T3JnYW5pYyBMZXR0ZXJzPC9mdWxsLXRpdGxlPjxhYmJyLTE+T3JnLiBMZXR0Ljwv

YWJici0xPjxhYmJyLTI+T3JnIExldHQ8L2FiYnItMj48YWJici0zPk9MPC9hYmJyLTM+PC9wZXJp

b2RpY2FsPjxwYWdlcz4yNDY0LTI0Njc8L3BhZ2VzPjx2b2x1bWU+MjE8L3ZvbHVtZT48bnVtYmVy

Pjc8L251bWJlcj48ZWRpdGlvbj4yMDE5LzAzLzI3PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDE5

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDU8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48

aXNibj4xNTIzLTcwNTIgKEVsZWN0cm9uaWMpJiN4RDsxNTIzLTcwNTIgKExpbmtpbmcpPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPjMwOTEyNDQ3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8zMDkxMjQ0NzwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9h

Y3Mub3JnbGV0dC45YjAwODM2PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0Np

dGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3RoPC9BdXRob3I+PFllYXI+MTk5MTwvWWVhcj48UmVj

TnVtPjM1PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+MTA8

L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4zNTwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0

eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk5NDg2Ij4zNTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um90aCwgR3JlZ29yeSBQLjwvYXV0aG9yPjxhdXRob3I+

RnVsbGVyLCBDYXJsIEUuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPlBhbGxhZGl1bSBDcm9zcy1Db3VwbGluZyBSZWFjdGlvbnMgb2YgQXJ5bCBGbHVvcm9z

dWxmb25hdGVzOiBBbiBBbHRlcm5hdGl2ZSB0byBUcmlmbGF0ZSBDaGVtaXN0cnk8L3RpdGxlPjxz

ZWNvbmRhcnktdGl0bGU+VGhlIEpvdXJuYWwgb2YgT3JnYW5pYyBDaGVtaXN0cnk8L3NlY29uZGFy

eS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UaGUgSm91cm5hbCBvZiBP

cmdhbmljIENoZW1pc3RyeTwvZnVsbC10aXRsZT48YWJici0xPkouIE9yZy4gQ2hlbS48L2FiYnIt

MT48L3BlcmlvZGljYWw+PHBhZ2VzPjM0OTMtMzQ5NjwvcGFnZXM+PHZvbHVtZT41Njwvdm9sdW1l

PjxudW1iZXI+MTE8L251bWJlcj48c2VjdGlvbj4zNDkzPC9zZWN0aW9uPjxkYXRlcz48eWVhcj4x

OTkxPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAyMi0zMjYzJiN4RDsxNTIwLTY5MDQ8L2lzYm4+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vcHVicy5hY3Mub3JnL2RvaS9hYnMvMTAuMTAy

MS9qbzAwMDExYTAxMDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+MTAuMTAyMS9qbzAwMDExYTAxMDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGlhbmc8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFy

PjxSZWNOdW0+NDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQzPC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4

dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTU2MjI5NDgiPjQzPC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MaWFuZywgUS48L2F1dGhvcj48YXV0aG9yPlhpbmcsIFAu

PC9hdXRob3I+PGF1dGhvcj5IdWFuZywgWi48L2F1dGhvcj48YXV0aG9yPkRvbmcsIEouPC9hdXRo

b3I+PGF1dGhvcj5TaGFycGxlc3MsIEsuIEIuPC9hdXRob3I+PGF1dGhvcj5MaSwgWC48L2F1dGhv

cj48YXV0aG9yPkppYW5nLCBCLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0

aC1hZGRyZXNzPmRhZ2dlclNoYW5naGFpIEFkdmFuY2VkIFJlc2VhcmNoIEluc3RpdHV0ZSwgQ2hp

bmVzZSBBY2FkZW15IG9mIFNjaWVuY2VzLCA5OSBIYWlrZSBSb2FkLCBTaGFuZ2hhaSAyMDEyMTAs

IENoaW5hLiYjeEQ7ZG91YmxlIGRhZ2dlckNBUyBLZXkgTGFib3JhdG9yeSBvZiBTeW50aGV0aWMg

Q2hlbWlzdHJ5IG9mIE5hdHVyYWwgU3Vic3RhbmNlcywgU2hhbmdoYWkgSW5zdGl0dXRlIG9mIE9y

Z2FuaWMgQ2hlbWlzdHJ5LCBDaGluZXNlIEFjYWRlbXkgb2YgU2NpZW5jZXMsIDM0NSBMaW5nbGlu

ZyBSb2FkLCBTaGFuZ2hhaSAyMDAwMzIsIENoaW5hLiYjeEQ7c2VjdGlvbiBzaWduRGVwYXJ0bWVu

dCBvZiBDaGVtaXN0cnksIFRoZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9y

dGggVG9ycmV5IFBpbmVzIFJvYWQsIExhIEpvbGxhLCBDYWxpZm9ybmlhIDkyMDM3LCBVbml0ZWQg

U3RhdGVzLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBhbGxhZGl1bS1DYXRhbHl6ZWQs

IExpZ2FuZC1GcmVlIFN1enVraSBSZWFjdGlvbiBpbiBXYXRlciBVc2luZyBBcnlsIEZsdW9yb3N1

bGZhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk9yZyBMZXR0PC9zZWNvbmRhcnktdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+T3JnYW5pYyBMZXR0ZXJzPC9mdWxsLXRp

dGxlPjxhYmJyLTE+T3JnLiBMZXR0LjwvYWJici0xPjxhYmJyLTI+T3JnIExldHQ8L2FiYnItMj48

YWJici0zPk9MPC9hYmJyLTM+PC9wZXJpb2RpY2FsPjxwYWdlcz4xOTQyLTU8L3BhZ2VzPjx2b2x1

bWU+MTc8L3ZvbHVtZT48bnVtYmVyPjg8L251bWJlcj48ZWRpdGlvbj4yMDE1LzA0LzEwPC9lZGl0

aW9uPjxkYXRlcz48eWVhcj4yMDE1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDE3PC9kYXRl

PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUyMy03MDUyIChFbGVjdHJvbmljKSYjeEQ7MTUy

My03MDUyIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4yNTg1NjQxNjwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9wdWJtZWQvMjU4NTY0MTY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjEwLjEwMjEvYWNzLm9yZ2xldHQuNWIwMDY1NDwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SGFubGV5PC9BdXRob3I+PFll

YXI+MjAxNjwvWWVhcj48UmVjTnVtPjMzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zMzwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJz

MnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk5MjcxIj4zMzwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SGFubGV5LCBQYXRyaWNrIFMuPC9h

dXRob3I+PGF1dGhvcj5DbGFyaywgVGhvbWFzIFAuPC9hdXRob3I+PGF1dGhvcj5LcmFzb3Zza2l5

LCBBcmthZHkgTC48L2F1dGhvcj48YXV0aG9yPk9iZXIsIE1hdHRoaWFzIFMuPC9hdXRob3I+PGF1

dGhvcj5P4oCZQnJpZW4sIEpvaG4gUC48L2F1dGhvcj48YXV0aG9yPlN0YXRvbiwgVGluYSBTLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5QYWxsYWRpdW0t

IGFuZCBOaWNrZWwtQ2F0YWx5emVkIEFtaW5hdGlvbiBvZiBBcnlsIEZsdW9yb3N1bGZvbmF0ZXM8

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QUNTIENhdGFseXNpczwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFDUyBDYXRhbHlzaXM8L2Z1bGwtdGl0bGU+

PGFiYnItMT5BQ1MgQ2F0YWwuPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNTE1LTM1MTk8

L3BhZ2VzPjx2b2x1bWU+Njwvdm9sdW1lPjxudW1iZXI+NjwvbnVtYmVyPjxzZWN0aW9uPjM1MTU8

L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PC9kYXRlcz48aXNibj4yMTU1LTU0MzUm

I3hEOzIxNTUtNTQzNTwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly9wdWJz

LmFjcy5vcmcvZG9pL3BkZnBsdXMvMTAuMTAyMS9hY3NjYXRhbC42YjAwODY1PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjc2NhdGFs

LjZiMDA4NjU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48

QXV0aG9yPkxpbTwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+PFJlY051bT4zMjwvUmVjTnVtPjxy

ZWNvcmQ+PHJlYy1udW1iZXI+MzI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFt

cD0iMTU1NDc5OTE3OSI+MzI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkxpbSwgVGFlaHl1bjwvYXV0aG9yPjxhdXRob3I+Qnl1biwgU2FuZ21vb248L2F1dGhvcj48YXV0

aG9yPktpbSwgQi4gTW9vbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5QZChQUGgzKTQtQ2F0YWx5emVkIEJ1Y2h3YWxkLUhhcnR3aWcgQW1pbmF0aW9uIG9m

IEFyeWwgRmx1b3Jvc3VsZm9uYXRlcyB3aXRoIEFyeWwgQW1pbmVzPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkFzaWFuIEpvdXJuYWwgb2YgT3JnYW5pYyBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Bc2lhbiBKb3VybmFsIG9mIE9yZ2Fu

aWMgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjxhYmJyLTE+QXNpYW4gSi4gT3JnLiBDaGVtLjwvYWJi

ci0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTIyMi0xMjI1PC9wYWdlcz48dm9sdW1lPjY8L3ZvbHVt

ZT48bnVtYmVyPjk8L251bWJlcj48c2VjdGlvbj4xMjIyPC9zZWN0aW9uPjxkYXRlcz48eWVhcj4y

MDE3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MjE5MzU4MDc8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJs

cz48dXJsPmh0dHBzOi8vb25saW5lbGlicmFyeS53aWxleS5jb20vZG9pL3BkZi8xMC4xMDAyL2Fq

b2MuMjAxNzAwMDY0PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT4xMC4xMDAyL2Fqb2MuMjAxNzAwMDY0PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48

L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYTwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+

PFJlY051bT43NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzU8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2

dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2MzM4NTYyNSI+NzU8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPk1hLCBDLjwvYXV0aG9yPjxhdXRob3I+WmhhbywgQy4gUS48

L2F1dGhvcj48YXV0aG9yPlh1LCBYLiBULjwvYXV0aG9yPjxhdXRob3I+TGksIFouIE0uPC9hdXRo

b3I+PGF1dGhvcj5XYW5nLCBYLiBZLjwvYXV0aG9yPjxhdXRob3I+WmhhbmcsIEsuPC9hdXRob3I+

PGF1dGhvcj5NZWksIFQuIFMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+U3RhdGUgS2V5IExhYm9yYXRvcnkgb2YgT3JnYW5vbWV0YWxsaWMgQ2hlbWlzdHJ5

LCBDZW50ZXIgZm9yIEV4Y2VsbGVuY2UgaW4gTW9sZWN1bGFyIFN5bnRoZXNpcywgU2hhbmdoYWkg

SW5zdGl0dXRlIG9mIE9yZ2FuaWMgQ2hlbWlzdHJ5ICwgQ2hpbmVzZSBBY2FkZW15IG9mIFNjaWVu

Y2VzICwgMzQ1IExpbmdsaW5nIEx1ICwgU2hhbmdoYWkgMjAwMDMyICwgQ2hpbmEuJiN4RDtTY2hv

b2wgb2YgQ2hlbWljYWwgJmFtcDsgRW52aXJvbm1lbnRhbCBFbmdpbmVlcmluZyAsIFd1eWkgVW5p

dmVyc2l0eSAsIEppYW5nbWVuIDUyOTAyMCAsIENoaW5hLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+

PHRpdGxlPk5pY2tlbC1DYXRhbHl6ZWQgQ2FyYm94eWxhdGlvbiBvZiBBcnlsIGFuZCBIZXRlcm9h

cnlsIEZsdW9yb3N1bGZhdGVzIFVzaW5nIENhcmJvbiBEaW94aWRlPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPk9yZyBMZXR0PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+T3JnYW5pYyBMZXR0ZXJzPC9mdWxsLXRpdGxlPjxhYmJyLTE+T3JnLiBMZXR0Ljwv

YWJici0xPjxhYmJyLTI+T3JnIExldHQ8L2FiYnItMj48YWJici0zPk9MPC9hYmJyLTM+PC9wZXJp

b2RpY2FsPjxwYWdlcz4yNDY0LTI0Njc8L3BhZ2VzPjx2b2x1bWU+MjE8L3ZvbHVtZT48bnVtYmVy

Pjc8L251bWJlcj48ZWRpdGlvbj4yMDE5LzAzLzI3PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDE5

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDU8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48

aXNibj4xNTIzLTcwNTIgKEVsZWN0cm9uaWMpJiN4RDsxNTIzLTcwNTIgKExpbmtpbmcpPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPjMwOTEyNDQ3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8zMDkxMjQ0NzwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9h

Y3Mub3JnbGV0dC45YjAwODM2PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0Np

dGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 10 Fluorosulfates are efficiently prepared by subjecting phenols to SO2F2 gas – a stable commodity chemical available in pressurized cylinders for large scale applications,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Eb25nPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjMxPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+MTE8

L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4zMTwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0

eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk5MDQ1Ij4zMTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RG9uZywgSi48L2F1dGhvcj48YXV0aG9yPktyYXNub3Zh

LCBMLjwvYXV0aG9yPjxhdXRob3I+RmlubiwgTS4gRy48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVz

cywgSy4gQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5E

ZXBhcnRtZW50IG9mIENoZW1pc3RyeSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCBM

YSBKb2xsYSwgQ2FsaWZvcm5pYSA5MjAzNyAoVVNBKS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0

aXRsZT5TdWxmdXIoVkkpIEZsdW9yaWRlIEV4Y2hhbmdlIChTdUZFeCk6IEFub3RoZXIgR29vZCBS

ZWFjdGlvbiBmb3IgQ2xpY2sgQ2hlbWlzdHJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFuZ2V3

IENoZW0gSW50IEVkIEVuZ2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5BbmdldyBDaGVtIEludCBFZCBFbmdsPC9mdWxsLXRpdGxlPjxhYmJyLTE+QW5n

ZXcuIENoZW0uIEludC4gRWQuPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz45NDMwLTQ4PC9w

YWdlcz48dm9sdW1lPjUzPC92b2x1bWU+PG51bWJlcj4zNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTQv

MDgvMTM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFmZmluaXR5IExhYmVsczwva2V5d29y

ZD48a2V5d29yZD5DbGljayBDaGVtaXN0cnkvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+RHJ1

ZyBEaXNjb3Zlcnk8L2tleXdvcmQ+PGtleXdvcmQ+Rmx1b3JpZGVzLypjaGVtaXN0cnk8L2tleXdv

cmQ+PGtleXdvcmQ+T3hpZGF0aW9uLVJlZHVjdGlvbjwva2V5d29yZD48a2V5d29yZD5TdWxmdXIg

Q29tcG91bmRzLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+U3VGRXg8L2tleXdvcmQ+PGtl

eXdvcmQ+YXJ5bCBmbHVvcm9zdWxmYXRlPC9rZXl3b3JkPjxrZXl3b3JkPmNsaWNrIGNoZW1pc3Ry

eTwva2V5d29yZD48a2V5d29yZD5kaWFyeWxzdWxmYXRlPC9rZXl3b3JkPjxrZXl3b3JkPnN1bGZ1

cnlsIGZsdW9yaWRlPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5TZXAgMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE1

MjEtMzc3MyAoRWxlY3Ryb25pYykmI3hEOzE0MzMtNzg1MSAoTGlua2luZyk8L2lzYm4+PGFjY2Vz

c2lvbi1udW0+MjUxMTI1MTk8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJs

Pmh0dHBzOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzI1MTEyNTE5PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2FuaWUuMjAx

MzA5Mzk5PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1

dGhvcj5EZXJyaWNrPC9BdXRob3I+PFllYXI+MTk5MDwvWWVhcj48UmVjTnVtPjQyPC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj40MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0

YW1wPSIxNTU1NjIyNTY3Ij40Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJK

b3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo

b3I+RGVycmljaywgTWljaGVsZSBSLjwvYXV0aG9yPjxhdXRob3I+QnVyZ2VzcywgSGVsZW4gRC48

L2F1dGhvcj48YXV0aG9yPkJha2VyLCBNYXJ5IFQuPC9hdXRob3I+PGF1dGhvcj5CaW5uaWUsIE5h

bmN5IEUuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlN1

bGZ1cnlsIEZsdW9yaWRlIChWaWthbmUpOiBBIFJldmlldyBvZiBJdHMgVXNlIGFzIGEgRnVtaWdh

bnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gSW5zdGl0

dXRlIGZvciBDb25zZXJ2YXRpb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh

bD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBJbnN0aXR1dGUgZm9yIENvbnNl

cnZhdGlvbjwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBJbnN0LiBDb25zZXJ2LjwvYWJici0x

PjwvcGVyaW9kaWNhbD48cGFnZXM+NzctOTA8L3BhZ2VzPjx2b2x1bWU+Mjk8L3ZvbHVtZT48bnVt

YmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5MDwveWVhcj48L2RhdGVzPjxpc2JuPjAxOTcx

MzYwPC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMjMwNy8z

MTc5NTkxPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl

PgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Eb25nPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjMxPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+MTE8

L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4zMTwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0

eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU0Nzk5MDQ1Ij4zMTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RG9uZywgSi48L2F1dGhvcj48YXV0aG9yPktyYXNub3Zh

LCBMLjwvYXV0aG9yPjxhdXRob3I+RmlubiwgTS4gRy48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVz

cywgSy4gQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5E

ZXBhcnRtZW50IG9mIENoZW1pc3RyeSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCBM

YSBKb2xsYSwgQ2FsaWZvcm5pYSA5MjAzNyAoVVNBKS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0

aXRsZT5TdWxmdXIoVkkpIEZsdW9yaWRlIEV4Y2hhbmdlIChTdUZFeCk6IEFub3RoZXIgR29vZCBS

ZWFjdGlvbiBmb3IgQ2xpY2sgQ2hlbWlzdHJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFuZ2V3

IENoZW0gSW50IEVkIEVuZ2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5BbmdldyBDaGVtIEludCBFZCBFbmdsPC9mdWxsLXRpdGxlPjxhYmJyLTE+QW5n

ZXcuIENoZW0uIEludC4gRWQuPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxwYWdlcz45NDMwLTQ4PC9w

YWdlcz48dm9sdW1lPjUzPC92b2x1bWU+PG51bWJlcj4zNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTQv

MDgvMTM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFmZmluaXR5IExhYmVsczwva2V5d29y

ZD48a2V5d29yZD5DbGljayBDaGVtaXN0cnkvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+RHJ1

ZyBEaXNjb3Zlcnk8L2tleXdvcmQ+PGtleXdvcmQ+Rmx1b3JpZGVzLypjaGVtaXN0cnk8L2tleXdv

cmQ+PGtleXdvcmQ+T3hpZGF0aW9uLVJlZHVjdGlvbjwva2V5d29yZD48a2V5d29yZD5TdWxmdXIg

Q29tcG91bmRzLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+U3VGRXg8L2tleXdvcmQ+PGtl

eXdvcmQ+YXJ5bCBmbHVvcm9zdWxmYXRlPC9rZXl3b3JkPjxrZXl3b3JkPmNsaWNrIGNoZW1pc3Ry

eTwva2V5d29yZD48a2V5d29yZD5kaWFyeWxzdWxmYXRlPC9rZXl3b3JkPjxrZXl3b3JkPnN1bGZ1

cnlsIGZsdW9yaWRlPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5TZXAgMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE1

MjEtMzc3MyAoRWxlY3Ryb25pYykmI3hEOzE0MzMtNzg1MSAoTGlua2luZyk8L2lzYm4+PGFjY2Vz

c2lvbi1udW0+MjUxMTI1MTk8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJs

Pmh0dHBzOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzI1MTEyNTE5PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2FuaWUuMjAx

MzA5Mzk5PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1

dGhvcj5EZXJyaWNrPC9BdXRob3I+PFllYXI+MTk5MDwvWWVhcj48UmVjTnVtPjQyPC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj40MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0

YW1wPSIxNTU1NjIyNTY3Ij40Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJK

b3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo

b3I+RGVycmljaywgTWljaGVsZSBSLjwvYXV0aG9yPjxhdXRob3I+QnVyZ2VzcywgSGVsZW4gRC48

L2F1dGhvcj48YXV0aG9yPkJha2VyLCBNYXJ5IFQuPC9hdXRob3I+PGF1dGhvcj5CaW5uaWUsIE5h

bmN5IEUuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlN1

bGZ1cnlsIEZsdW9yaWRlIChWaWthbmUpOiBBIFJldmlldyBvZiBJdHMgVXNlIGFzIGEgRnVtaWdh

bnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gSW5zdGl0

dXRlIGZvciBDb25zZXJ2YXRpb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh

bD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBJbnN0aXR1dGUgZm9yIENvbnNl

cnZhdGlvbjwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBJbnN0LiBDb25zZXJ2LjwvYWJici0x

PjwvcGVyaW9kaWNhbD48cGFnZXM+NzctOTA8L3BhZ2VzPjx2b2x1bWU+Mjk8L3ZvbHVtZT48bnVt

YmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5MDwveWVhcj48L2RhdGVzPjxpc2JuPjAxOTcx

MzYwPC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMjMwNy8z

MTc5NTkxPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl

PgB=

ADDIN EN.CITE.DATA 11 or generated from solid reagents in a two-chamber reactor for small scale experiments. ADDIN EN.CITE <EndNote><Cite><Author>Veryser</Author><Year>2017</Year><RecNum>30</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554798980">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Veryser, C.</author><author>Demaerel, J.</author><author><style face="normal" font="default" size="100%">Bieli</style><style face="normal" font="default" charset="238" size="100%">ū</style><style face="normal" font="default" charset="186" size="100%">n</style><style face="normal" font="default" size="100%">as, V.</style></author><author>Gilles, P.</author><author>De Borggraeve, W. M.</author></authors></contributors><auth-address>Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium.</auth-address><titles><title>Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>5244-5247</pages><volume>19</volume><number>19</number><edition>2017/09/14</edition><dates><year>2017</year><pub-dates><date>Oct 6</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>28901771</accession-num><urls><related-urls><url> When weak bases are used for deprotonation, amino groups and aliphatic hydroxy groups are spared, and the resulting aryl fluorosulfate is endowed with reactivity of a triflate at the low overall cost of a mesylate. ADDIN EN.CITE <EndNote><Cite><Author>Hanley</Author><Year>2015</Year><RecNum>58</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>58</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555959798">58</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hanley, Patrick S.</author><author>Ober, Matthias S.</author><author>Krasovskiy, Arkady L.</author><author>Whiteker, Gregory T.</author><author>Kruper, William J.</author></authors></contributors><titles><title>Nickel- and Palladium-Catalyzed Coupling of Aryl Fluorosulfonates with Aryl Boronic Acids Enabled by Sulfuryl Fluoride</title><secondary-title>ACS Catalysis</secondary-title></titles><periodical><full-title>ACS Catalysis</full-title><abbr-1>ACS Catal.</abbr-1></periodical><pages>5041-5046</pages><volume>5</volume><number>9</number><section>5041</section><dates><year>2015</year></dates><isbn>2155-5435&#xD;2155-5435</isbn><urls></urls><electronic-resource-num>10.1021/acscatal.5b01021</electronic-resource-num></record></Cite></EndNote>13 Furthermore, low-molecular weight fluorosulfates are thermally stable and more volatile than corresponding phenols or triflates, facilitating purification by vacuum distillation. With these favorable chemical and physical properties in mind, establishing the compatibility of phenol fluorosulfates with a Catellani-type reaction becomes paramount for advancing their use in organic synthesis. To elucidate the general behavior of aryl fluorosulfates under Pd/NBE catalysis, a phosphine ligand-independent variant of the Catellani reaction was chosen ( REF _Ref22990946 \h Scheme 1). ADDIN EN.CITE <EndNote><Cite><Author>Catellani</Author><Year>2000</Year><RecNum>7</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554797278">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Catellani, Marta</author><author>Motti, Elena</author><author>Minari, Monica</author></authors></contributors><titles><title>Symmetrical and Unsymmetrical 2,6-dialkyl-1,1′-biaryls by Combined Catalysis of Aromatic Alkylation via Palladacycles and Suzuki-Type Coupling</title><secondary-title>Chemical Communications</secondary-title></titles><periodical><full-title>Chemical Communications</full-title><abbr-1>Chem. Commun.</abbr-1><abbr-2>Chem Commun</abbr-2><abbr-3>CCOM</abbr-3></periodical><pages>157-158</pages><number>2</number><section>157</section><dates><year>2000</year></dates><isbn>13597345&#xD;1364548X</isbn><urls></urls><electronic-resource-num>10.1039/a909099a</electronic-resource-num></record></Cite></EndNote>14 It was also an opportunity to expand on this particular transformation as it was explored superficially in terms of tolerable substrate and reactant combinations.Several 2-substituted fluorosulfates were initially tested and we were pleased by the excellent reactivity of 1a, even though the two other substrates were recovered nearly quantitatively ( REF _Ref22990946 \h Scheme 1). During separate experiments, 1b provided partial conversion in the presence of X-phos, but a complex mixture was produced. S-phos, PPh3, xantphos and dcype were even less effective. ADDIN EN.CITE <EndNote><Cite><Author>Dong</Author><Year>2018</Year><RecNum>4</RecNum><DisplayText><style face="superscript">3a</style></DisplayText><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554709705">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dong, Z.</author><author>Lu, G.</author><author>Wang, J.</author><author>Liu, P.</author><author>Dong, G.</author></authors></contributors><auth-address>Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States.&#xD;Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States.</auth-address><titles><title>Modular ipso/ortho Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis</title><secondary-title>J Am Chem Soc</secondary-title></titles><periodical><full-title>Journal of the American Chemical Society</full-title><abbr-1>J. Am. Chem. Soc.</abbr-1><abbr-2>J Am Chem Soc</abbr-2><abbr-3>JA</abbr-3></periodical><pages>8551-8562</pages><volume>140</volume><number>27</number><edition>2018/06/16</edition><dates><year>2018</year><pub-dates><date>Jul 11</date></pub-dates></dates><isbn>1520-5126 (Electronic)&#xD;0002-7863 (Linking)</isbn><accession-num>29906109</accession-num><urls><related-urls><url> In addition, substrate 1c was not transformed into the desired material even in the presence of X-phos. With preliminary results at hand, it was decided to focus on activated fluorosulfates. An extensive optimization was performed on 1a as the model substrate (SI Table S1) leading to the standard conditions disclosed in the scheme of REF _Ref5872813 \h Table 1.Scheme SEQ Scheme \* ARABIC 1. Initial substrate scoutingaReagents and conditions: BuBr (1.50 equiv), PhB(OH)2 (1.20 equiv), Pd(OAc)2 (5 mol%), NBE (100 mol%), K2CO3 (6 equiv), DMF ([1a] = 0.20M), 80 °C, 5 hours. Isolated yield.Firstly, it was established that 70 °C offered the best balance between the reaction rate, selectivity and robustness. ADDIN EN.CITE <EndNote><Cite><RecNum>0</RecNum><Note>Higher temperatures promoted premature precipitation of Pd-black, causing incomplete conversion.</Note><DisplayText><style face="superscript">15</style></DisplayText></Cite></EndNote>15 Increasing the concentration of the fluorosulfate compared to the initial conditions (described under entry 1 of REF _Ref5872813 \h Table 1) further enhanced both the rate and the selectivity, and allowed to reduce the number of equivalents of other reagents, therefore reducing the overall environmental impact and cost of the process. Variations of auxiliary reagents, additives and solvents, however, were poorly tolerated. For example, PPh3 ligand coming from Pd(PPh3)4 suppressed the C-H activation (entry 2), likely by outcompeting NBE before its migratory insertion. ADDIN EN.CITE <EndNote><Cite><RecNum>0</RecNum><Note>Methyl [1,1&apos;‐biphenyl]‐2‐carboxylate was identified by GC-MS as the sole reaction product.</Note><DisplayText><style face="superscript">16</style></DisplayText></Cite></EndNote>16 X-phos allowed the desired reaction, but failed to provide improvements (entry 3), while norbornene N2 led to complex mixtures (entry 4). ADDIN EN.CITE <EndNote><Cite><RecNum>0</RecNum><Note>Large quantities of chromatographically inseparable 5-norbornene-2-carboxylic acid butyl ester were observed in the crude mixture.</Note><DisplayText><style face="superscript">17</style></DisplayText></Cite></EndNote>17 Greener solvents ADDIN EN.CITE <EndNote><Cite><Author>Rasina</Author><Year>2016</Year><RecNum>20</RecNum><DisplayText><style face="superscript">18</style></DisplayText><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554798482">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rasina, Dace</author><author>Kahler-Quesada, Arianna</author><author>Ziarelli, Simone</author><author>Warratz, Svenja</author><author>Cao, Hui</author><author>Santoro, Stefano</author><author>Ackermann, Lutz</author><author>Vaccaro, Luigi</author></authors></contributors><titles><title>Heterogeneous Palladium-Catalysed Catellani Reaction in Biomass-Derived γ-Valerolactone</title><secondary-title>Green Chemistry</secondary-title></titles><periodical><full-title>Green Chemistry</full-title><abbr-1>Green Chem.</abbr-1><abbr-2>Green Chem</abbr-2><abbr-3>GC</abbr-3></periodical><pages>5025-5030</pages><volume>18</volume><number>18</number><section>5025</section><dates><year>2016</year></dates><isbn>1463-9262&#xD;1463-9270</isbn><urls></urls><electronic-resource-num>10.1039/c6gc01393g</electronic-resource-num></record></Cite></EndNote>18 and soluble bases suppressed the reactivity (entries 5-6). The incompatibility of the latter precluded the implementation of this protocol as a telescoped flow fluorosulfation-Catellani process.Table SEQ Table \* ARABIC 1. Optimization of reaction conditions.entrymain deviations from standard conditionsyielda1[1a] = 0.20M, 100 mol% NBE, 1.5 equiv 2a74%2Pd(PPh3)4 (5 mol%) as the catalyst0%3X-Phos as an additive (6 mol%)75%4N2 instead of N149%5MeCN or ?-valerolactone instead of DMF<5%6KOAc, TEA or nBu4NOAc as base<26%aIsolated yield.With the optimal conditions at hand, it was prudent to establish the difference between common leaving groups, especially between halides and sulf(on)ates ( REF _Ref5881488 \h Table 2). The reactivity of fluorosulfate 1a and triflate 5a was essentially indistinguishable, ADDIN EN.CITE <EndNote><Cite><Author>Hanley</Author><Year>2015</Year><RecNum>58</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>58</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555959798">58</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hanley, Patrick S.</author><author>Ober, Matthias S.</author><author>Krasovskiy, Arkady L.</author><author>Whiteker, Gregory T.</author><author>Kruper, William J.</author></authors></contributors><titles><title>Nickel- and Palladium-Catalyzed Coupling of Aryl Fluorosulfonates with Aryl Boronic Acids Enabled by Sulfuryl Fluoride</title><secondary-title>ACS Catalysis</secondary-title></titles><periodical><full-title>ACS Catalysis</full-title><abbr-1>ACS Catal.</abbr-1></periodical><pages>5041-5046</pages><volume>5</volume><number>9</number><section>5041</section><dates><year>2015</year></dates><isbn>2155-5435&#xD;2155-5435</isbn><urls></urls><electronic-resource-num>10.1021/acscatal.5b01021</electronic-resource-num></record></Cite></EndNote>13 while most of the mesylate 6a was recovered unchanged. Good reactivity of the bromide 7a was also observed, confirming that its transformation can also be accomplished without phosphine ligands. A broad range of activated bromides is expected to exhibit a similar reactivity. Lastly, the iodide 8a largely favored the alternative reaction path in agreement with literature,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Nb3R0aTwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+PFJl

Y051bT4xMDwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE5

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1NDc5NzczNCI+MTA8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1vdHRpLCBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv

bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5BIE5ldyBUeXBlIG9mIFBhbGxhZGl1bS1DYXRhbHlz

ZWQgQXJvbWF0aWMgQ3Jvc3MtQ291cGxpbmcgQ29tYmluZWQgV2l0aCBhIFN1enVraSBSZWFjdGlv

bjogU3ludGhlc2lzIG9mIFNlbGVjdGl2ZWx5IDIsM+KAsi1zdWJzdGl0dXRlZCAxLDHigLI7MuKA

siwx4oCzLXRlcnBoZW55bCBEZXJpdmF0aXZlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3Vy

bmFsIG9mIE1vbGVjdWxhciBDYXRhbHlzaXMgQTogQ2hlbWljYWw8L3NlY29uZGFyeS10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIE1vbGVjdWxhciBDYXRh

bHlzaXMgQTogQ2hlbWljYWw8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBNb2wuIENhdGFsLiBBOiBD

aGVtLjwvYWJici0xPjxhYmJyLTI+SiBNb2wgQ2F0YWwgQTogQ2hlbTwvYWJici0yPjxhYmJyLTM+

Sk1PPC9hYmJyLTM+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTUtMTI0PC9wYWdlcz48dm9sdW1lPjIw

NC0yMDU8L3ZvbHVtZT48c2VjdGlvbj4xMTU8L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjIwMDM8L3ll

YXI+PC9kYXRlcz48aXNibj4xMzgxMTE2OTwvaXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjEwLjEwMTYvczEzODEtMTE2OSgwMykwMDI5MC01PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DYXNuYXRpPC9BdXRob3I+

PFllYXI+MjAxODwvWWVhcj48UmVjTnVtPjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjY8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3By

czJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1NDcwOTg3NSI+Njwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2FzbmF0aSwgQS48L2F1dGhvcj48

YXV0aG9yPkdlbW9ldHMsIEguIFAuIEwuPC9hdXRob3I+PGF1dGhvcj5Nb3R0aSwgRS48L2F1dGhv

cj48YXV0aG9yPkRlbGxhIENhLCBOLjwvYXV0aG9yPjxhdXRob3I+Tm9lbCwgVC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIENoZW1p

Y2FsIEVuZ2luZWVyaW5nIGFuZCBDaGVtaXN0cnksIE1pY3JvIEZsb3cgQ2hlbWlzdHJ5ICZhbXA7

IFByb2Nlc3MgVGVjaG5vbG9neSwgRWluZGhvdmVuIFVuaXZlcnNpdHkgb2YgVGVjaG5vbG9neSwg

RGVuIERvbGVjaCAyLCA1NjEyLCBBWiwgRWluZGhvdmVuLCBUaGUgTmV0aGVybGFuZHMuJiN4RDtE

ZXBhcnRtZW50IG9mIENoZW1pc3RyeSwgTGlmZSBTY2llbmNlcyBhbmQgRW52aXJvbm1lbnRhbCBT

dXN0YWluYWJpbGl0eSAoU0NWU0EpLCBVbml2ZXJzaXR5IG9mIFBhcm1hLCBQYXJjbyBBcmVhIGRl

bGxlIFNjaWVuemUgMTcvQSwgNDMxMjQsIFBhcm1hLCBJdGFseS48L2F1dGgtYWRkcmVzcz48dGl0

bGVzPjx0aXRsZT5Ib21vZ2VuZW91cyBhbmQgR2FzLUxpcXVpZCBDYXRlbGxhbmktVHlwZSBSZWFj

dGlvbiBFbmFibGVkIGJ5IENvbnRpbnVvdXMtRmxvdyBDaGVtaXN0cnk8L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+Q2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTQw

NzktMTQwODM8L3BhZ2VzPjx2b2x1bWU+MjQ8L3ZvbHVtZT48bnVtYmVyPjUzPC9udW1iZXI+PGVk

aXRpb24+MjAxOC8wOC8wNzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2F0ZWxsYW5pIHJl

YWN0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkMtSCBmdW5jdGlvbmFsaXphdGlvbjwva2V5d29yZD48

a2V5d29yZD5mbG93IGNoZW1pc3RyeTwva2V5d29yZD48a2V5d29yZD5nYXMtbGlxdWlkPC9rZXl3

b3JkPjxrZXl3b3JkPmhvbW9nZW5lb3VzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFy

PjIwMTg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5TZXAgMjA8L2RhdGU+PC9wdWItZGF0ZXM+PC9k

YXRlcz48aXNibj4xNTIxLTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcp

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPjMwMDc5OTcwPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8zMDA3OTk3

MDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM2MTc1MTQyPC9jdXN0b20y

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxODAzOTA5PC9lbGVjdHJv

bmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Nb3R0aTwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+PFJl

Y051bT4xMDwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE5

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1NDc5NzczNCI+MTA8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1vdHRpLCBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv

bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5BIE5ldyBUeXBlIG9mIFBhbGxhZGl1bS1DYXRhbHlz

ZWQgQXJvbWF0aWMgQ3Jvc3MtQ291cGxpbmcgQ29tYmluZWQgV2l0aCBhIFN1enVraSBSZWFjdGlv

bjogU3ludGhlc2lzIG9mIFNlbGVjdGl2ZWx5IDIsM+KAsi1zdWJzdGl0dXRlZCAxLDHigLI7MuKA

siwx4oCzLXRlcnBoZW55bCBEZXJpdmF0aXZlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3Vy

bmFsIG9mIE1vbGVjdWxhciBDYXRhbHlzaXMgQTogQ2hlbWljYWw8L3NlY29uZGFyeS10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIE1vbGVjdWxhciBDYXRh

bHlzaXMgQTogQ2hlbWljYWw8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBNb2wuIENhdGFsLiBBOiBD

aGVtLjwvYWJici0xPjxhYmJyLTI+SiBNb2wgQ2F0YWwgQTogQ2hlbTwvYWJici0yPjxhYmJyLTM+

Sk1PPC9hYmJyLTM+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTUtMTI0PC9wYWdlcz48dm9sdW1lPjIw

NC0yMDU8L3ZvbHVtZT48c2VjdGlvbj4xMTU8L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjIwMDM8L3ll

YXI+PC9kYXRlcz48aXNibj4xMzgxMTE2OTwvaXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjEwLjEwMTYvczEzODEtMTE2OSgwMykwMDI5MC01PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DYXNuYXRpPC9BdXRob3I+

PFllYXI+MjAxODwvWWVhcj48UmVjTnVtPjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjY8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3By

czJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1NDcwOTg3NSI+Njwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2FzbmF0aSwgQS48L2F1dGhvcj48

YXV0aG9yPkdlbW9ldHMsIEguIFAuIEwuPC9hdXRob3I+PGF1dGhvcj5Nb3R0aSwgRS48L2F1dGhv

cj48YXV0aG9yPkRlbGxhIENhLCBOLjwvYXV0aG9yPjxhdXRob3I+Tm9lbCwgVC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIENoZW1p

Y2FsIEVuZ2luZWVyaW5nIGFuZCBDaGVtaXN0cnksIE1pY3JvIEZsb3cgQ2hlbWlzdHJ5ICZhbXA7

IFByb2Nlc3MgVGVjaG5vbG9neSwgRWluZGhvdmVuIFVuaXZlcnNpdHkgb2YgVGVjaG5vbG9neSwg

RGVuIERvbGVjaCAyLCA1NjEyLCBBWiwgRWluZGhvdmVuLCBUaGUgTmV0aGVybGFuZHMuJiN4RDtE

ZXBhcnRtZW50IG9mIENoZW1pc3RyeSwgTGlmZSBTY2llbmNlcyBhbmQgRW52aXJvbm1lbnRhbCBT

dXN0YWluYWJpbGl0eSAoU0NWU0EpLCBVbml2ZXJzaXR5IG9mIFBhcm1hLCBQYXJjbyBBcmVhIGRl

bGxlIFNjaWVuemUgMTcvQSwgNDMxMjQsIFBhcm1hLCBJdGFseS48L2F1dGgtYWRkcmVzcz48dGl0

bGVzPjx0aXRsZT5Ib21vZ2VuZW91cyBhbmQgR2FzLUxpcXVpZCBDYXRlbGxhbmktVHlwZSBSZWFj

dGlvbiBFbmFibGVkIGJ5IENvbnRpbnVvdXMtRmxvdyBDaGVtaXN0cnk8L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+Q2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTQw

NzktMTQwODM8L3BhZ2VzPjx2b2x1bWU+MjQ8L3ZvbHVtZT48bnVtYmVyPjUzPC9udW1iZXI+PGVk

aXRpb24+MjAxOC8wOC8wNzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2F0ZWxsYW5pIHJl

YWN0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkMtSCBmdW5jdGlvbmFsaXphdGlvbjwva2V5d29yZD48

a2V5d29yZD5mbG93IGNoZW1pc3RyeTwva2V5d29yZD48a2V5d29yZD5nYXMtbGlxdWlkPC9rZXl3

b3JkPjxrZXl3b3JkPmhvbW9nZW5lb3VzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFy

PjIwMTg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5TZXAgMjA8L2RhdGU+PC9wdWItZGF0ZXM+PC9k

YXRlcz48aXNibj4xNTIxLTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcp

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPjMwMDc5OTcwPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD5odHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8zMDA3OTk3

MDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM2MTc1MTQyPC9jdXN0b20y

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxODAzOTA5PC9lbGVjdHJv

bmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 19 demonstrating complementarity to fluorosulfates in the transformation discussed herein. This side-reaction also occurred with the bromide 7a, but to a much lesser extent.Table SEQ Table \* ARABIC 2. Comparison of leaving groups.substrateLG2aaa/9aaa2aaab9aab1a-OSO2F100:082%n/a5a-OSO2CF3100:081%n/a6a-OSO2Men/a0%0%7a-Br94:662%—8a-I26:749%45%aGC-MS data. bIsolated yield.To further the substrate scope, several readily available activated phenols were transformed into corresponding fluorosulfates that were then applied in the Catellani reaction ( REF _Ref5955407 \h Table 3). We were pleased to observe, that most of the chosen substrates provided the expected products (entries 2-11) and the outcome was unaffected by a 10-fold scale-up (entry 1). Under these conditions, the symmetrical bis(fluorosulfate) 1p reacted once, while the second fluorosulfate moiety served as an activating group and remained intact (entry 16). Naturally, in absence of preinstalled ortho substituents (R1 = H), C-H activation of both ortho positions occurred (entry 17). Presence of aldehyde or nitrile moieties at the 2-position (entries 14, 15) led to complex mixtures devoid of the target material, but aldehyde functionality was well tolerated at the 4-position (entry 13). Unfortunately, compounds bearing weakly electron-withdrawing substituents were insufficiently reactive under the standard conditions. In cases of poor reactivity ( REF _Ref22990946 \h Scheme 1, 1b-c and REF _Ref5955407 \h Table 3, entry 12) rapid and irreversible precipitation of Pd-black occurred within minutes and most of the substrate could be recovered even after prolonged reaction time. These observations suggest the ease of oxidative insertion of Pd0 into the C-O bond to be the primary outcome-determining factor.Table SEQ Table \* ARABIC 3. Carbocyclic substrate scope.entry1R1R24timeyielda1b1aCO2Me–4aaa4 h82%21d CO2Me4-Cl4daa3 h77%31eNO2–4eaa2 h73%41fNO24-OMe4faa3 h78%51gCF3–4gaa4 h70%61hCF35-F4haa4 h30%7c1iF–4iaa5 h52%81jMe4-NO24jaa5 h34%9c1jMe4-NO24jaa5 h69%101kMe4-COMe4kaa5 h63%11c,e1kMe4-COMe4kaa5 h74%121lMe4-Cl4laa4 h[<5%]g131mOMe4-CHO4maa3 h74%141nCHO–4naa4 h[0%]g151oCN–4oaa4 h[0%]g16c,f1pMe3-Me,4-OSO2F4pab6 h55%17d,h1qH4-CO2Et10qaa3 h74%aIsolated yield. b4.0 mmol scale. c1.4 equiv nBuBr. d2.25 equiv nBuBr. e100 mol% NBE. fBoronic acid 3b used. gGC-MS yield. h2,6-dibutylated product is obtained.Substrates 1i-k and 1p were insufficiently active to be fully consumed in 5 hours under the standard conditions and/or produced significant amounts of corresponding non-alkylated Suzuki-Miyaura coupling products. Both issues were solved either by increasing the nBuBr loading alone (entries 7, 9 and 16) or by concurrently increasing the amount of norbornene (entry 11). It is worth noting that greater NBE loading reliably suppresses the Suzuki-Miyaura side-reaction but inhibits the migratory de-insertion, leading to increased amounts of NBE-inclusion products (commonly described in literature) that complicate chromatographic purification. ADDIN EN.CITE <EndNote><Cite><Author>Catellani</Author><Year>2008</Year><RecNum>11</RecNum><DisplayText><style face="superscript">20</style></DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554797773">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Catellani, M.</author><author>Motti, E.</author><author>Della Ca, N.</author></authors></contributors><auth-address>Dipartimento di Chimica Organica e Industriale dell&apos;Universita and CIRCC, Viale G. P. Usberti 17/A, Parma, Italy.</auth-address><titles><title>Catalytic Sequential Reactions Involving Palladacycle-Directed Aryl Coupling Steps</title><secondary-title>Acc Chem Res</secondary-title></titles><periodical><full-title>Accounts of Chemical Research</full-title><abbr-1>Acc. Chem. Res.</abbr-1><abbr-2>Acc Chem Res</abbr-2><abbr-3>ACR</abbr-3></periodical><pages>1512-22</pages><volume>41</volume><number>11</number><edition>2008/08/06</edition><dates><year>2008</year><pub-dates><date>Nov 18</date></pub-dates></dates><isbn>1520-4898 (Electronic)&#xD;0001-4842 (Linking)</isbn><accession-num>18680317</accession-num><urls><related-urls><url> by the results with the carbocyclic substrates we switched to heterocyclic aromatic fluorosulfates 1r-u ( REF _Ref5955492 \h Scheme 2). The pyridine-2-fluorosulfate (1t) was especially interesting as the heterocyclic nitrogen could innately provide the needed electron-withdrawal. Unfortunately, only the thiophene derivative 1r was in line with the expectations. Fluorosulfate 1s was susceptible to norbornene inclusion, leading to partial conversion and poor yield, while pyridine-2-fluorosulfate (1t) and quinoline-8-fluorosulfate (1u) were completely unreactive. It is suspected, that in case of the latter, coordination of Pd to Lewis-basic nitrogen inhibits the target reaction either before the oxidative addition takes place or, more likely, after the migratory insertion of norbornene. ADDIN EN.CITE <EndNote><Cite><Author>Chu</Author><Year>2015</Year><RecNum>69</RecNum><DisplayText><style face="superscript">21</style></DisplayText><record><rec-number>69</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1558617086">69</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Chu, L.</author><author>Shang, M.</author><author>Tanaka, K.</author><author>Chen, Q.</author><author>Pissarnitski, N.</author><author>Streckfuss, E.</author><author>Yu, J. Q.</author></authors></contributors><auth-address>Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States.&#xD;Department of Process Chemistry and Department of Discovery Chemistry, Merck &amp; Co. Inc. , 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States.</auth-address><titles><title>Remote Meta-C-H Activation Using a Pyridine-Based Template: Achieving Site-Selectivity via the Recognition of Distance and Geometry</title><secondary-title>ACS Cent Sci</secondary-title></titles><periodical><full-title>ACS Cent Sci</full-title><abbr-1>ACS Cent. Sci.</abbr-1></periodical><pages>394-9</pages><volume>1</volume><number>7</number><edition>2016/05/11</edition><dates><year>2015</year><pub-dates><date>Oct 28</date></pub-dates></dates><isbn>2374-7943 (Print)&#xD;2374-7943 (Linking)</isbn><accession-num>27162997</accession-num><urls><related-urls><url> Attempts to prepare quinoline-4-fluorosulfate from 4-quinolol were made, but the instability of the obtained compound precluded further investigation.Scheme SEQ Scheme \* ARABIC 2: Heterocyclic product scope.aaIsolated yields under standard conditions.The following alkyl halide trial showed that both straight chain and branched primary alkyl halides should be well tolerated ( REF _Ref13139470 \h Scheme 3). Secondary alkyl bromide 2c was significantly less reactive and required more forcing conditions for a comparable outcome. A switch to a corresponding iodide had an overall negative effect, marked by increased reaction rate and deteriorated selectivity. 2d and 2e almost completely shut down the reaction due to even greater steric demand imposed by the rigidity and conformation preference of the corresponding rings. General reactivity of unstrained secondary alkyl halides is expected to lie between 2c and 2d. ADDIN EN.CITE <EndNote><Cite><Author>Lautens</Author><Year>2015</Year><RecNum>82</RecNum><DisplayText><style face="superscript">22</style></DisplayText><record><rec-number>82</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1566980562">82</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lautens, Mark</author><author>Qureshi, Zafar</author><author>Schlundt, Waldemar</author></authors></contributors><titles><title>Introduction of Hindered Electrophiles via C–H Functionalization in a Palladium-Catalyzed Multicomponent Domino Reaction</title><secondary-title>Synthesis</secondary-title></titles><periodical><full-title>Synthesis</full-title><abbr-3>S</abbr-3></periodical><pages>2446-2456</pages><volume>47</volume><number>16</number><section>2446</section><dates><year>2015</year></dates><isbn>0039-7881&#xD;1437-210X</isbn><urls></urls><electronic-resource-num>10.1055/s-0034-1380198</electronic-resource-num></record></Cite><Cite><Author>Masson</Author><Year>2005</Year><RecNum>83</RecNum><record><rec-number>83</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1566981138">83</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Masson, Eric</author><author>Leroux, Frédéric</author></authors></contributors><titles><title>The Effect of Ring Size on Reactivity: The Diagnostic Value of ‘Rate Profiles’</title><secondary-title>Helvetica Chimica Acta</secondary-title></titles><periodical><full-title>Helvetica Chimica Acta</full-title><abbr-1>Helv. Chim. Acta</abbr-1><abbr-2>Helv Chim Acta</abbr-2><abbr-3>HCA</abbr-3></periodical><pages>1375-1386</pages><volume>88</volume><number>6</number><section>1375</section><dates><year>2005</year></dates><isbn>0018-019X&#xD;1522-2675</isbn><urls></urls><electronic-resource-num>10.1002/hlca.200590110</electronic-resource-num></record></Cite></EndNote>22 Benzyl chloride (2f) provided comparable yield to primary alkyl bromides, whereas benzyl bromide completely failed to provide the target material. ADDIN EN.CITE <EndNote><Cite><Author>Dong</Author><Year>2018</Year><RecNum>4</RecNum><DisplayText><style face="superscript">3a</style></DisplayText><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554709705">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dong, Z.</author><author>Lu, G.</author><author>Wang, J.</author><author>Liu, P.</author><author>Dong, G.</author></authors></contributors><auth-address>Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States.&#xD;Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States.</auth-address><titles><title>Modular ipso/ortho Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis</title><secondary-title>J Am Chem Soc</secondary-title></titles><periodical><full-title>Journal of the American Chemical Society</full-title><abbr-1>J. Am. Chem. Soc.</abbr-1><abbr-2>J Am Chem Soc</abbr-2><abbr-3>JA</abbr-3></periodical><pages>8551-8562</pages><volume>140</volume><number>27</number><edition>2018/06/16</edition><dates><year>2018</year><pub-dates><date>Jul 11</date></pub-dates></dates><isbn>1520-5126 (Electronic)&#xD;0002-7863 (Linking)</isbn><accession-num>29906109</accession-num><urls><related-urls><url> The primary alkyl chloride 2g also displayed reactivity, but some re-optimization to improve the selectivity towards the target material remains desired. Scheme SEQ Scheme \* ARABIC 3. Alkyl halide scope.aaIsolated yields of the corresponding products. b2.0 equiv of 2, 12h. c100 mol% NBE. d10 mol% Pd(OAc)2. eGC-MS yield.Typical electron-rich and electron-deficient boronic acids 3b-j were tested and sterically unhindered acids ( REF _Ref5956321 \h \* MERGEFORMAT Table 4, entries 1-5, 7) displayed largely similar performance. 2-substituted boronic acids 3i and 3j, however, failed to provide the desired material in practical quantities even with fluorine as the substituent. Brominated boronic acid 3g was incompatible as well, largely due to its consumption in side-reactions not involving the substrate.Table SEQ Table \* ARABIC 4. Boronic acid scope.entryboronic acid“Aryl”productyielda13b4-MeO-C6H44aab87%23c4-F-C6H44aac79%33d3-MeO-C6H44aad85%43e3-F-C6H44aae74%53f3-Cl-C6H44aaf70%63g3-Br-C6H44aag9%73h2-Naphthyl4aah78%83i2-MeO-C6H44aai[<5%]b,c93j2-F-C6H44aaj[<5%]b,caIsolated yields. b12-hour reaction time. cGC-MS yield.During the early stages of investigation, it was noticed that the K2CO3/DMF system is excellent for the synthesis of the fluorosulfates themselves. This observation prompted an experiment to combine both steps and achieve rapid functionalization of phenols without the isolation of the fluorosulfate intermediate ( REF _Ref5963193 \h Scheme 4). ADDIN EN.CITE <EndNote><Cite><Author>Hanley</Author><Year>2015</Year><RecNum>58</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>58</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555959798">58</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hanley, Patrick S.</author><author>Ober, Matthias S.</author><author>Krasovskiy, Arkady L.</author><author>Whiteker, Gregory T.</author><author>Kruper, William J.</author></authors></contributors><titles><title>Nickel- and Palladium-Catalyzed Coupling of Aryl Fluorosulfonates with Aryl Boronic Acids Enabled by Sulfuryl Fluoride</title><secondary-title>ACS Catalysis</secondary-title></titles><periodical><full-title>ACS Catalysis</full-title><abbr-1>ACS Catal.</abbr-1></periodical><pages>5041-5046</pages><volume>5</volume><number>9</number><section>5041</section><dates><year>2015</year></dates><isbn>2155-5435&#xD;2155-5435</isbn><urls></urls><electronic-resource-num>10.1021/acscatal.5b01021</electronic-resource-num></record></Cite></EndNote>13 It was decided, that the most straightforward way of introducing the remaining Catellani reaction components while maintaining inert atmosphere is to transfer the post-fluorosulfation reaction slurry onto the solid reagents and add the alkyl bromide last. Different approaches to reagent addition are feasible as long as Pd(OAc)2 is not in solution in the absence of the fluorosulfate substrate in order to avoid premature Pd-black precipitation.Scheme SEQ Scheme \* ARABIC 4. Telescoped fluorosulfation-Catellani reaction.Despite the additional presence of KF and SO2F2 in the reaction mixture arising from the fluorosulfation step and possible transfer of TFA and H2O vapor from the gas-generating chamber, only the rate of the Catellani reaction was slightly reduced whereas the combined yield was in line with expectations. Naturally, the setup could be further simplified and made even more reliable by using pure SO2F2 from a pressurized cylinder, enabling rapid library generation in multi-well plates. Furthermore, the gaseous nature of the reagent allows it to be flushed out of the fluorosulfation mixture with a stream of inert gas if it hinders the following reaction in any way, leaving only the formed KF as an additional compound, which is known for its compatibility with Pd catalysis.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XcmlnaHQ8L0F1dGhvcj48WWVhcj4xOTk0PC9ZZWFyPjxS

ZWNOdW0+NjU8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

Mzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjY1PC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhm

cnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTg2MTEwNzUiPjY1PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XcmlnaHQsIFN0ZXBoZW4gVy48L2F1dGhvcj48YXV0

aG9yPkhhZ2VtYW4sIERhdmlkIEwuPC9hdXRob3I+PGF1dGhvcj5NY0NsdXJlLCBMZXN0ZXIgRC48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Rmx1b3JpZGUt

TWVkaWF0ZWQgQm9yb25pYyBBY2lkIENvdXBsaW5nIFJlYWN0aW9uczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5UaGUgSm91cm5hbCBvZiBPcmdhbmljIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRoZSBKb3VybmFsIG9mIE9yZ2FuaWMg

Q2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gT3JnLiBDaGVtLjwvYWJici0xPjwvcGVy

aW9kaWNhbD48cGFnZXM+NjA5NS02MDk3PC9wYWdlcz48dm9sdW1lPjU5PC92b2x1bWU+PG51bWJl

cj4yMDwvbnVtYmVyPjxzZWN0aW9uPjYwOTU8L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjE5OTQ8L3ll

YXI+PC9kYXRlcz48aXNibj4wMDIyLTMyNjMmI3hEOzE1MjAtNjkwNDwvaXNibj48dXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvam8wMDA5OWEwNDk8L2VsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxpdHRrZTwvQXV0

aG9yPjxZZWFyPjIwMDA8L1llYXI+PFJlY051bT42NjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i

ZXI+NjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdk

MGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1ODYxMTI4NiI+

NjY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4x

NzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkxpdHRrZSwgQWRhbSBG

LjwvYXV0aG9yPjxhdXRob3I+RGFpLCBDaGFveWFuZzwvYXV0aG9yPjxhdXRob3I+RnUsIEdyZWdv

cnkgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VmVy

c2F0aWxlIENhdGFseXN0cyBmb3IgdGhlIFN1enVraSBDcm9zcy1Db3VwbGluZyBvZiBBcnlsYm9y

b25pYyBBY2lkcyB3aXRoIEFyeWwgYW5kIFZpbnlsIEhhbGlkZXMgYW5kIFRyaWZsYXRlcyB1bmRl

ciBNaWxkIENvbmRpdGlvbnM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiB0aGUg

QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2ll

dHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hlbS4gU29jLjwvYWJici0xPjxhYmJyLTI+

SiBBbSBDaGVtIFNvYzwvYWJici0yPjxhYmJyLTM+SkE8L2FiYnItMz48L3BlcmlvZGljYWw+PHBh

Z2VzPjQwMjAtNDAyODwvcGFnZXM+PHZvbHVtZT4xMjI8L3ZvbHVtZT48bnVtYmVyPjE3PC9udW1i

ZXI+PHNlY3Rpb24+NDAyMDwvc2VjdGlvbj48ZGF0ZXM+PHllYXI+MjAwMDwveWVhcj48L2RhdGVz

Pjxpc2JuPjAwMDItNzg2MyYjeEQ7MTUyMC01MTI2PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYTAwMDIwNTg8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldyaWdodDwvQXV0aG9yPjxZZWFyPjE5

OTQ8L1llYXI+PFJlY051bT42NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NjU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uw

c2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1ODYxMTA3NSI+NjU8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldyaWdodCwgU3RlcGhlbiBXLjwvYXV0aG9y

PjxhdXRob3I+SGFnZW1hbiwgRGF2aWQgTC48L2F1dGhvcj48YXV0aG9yPk1jQ2x1cmUsIExlc3Rl

ciBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbHVv

cmlkZS1NZWRpYXRlZCBCb3JvbmljIEFjaWQgQ291cGxpbmcgUmVhY3Rpb25zPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPlRoZSBKb3VybmFsIG9mIE9yZ2FuaWMgQ2hlbWlzdHJ5PC9zZWNvbmRhcnkt

dGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+VGhlIEpvdXJuYWwgb2YgT3Jn

YW5pYyBDaGVtaXN0cnk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBPcmcuIENoZW0uPC9hYmJyLTE+

PC9wZXJpb2RpY2FsPjxwYWdlcz42MDk1LTYwOTc8L3BhZ2VzPjx2b2x1bWU+NTk8L3ZvbHVtZT48

bnVtYmVyPjIwPC9udW1iZXI+PHNlY3Rpb24+NjA5NTwvc2VjdGlvbj48ZGF0ZXM+PHllYXI+MTk5

NDwveWVhcj48L2RhdGVzPjxpc2JuPjAwMjItMzI2MyYjeEQ7MTUyMC02OTA0PC9pc2JuPjx1cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qbzAwMDk5YTA0OTwvZWxl

Y3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGl0dGtl

PC9BdXRob3I+PFllYXI+MjAwMDwvWWVhcj48UmVjTnVtPjY2PC9SZWNOdW0+PHJlY29yZD48cmVj

LW51bWJlcj42NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU4NjEx

Mjg2Ij42Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TGl0dGtlLCBB

ZGFtIEYuPC9hdXRob3I+PGF1dGhvcj5EYWksIENoYW95YW5nPC9hdXRob3I+PGF1dGhvcj5GdSwg

R3JlZ29yeSBDLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs

ZT5WZXJzYXRpbGUgQ2F0YWx5c3RzIGZvciB0aGUgU3V6dWtpIENyb3NzLUNvdXBsaW5nIG9mIEFy

eWxib3JvbmljIEFjaWRzIHdpdGggQXJ5bCBhbmQgVmlueWwgSGFsaWRlcyBhbmQgVHJpZmxhdGVz

IHVuZGVyIE1pbGQgQ29uZGl0aW9uczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9m

IHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwg

U29jaWV0eTwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBDaGVtLiBTb2MuPC9hYmJyLTE+PGFi

YnItMj5KIEFtIENoZW0gU29jPC9hYmJyLTI+PGFiYnItMz5KQTwvYWJici0zPjwvcGVyaW9kaWNh

bD48cGFnZXM+NDAyMC00MDI4PC9wYWdlcz48dm9sdW1lPjEyMjwvdm9sdW1lPjxudW1iZXI+MTc8

L251bWJlcj48c2VjdGlvbj40MDIwPC9zZWN0aW9uPjxkYXRlcz48eWVhcj4yMDAwPC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MDAwMi03ODYzJiN4RDsxNTIwLTUxMjY8L2lzYm4+PHVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2phMDAwMjA1ODwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+V3JpZ2h0PC9BdXRob3I+PFll

YXI+MTk5NDwvWWVhcj48UmVjTnVtPjY1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj42NTwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJz

MnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU4NjExMDc1Ij42NTwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V3JpZ2h0LCBTdGVwaGVuIFcuPC9h

dXRob3I+PGF1dGhvcj5IYWdlbWFuLCBEYXZpZCBMLjwvYXV0aG9yPjxhdXRob3I+TWNDbHVyZSwg

TGVzdGVyIEQuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxl

PkZsdW9yaWRlLU1lZGlhdGVkIEJvcm9uaWMgQWNpZCBDb3VwbGluZyBSZWFjdGlvbnM8L3RpdGxl

PjxzZWNvbmRhcnktdGl0bGU+VGhlIEpvdXJuYWwgb2YgT3JnYW5pYyBDaGVtaXN0cnk8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UaGUgSm91cm5hbCBv

ZiBPcmdhbmljIENoZW1pc3RyeTwvZnVsbC10aXRsZT48YWJici0xPkouIE9yZy4gQ2hlbS48L2Fi

YnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjYwOTUtNjA5NzwvcGFnZXM+PHZvbHVtZT41OTwvdm9s

dW1lPjxudW1iZXI+MjA8L251bWJlcj48c2VjdGlvbj42MDk1PC9zZWN0aW9uPjxkYXRlcz48eWVh

cj4xOTk0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAyMi0zMjYzJiN4RDsxNTIwLTY5MDQ8L2lzYm4+

PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2pvMDAwOTlhMDQ5

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5M

aXR0a2U8L0F1dGhvcj48WWVhcj4yMDAwPC9ZZWFyPjxSZWNOdW0+NjY8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjY2PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1

NTg2MTEyODYiPjY2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwg

QXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MaXR0

a2UsIEFkYW0gRi48L2F1dGhvcj48YXV0aG9yPkRhaSwgQ2hhb3lhbmc8L2F1dGhvcj48YXV0aG9y

PkZ1LCBHcmVnb3J5IEMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPlZlcnNhdGlsZSBDYXRhbHlzdHMgZm9yIHRoZSBTdXp1a2kgQ3Jvc3MtQ291cGxpbmcg

b2YgQXJ5bGJvcm9uaWMgQWNpZHMgd2l0aCBBcnlsIGFuZCBWaW55bCBIYWxpZGVzIGFuZCBUcmlm

bGF0ZXMgdW5kZXIgTWlsZCBDb25kaXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJu

YWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVt

aWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gQW0uIENoZW0uIFNvYy48L2FiYnIt

MT48YWJici0yPkogQW0gQ2hlbSBTb2M8L2FiYnItMj48YWJici0zPkpBPC9hYmJyLTM+PC9wZXJp

b2RpY2FsPjxwYWdlcz40MDIwLTQwMjg8L3BhZ2VzPjx2b2x1bWU+MTIyPC92b2x1bWU+PG51bWJl

cj4xNzwvbnVtYmVyPjxzZWN0aW9uPjQwMjA8L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjIwMDA8L3ll

YXI+PC9kYXRlcz48aXNibj4wMDAyLTc4NjMmI3hEOzE1MjAtNTEyNjwvaXNibj48dXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamEwMDAyMDU4PC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5XcmlnaHQ8L0F1dGhv

cj48WWVhcj4xOTk0PC9ZZWFyPjxSZWNOdW0+NjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjY1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBm

MHdwcnMydmtlMHNhZHhmcnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTg2MTEwNzUiPjY1

PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8

L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XcmlnaHQsIFN0ZXBoZW4g

Vy48L2F1dGhvcj48YXV0aG9yPkhhZ2VtYW4sIERhdmlkIEwuPC9hdXRob3I+PGF1dGhvcj5NY0Ns

dXJlLCBMZXN0ZXIgRC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48

dGl0bGU+Rmx1b3JpZGUtTWVkaWF0ZWQgQm9yb25pYyBBY2lkIENvdXBsaW5nIFJlYWN0aW9uczwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5UaGUgSm91cm5hbCBvZiBPcmdhbmljIENoZW1pc3RyeTwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRoZSBKb3Vy

bmFsIG9mIE9yZ2FuaWMgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gT3JnLiBDaGVt

LjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFnZXM+NjA5NS02MDk3PC9wYWdlcz48dm9sdW1lPjU5

PC92b2x1bWU+PG51bWJlcj4yMDwvbnVtYmVyPjxzZWN0aW9uPjYwOTU8L3NlY3Rpb24+PGRhdGVz

Pjx5ZWFyPjE5OTQ8L3llYXI+PC9kYXRlcz48aXNibj4wMDIyLTMyNjMmI3hEOzE1MjAtNjkwNDwv

aXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvam8wMDA5

OWEwNDk8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0

aG9yPkxpdHRrZTwvQXV0aG9yPjxZZWFyPjIwMDA8L1llYXI+PFJlY051bT42NjwvUmVjTnVtPjxy

ZWNvcmQ+PHJlYy1udW1iZXI+NjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFt

cD0iMTU1ODYxMTI4NiI+NjY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkxpdHRrZSwgQWRhbSBGLjwvYXV0aG9yPjxhdXRob3I+RGFpLCBDaGFveWFuZzwvYXV0aG9yPjxh

dXRob3I+RnUsIEdyZWdvcnkgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+VmVyc2F0aWxlIENhdGFseXN0cyBmb3IgdGhlIFN1enVraSBDcm9zcy1Db3Vw

bGluZyBvZiBBcnlsYm9yb25pYyBBY2lkcyB3aXRoIEFyeWwgYW5kIFZpbnlsIEhhbGlkZXMgYW5k

IFRyaWZsYXRlcyB1bmRlciBNaWxkIENvbmRpdGlvbnM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25kYXJ5LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2Fu

IENoZW1pY2FsIFNvY2lldHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hlbS4gU29jLjwv

YWJici0xPjxhYmJyLTI+SiBBbSBDaGVtIFNvYzwvYWJici0yPjxhYmJyLTM+SkE8L2FiYnItMz48

L3BlcmlvZGljYWw+PHBhZ2VzPjQwMjAtNDAyODwvcGFnZXM+PHZvbHVtZT4xMjI8L3ZvbHVtZT48

bnVtYmVyPjE3PC9udW1iZXI+PHNlY3Rpb24+NDAyMDwvc2VjdGlvbj48ZGF0ZXM+PHllYXI+MjAw

MDwveWVhcj48L2RhdGVzPjxpc2JuPjAwMDItNzg2MyYjeEQ7MTUyMC01MTI2PC9pc2JuPjx1cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYTAwMDIwNTg8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XcmlnaHQ8L0F1dGhvcj48WWVhcj4xOTk0PC9ZZWFyPjxS

ZWNOdW0+NjU8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

Mzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjY1PC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhm

cnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTg2MTEwNzUiPjY1PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XcmlnaHQsIFN0ZXBoZW4gVy48L2F1dGhvcj48YXV0

aG9yPkhhZ2VtYW4sIERhdmlkIEwuPC9hdXRob3I+PGF1dGhvcj5NY0NsdXJlLCBMZXN0ZXIgRC48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Rmx1b3JpZGUt

TWVkaWF0ZWQgQm9yb25pYyBBY2lkIENvdXBsaW5nIFJlYWN0aW9uczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5UaGUgSm91cm5hbCBvZiBPcmdhbmljIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRoZSBKb3VybmFsIG9mIE9yZ2FuaWMg

Q2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gT3JnLiBDaGVtLjwvYWJici0xPjwvcGVy

aW9kaWNhbD48cGFnZXM+NjA5NS02MDk3PC9wYWdlcz48dm9sdW1lPjU5PC92b2x1bWU+PG51bWJl

cj4yMDwvbnVtYmVyPjxzZWN0aW9uPjYwOTU8L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjE5OTQ8L3ll

YXI+PC9kYXRlcz48aXNibj4wMDIyLTMyNjMmI3hEOzE1MjAtNjkwNDwvaXNibj48dXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvam8wMDA5OWEwNDk8L2VsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxpdHRrZTwvQXV0

aG9yPjxZZWFyPjIwMDA8L1llYXI+PFJlY051bT42NjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i

ZXI+NjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdk

MGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1ODYxMTI4NiI+

NjY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4x

NzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkxpdHRrZSwgQWRhbSBG

LjwvYXV0aG9yPjxhdXRob3I+RGFpLCBDaGFveWFuZzwvYXV0aG9yPjxhdXRob3I+RnUsIEdyZWdv

cnkgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VmVy

c2F0aWxlIENhdGFseXN0cyBmb3IgdGhlIFN1enVraSBDcm9zcy1Db3VwbGluZyBvZiBBcnlsYm9y

b25pYyBBY2lkcyB3aXRoIEFyeWwgYW5kIFZpbnlsIEhhbGlkZXMgYW5kIFRyaWZsYXRlcyB1bmRl

ciBNaWxkIENvbmRpdGlvbnM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiB0aGUg

QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2ll

dHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hlbS4gU29jLjwvYWJici0xPjxhYmJyLTI+

SiBBbSBDaGVtIFNvYzwvYWJici0yPjxhYmJyLTM+SkE8L2FiYnItMz48L3BlcmlvZGljYWw+PHBh

Z2VzPjQwMjAtNDAyODwvcGFnZXM+PHZvbHVtZT4xMjI8L3ZvbHVtZT48bnVtYmVyPjE3PC9udW1i

ZXI+PHNlY3Rpb24+NDAyMDwvc2VjdGlvbj48ZGF0ZXM+PHllYXI+MjAwMDwveWVhcj48L2RhdGVz

Pjxpc2JuPjAwMDItNzg2MyYjeEQ7MTUyMC01MTI2PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYTAwMDIwNTg8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldyaWdodDwvQXV0aG9yPjxZZWFyPjE5

OTQ8L1llYXI+PFJlY051bT42NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NjU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uw

c2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU1ODYxMTA3NSI+NjU8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldyaWdodCwgU3RlcGhlbiBXLjwvYXV0aG9y

PjxhdXRob3I+SGFnZW1hbiwgRGF2aWQgTC48L2F1dGhvcj48YXV0aG9yPk1jQ2x1cmUsIExlc3Rl

ciBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbHVv

cmlkZS1NZWRpYXRlZCBCb3JvbmljIEFjaWQgQ291cGxpbmcgUmVhY3Rpb25zPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPlRoZSBKb3VybmFsIG9mIE9yZ2FuaWMgQ2hlbWlzdHJ5PC9zZWNvbmRhcnkt

dGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+VGhlIEpvdXJuYWwgb2YgT3Jn

YW5pYyBDaGVtaXN0cnk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBPcmcuIENoZW0uPC9hYmJyLTE+

PC9wZXJpb2RpY2FsPjxwYWdlcz42MDk1LTYwOTc8L3BhZ2VzPjx2b2x1bWU+NTk8L3ZvbHVtZT48

bnVtYmVyPjIwPC9udW1iZXI+PHNlY3Rpb24+NjA5NTwvc2VjdGlvbj48ZGF0ZXM+PHllYXI+MTk5

NDwveWVhcj48L2RhdGVzPjxpc2JuPjAwMjItMzI2MyYjeEQ7MTUyMC02OTA0PC9pc2JuPjx1cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qbzAwMDk5YTA0OTwvZWxl

Y3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGl0dGtl

PC9BdXRob3I+PFllYXI+MjAwMDwvWWVhcj48UmVjTnVtPjY2PC9SZWNOdW0+PHJlY29yZD48cmVj

LW51bWJlcj42NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

InRwd2QwZjB3cHJzMnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU4NjEx

Mjg2Ij42Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TGl0dGtlLCBB

ZGFtIEYuPC9hdXRob3I+PGF1dGhvcj5EYWksIENoYW95YW5nPC9hdXRob3I+PGF1dGhvcj5GdSwg

R3JlZ29yeSBDLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs

ZT5WZXJzYXRpbGUgQ2F0YWx5c3RzIGZvciB0aGUgU3V6dWtpIENyb3NzLUNvdXBsaW5nIG9mIEFy

eWxib3JvbmljIEFjaWRzIHdpdGggQXJ5bCBhbmQgVmlueWwgSGFsaWRlcyBhbmQgVHJpZmxhdGVz

IHVuZGVyIE1pbGQgQ29uZGl0aW9uczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9m

IHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwg

U29jaWV0eTwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBDaGVtLiBTb2MuPC9hYmJyLTE+PGFi

YnItMj5KIEFtIENoZW0gU29jPC9hYmJyLTI+PGFiYnItMz5KQTwvYWJici0zPjwvcGVyaW9kaWNh

bD48cGFnZXM+NDAyMC00MDI4PC9wYWdlcz48dm9sdW1lPjEyMjwvdm9sdW1lPjxudW1iZXI+MTc8

L251bWJlcj48c2VjdGlvbj40MDIwPC9zZWN0aW9uPjxkYXRlcz48eWVhcj4yMDAwPC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MDAwMi03ODYzJiN4RDsxNTIwLTUxMjY8L2lzYm4+PHVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2phMDAwMjA1ODwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+V3JpZ2h0PC9BdXRob3I+PFll

YXI+MTk5NDwvWWVhcj48UmVjTnVtPjY1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj42NTwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InRwd2QwZjB3cHJz

MnZrZTBzYWR4ZnJ0eHZ2ZHc5ZGRlZndhdiIgdGltZXN0YW1wPSIxNTU4NjExMDc1Ij42NTwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V3JpZ2h0LCBTdGVwaGVuIFcuPC9h

dXRob3I+PGF1dGhvcj5IYWdlbWFuLCBEYXZpZCBMLjwvYXV0aG9yPjxhdXRob3I+TWNDbHVyZSwg

TGVzdGVyIEQuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxl

PkZsdW9yaWRlLU1lZGlhdGVkIEJvcm9uaWMgQWNpZCBDb3VwbGluZyBSZWFjdGlvbnM8L3RpdGxl

PjxzZWNvbmRhcnktdGl0bGU+VGhlIEpvdXJuYWwgb2YgT3JnYW5pYyBDaGVtaXN0cnk8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UaGUgSm91cm5hbCBv

ZiBPcmdhbmljIENoZW1pc3RyeTwvZnVsbC10aXRsZT48YWJici0xPkouIE9yZy4gQ2hlbS48L2Fi

YnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjYwOTUtNjA5NzwvcGFnZXM+PHZvbHVtZT41OTwvdm9s

dW1lPjxudW1iZXI+MjA8L251bWJlcj48c2VjdGlvbj42MDk1PC9zZWN0aW9uPjxkYXRlcz48eWVh

cj4xOTk0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAyMi0zMjYzJiN4RDsxNTIwLTY5MDQ8L2lzYm4+

PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2pvMDAwOTlhMDQ5

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5M

aXR0a2U8L0F1dGhvcj48WWVhcj4yMDAwPC9ZZWFyPjxSZWNOdW0+NjY8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjY2PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0idHB3ZDBmMHdwcnMydmtlMHNhZHhmcnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1

NTg2MTEyODYiPjY2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwg

QXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MaXR0

a2UsIEFkYW0gRi48L2F1dGhvcj48YXV0aG9yPkRhaSwgQ2hhb3lhbmc8L2F1dGhvcj48YXV0aG9y

PkZ1LCBHcmVnb3J5IEMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPlZlcnNhdGlsZSBDYXRhbHlzdHMgZm9yIHRoZSBTdXp1a2kgQ3Jvc3MtQ291cGxpbmcg

b2YgQXJ5bGJvcm9uaWMgQWNpZHMgd2l0aCBBcnlsIGFuZCBWaW55bCBIYWxpZGVzIGFuZCBUcmlm

bGF0ZXMgdW5kZXIgTWlsZCBDb25kaXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJu

YWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVt

aWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gQW0uIENoZW0uIFNvYy48L2FiYnIt

MT48YWJici0yPkogQW0gQ2hlbSBTb2M8L2FiYnItMj48YWJici0zPkpBPC9hYmJyLTM+PC9wZXJp

b2RpY2FsPjxwYWdlcz40MDIwLTQwMjg8L3BhZ2VzPjx2b2x1bWU+MTIyPC92b2x1bWU+PG51bWJl

cj4xNzwvbnVtYmVyPjxzZWN0aW9uPjQwMjA8L3NlY3Rpb24+PGRhdGVzPjx5ZWFyPjIwMDA8L3ll

YXI+PC9kYXRlcz48aXNibj4wMDAyLTc4NjMmI3hEOzE1MjAtNTEyNjwvaXNibj48dXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamEwMDAyMDU4PC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5XcmlnaHQ8L0F1dGhv

cj48WWVhcj4xOTk0PC9ZZWFyPjxSZWNOdW0+NjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjY1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idHB3ZDBm

MHdwcnMydmtlMHNhZHhmcnR4dnZkdzlkZGVmd2F2IiB0aW1lc3RhbXA9IjE1NTg2MTEwNzUiPjY1

PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8

L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XcmlnaHQsIFN0ZXBoZW4g

Vy48L2F1dGhvcj48YXV0aG9yPkhhZ2VtYW4sIERhdmlkIEwuPC9hdXRob3I+PGF1dGhvcj5NY0Ns

dXJlLCBMZXN0ZXIgRC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48

dGl0bGU+Rmx1b3JpZGUtTWVkaWF0ZWQgQm9yb25pYyBBY2lkIENvdXBsaW5nIFJlYWN0aW9uczwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5UaGUgSm91cm5hbCBvZiBPcmdhbmljIENoZW1pc3RyeTwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRoZSBKb3Vy

bmFsIG9mIE9yZ2FuaWMgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gT3JnLiBDaGVt

LjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFnZXM+NjA5NS02MDk3PC9wYWdlcz48dm9sdW1lPjU5

PC92b2x1bWU+PG51bWJlcj4yMDwvbnVtYmVyPjxzZWN0aW9uPjYwOTU8L3NlY3Rpb24+PGRhdGVz

Pjx5ZWFyPjE5OTQ8L3llYXI+PC9kYXRlcz48aXNibj4wMDIyLTMyNjMmI3hEOzE1MjAtNjkwNDwv

aXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvam8wMDA5

OWEwNDk8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0

aG9yPkxpdHRrZTwvQXV0aG9yPjxZZWFyPjIwMDA8L1llYXI+PFJlY051bT42NjwvUmVjTnVtPjxy

ZWNvcmQ+PHJlYy1udW1iZXI+NjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZydHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFt

cD0iMTU1ODYxMTI4NiI+NjY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkxpdHRrZSwgQWRhbSBGLjwvYXV0aG9yPjxhdXRob3I+RGFpLCBDaGFveWFuZzwvYXV0aG9yPjxh

dXRob3I+RnUsIEdyZWdvcnkgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+VmVyc2F0aWxlIENhdGFseXN0cyBmb3IgdGhlIFN1enVraSBDcm9zcy1Db3Vw

bGluZyBvZiBBcnlsYm9yb25pYyBBY2lkcyB3aXRoIEFyeWwgYW5kIFZpbnlsIEhhbGlkZXMgYW5k

IFRyaWZsYXRlcyB1bmRlciBNaWxkIENvbmRpdGlvbnM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25kYXJ5LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2Fu

IENoZW1pY2FsIFNvY2lldHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hlbS4gU29jLjwv

YWJici0xPjxhYmJyLTI+SiBBbSBDaGVtIFNvYzwvYWJici0yPjxhYmJyLTM+SkE8L2FiYnItMz48

L3BlcmlvZGljYWw+PHBhZ2VzPjQwMjAtNDAyODwvcGFnZXM+PHZvbHVtZT4xMjI8L3ZvbHVtZT48

bnVtYmVyPjE3PC9udW1iZXI+PHNlY3Rpb24+NDAyMDwvc2VjdGlvbj48ZGF0ZXM+PHllYXI+MjAw

MDwveWVhcj48L2RhdGVzPjxpc2JuPjAwMDItNzg2MyYjeEQ7MTUyMC01MTI2PC9pc2JuPjx1cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYTAwMDIwNTg8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 23In conclusion, the presented application of fluorosulfates in a Catellani-type ortho-alkylation/ipso-arylation reaction paves the way for rapid multi-functionalization of phenols bearing electron-withdrawing groups. By offering an alternative reaction outcome in comparison to corresponding aryl iodides and marginally superior performance to corresponding bromides, it empowers synthetic pathways that might have been previously overlooked. Furthermore, both the Catellani reaction and the preceding fluorosulfation of phenols are inherently compatible, providing a technique for rapid generation of compound libraries. Experimental SectionGeneral methods1H NMR spectra were recorded in CDCl3 on a Bruker Avance? III HD 400 (400 MHz) spectrometer. Chemical shifts are reported in parts per million using the solvent (7.26 ppm, singlet) as internal reference. First-order multiplets are described as d (doublet), t (triplet), q (quartet), p (pentet), h (hextuplet), hept (heptet) and as combinations thereof, with “br.” indicating a broadened peak(s). When possible, second-order multiplets are described according to their spin system with the corresponding nuclei underlined. Coupling constants were verified with WINDNMR 7.1.14 NMR simulation software.Proton-decoupled 13C NMR and 13C APT spectra were recorded in CDCl3 on Bruker Avance? III HD 400 (101 MHz) and Bruker Avance? II+ 600 (126 MHz) spectrometers. Chemical shifts are reported in parts per million using the solvent (77.00 ppm, triplet) as internal reference. Number of attached protons were deduced by APT experimental data and indicated in parenthesis.19F NMR spectra (non-decoupled) were recorded in CDCl3 on a Bruker Avance? III HD 400 (376 MHz) spectrometer. Chemical shifts are reported in parts per million using CFCl3 (0.00 ppm, singlet) as internal reference. Coupling constants were verified with WINDNMR 7.1.14 NMR simulation software.IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer with ALPHA-P sampling module. Elemental analyses were performed on a Thermo Scientific Flash 2000 elemental analyzer.Melting points were measured using Mettler Toledo DSC822e and processed with STARe thermal analysis software.GC-MS analysis was performed using a ThermoFinnigan Trace GC oven with Restek Rxi-5MS (50 m, 0.20 mm ID, 0.33 μm) capillary column (helium carrier gas, 17:1 split injection) coupled with a Thermo Scientific ITQ900 EI-MS ion trap. A 50 °C (1 min.) – 20 °C/min – 300 °C (5 min.) program was used.Analytical TLC was performed on pre-coated aluminum-supported silica gel 60 F245 (250 ?m) TLC plates with the aid of UV (254 nm) visualization. Preparative liquid flash chromatography was conducted on direct phase silica gel (40-60 ?m, average pore diameter 60 ?) from Acros Organics.Reagents were obtained from commercial sources (Sigma-Aldrich, Acros Organics, Fluorochem) and were used directly without purification. Petroleum ether (boiling range 40 – 65 °C, VWR) was distilled prior to use. Other chromatography solvents were of analytical grade (Fischer Scientific) and were used as received. Anhydrous solvents over molecular sieves in Acroseal? bottles and Palladium (II) acetate (99.9% trace metals basis) were purchased from Acros Organics. Deuterated chloroform (99.8% D, 0.1% v/v of TMS as internal standard) was purchased from Sigma-Aldrich.1,1’-sulfonyldiimidazole (SDI)The material was prepared following a modified literature procedure. ADDIN EN.CITE <EndNote><Cite><Author>Cívicos</Author><Year>2013</Year><RecNum>70</RecNum><DisplayText><style face="superscript">24</style></DisplayText><record><rec-number>70</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1563203208">70</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Cívicos, José F.</author><author>Alonso, Diego A.</author><author>Nájera, Carmen</author></authors></contributors><titles><title>Microwave-Promoted Copper-Free Sonogashira-Hagihara Couplings of Aryl Imidazolylsulfonates in Water</title><secondary-title>Advanced Synthesis &amp; Catalysis</secondary-title></titles><periodical><full-title>Advanced Synthesis &amp; Catalysis</full-title><abbr-1>Adv. Synth. Catal.</abbr-1><abbr-2>Adv Synth Catal</abbr-2><abbr-3>ASC</abbr-3></periodical><pages>203-208</pages><volume>355</volume><number>1</number><section>203</section><dates><year>2013</year></dates><isbn>16154150</isbn><urls></urls><electronic-resource-num>10.1002/adsc.201200629</electronic-resource-num></record></Cite></EndNote>24 SO2Cl2 (24.7 mL, 98.5 wt%, 300 mmol, 1.0 equiv) in DCM (210 mL) was added dropwise (5 mL/min) to a vigorously stirred suspension of imidazole (92.8 g, 99 wt%, 1.35 mol, 4.5 equiv) in DCM (540 mL) maintained at 0 °C. Complete dissolution if imidazole was observed prior to precipitation of imidazolium chloride. Once the addition was completed, the cooling was maintained for 3 hours and then the suspension was left at ambient temperature for 18 hours. Imidazolium chloride was filtered off; the filter cake was washed with DCM (3 × 100 mL) and the combined filtrate was washed with H2O (150 mL), dried with Na2SO4 and evaporated under reduced pressure. The crystalline residue was recrystallized from boiling 2-PrOH (300 mL) to afford the analytically pure target material (53.32 g, 90% yield) as thick colorless plates.1H NMR (400 MHz, CDCl3) δ: 8.04 (dd, J = 1.4, 0.8 Hz, 1H), 7.31 (dd, J = 1.7, 1.4, 1H), 7.17 (dd, J = 1.7, 0.8 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3): 136.5, 132.4, 117.3.General procedure for synthesis of aryl fluorosulfates 1a-uA 10 mL two-chamber reactor (total volume of 10–12 mL) was used for reactions generating up to 2.5 mmol of SO2F2. The 100 mL reactor was used for up to 15 mmol of SO2F2 and the 400 mL reactor was used for up to 50 mmol of SO2F2 respectively (picture of these reactors is provided as SI Figure S1-1). Running the reaction significantly (two times and more) below these indicated thresholds requires raising the excess of SO2F2 to up to 1.50 equiv for reliable full conversion. The gas is highly soluble in organic solvents therefore the actual pressure is lower than theoretical. ADDIN EN.CITE <EndNote><Cite><Author>Veryser</Author><Year>2017</Year><RecNum>30</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554798980">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Veryser, C.</author><author>Demaerel, J.</author><author><style face="normal" font="default" size="100%">Bieli</style><style face="normal" font="default" charset="238" size="100%">ū</style><style face="normal" font="default" charset="186" size="100%">n</style><style face="normal" font="default" size="100%">as, V.</style></author><author>Gilles, P.</author><author>De Borggraeve, W. M.</author></authors></contributors><auth-address>Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium.</auth-address><titles><title>Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>5244-5247</pages><volume>19</volume><number>19</number><edition>2017/09/14</edition><dates><year>2017</year><pub-dates><date>Oct 6</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>28901771</accession-num><urls><related-urls><url> A of a 10 mL two-chamber reactor was charged with 1,1’-sulfonyldiimidazole (496 mg, 2.5 mmol, 1.25 equiv) and potassium fluoride (349 mg, 6.0 mmol, 3.0 equiv). Next, chamber B was charged with the corresponding phenol (2 mmol, 1.0 equiv) or diol (1 mmol, 0.50 equiv), fine dry potassium carbonate (552 mg, 4 mmol, 2.0 equiv) and acetonitrile (4 mL). The reactor was capped and trifluoroacetic acid/water mixture (2 mL, 50:50 v/v) was injected into chamber A through the septa using a syringe. A 15 – 30 s delay followed by gradual gas evolution was observed over the next 30 minutes. Contents of both chambers were vigorously stirred at 20 °C ambient temperature for 18 hours.Both chambers were uncapped and the SO2F2 was allowed to diffuse out of the reactor over 1 hour. Contents of the chamber B were transferred into a separatory funnel containing EtOAc or PE (20 mL) and water (60 mL). The target material was extracted into the organic phase, which was then washed with water (2 × 20 mL) and brine (20 mL), dried with Na2SO4 and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, filtration trough a plug of silica gel or vacuum distillation.Methyl 2-((fluorosulfonyl)oxy)benzoate (1a)General procedure was followed using 1.0 equiv of methyl 2-hydroxybenzoate (1.83 g, 1.56 mL, 12 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (9:1) to afford analytically pure title compound as a colorless oil (5.265 g, 90%).Alternatively, general procedure was followed using 1.0 equiv of methyl salicylate (3.80 g, 3.24 mL, 25 mmol). Fractional vacuum distillation of the crude material (110 °C at 1 mbar) provided the analytically pure title compound as a colorless oil (4.100 g, 70%).1H NMR (400 MHz, CDCl3) δ: 8.11 (ddd, J = 7.8, 1.8, 0.4 Hz, 1H), 7.66 (ddd, J = 8.2, 7.5, 1.8 Hz, 1H), 7.51 (ddd, J = 7.8, 7.5, 1.2 Hz, 1H), 7.42 (dddd, J = 8.2, 1.6, 1.2, 0.4 Hz, 1H), 3.98 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 163.8 (C=O), 148.5 (d, J = 1.3 Hz, C), 134.4 (CH), 132.9 (CH), 128.8 (CH), 123.9 (d, J = 1.3 Hz, C), 122.4 (CH), 52.8 (CH3). 19F NMR (376 MHz, CDCl3) δ: 41.1 (d, J = 1.6 Hz). EI-MS m/z (calc. 234.0): 234.1 (23%, M+?), 203.2 (100%), 120.1 (48%). IR (neat) cm-1: 1727.3, 1447.1, 1231.2, 911.8, 777.6.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Veryser</Author><Year>2017</Year><RecNum>30</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554798980">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Veryser, C.</author><author>Demaerel, J.</author><author><style face="normal" font="default" size="100%">Bieli</style><style face="normal" font="default" charset="238" size="100%">ū</style><style face="normal" font="default" charset="186" size="100%">n</style><style face="normal" font="default" size="100%">as, V.</style></author><author>Gilles, P.</author><author>De Borggraeve, W. M.</author></authors></contributors><auth-address>Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium.</auth-address><titles><title>Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>5244-5247</pages><volume>19</volume><number>19</number><edition>2017/09/14</edition><dates><year>2017</year><pub-dates><date>Oct 6</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>28901771</accession-num><urls><related-urls><url> sulfurofluoridate (1b)General procedure was followed using 1.0 equiv of 2-methylphenol (2.70 g, 25 mmol). The crude material was purified by filtration through a short pad of silica gel using PE/EtOAc (95:5) to afford the title compound as a colorless volatile oil (4.51 g, 94%).1H NMR (400 MHz, CDCl3) δ: 7.35 – 7.26 (m, 4H), 2.39 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 149.1 (d, J = 1.0 Hz, C), 132.3 (CH), 130.5 (d, J = 0.9 Hz, C), 128.5 (CH), 127.7 (CH), 120.9 (d, J = 1.1 Hz, CH), 16.0 (d, J = 1.4 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: 38.6 (p, J = 1.1 Hz). EI-MS m/z (calc. 190.0): 190.3 (64%, M+?), 107.2 (36%), 89.2 (31%), 77.2 (100%). IR (neat) cm-1: 1443.4, 1230.8, 915.12, 817.0, 764.4.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Ma</Author><Year>2019</Year><RecNum>75</RecNum><DisplayText><style face="superscript">10e</style></DisplayText><record><rec-number>75</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1563385625">75</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ma, C.</author><author>Zhao, C. Q.</author><author>Xu, X. T.</author><author>Li, Z. M.</author><author>Wang, X. Y.</author><author>Zhang, K.</author><author>Mei, T. S.</author></authors></contributors><auth-address>State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.&#xD;School of Chemical &amp; Environmental Engineering , Wuyi University , Jiangmen 529020 , China.</auth-address><titles><title>Nickel-Catalyzed Carboxylation of Aryl and Heteroaryl Fluorosulfates Using Carbon Dioxide</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>2464-2467</pages><volume>21</volume><number>7</number><edition>2019/03/27</edition><dates><year>2019</year><pub-dates><date>Apr 5</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>30912447</accession-num><urls><related-urls><url> sulfurofluoridate (1c)General procedure was followed using 1.0 equiv of 2-methoxyphenol (248 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (95:5) to afford analytically pure title compound as a colorless volatile oil (357 mg, 87%).1H NMR (400 MHz, CDCl3) δ: 7.35 (ddd, J = 8.4, 7.5, 1.6 Hz 1H), 7.31 (dddd, J = 8.2, 1.6, 1.3, 0.3 Hz, 1H), 7.06 (ddp, J = 8.4, 1.5, 0.3 Hz, 1H), 6.99 (ddd, J = 8.2, 7.5, 1.5 Hz, 1H), 3.92 (d, J = 0.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 151.2 (C), 139.0 (d, J = 1.2 Hz, C), 129.6 (CH), 122.4 (d, J = 0.9 Hz, CH), 120.9 (CH), 113.5 (CH), 56.1 (CH3). 19F NMR (376 MHz, CDCl3) δ: 39.1 (d, J = 1.3 Hz). EI-MS m/z (calc. 206.0): 206.0 (62%, M+?), 123.0 (59%), 95.7 (55%), 77.1 (100%). IR (neat) cm-1: 1499.9, 1440.0, 1230.6, 1101.79, 910.4, 757.1The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Liang</Author><Year>2015</Year><RecNum>43</RecNum><DisplayText><style face="superscript">10b</style></DisplayText><record><rec-number>43</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555622948">43</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Liang, Q.</author><author>Xing, P.</author><author>Huang, Z.</author><author>Dong, J.</author><author>Sharpless, K. B.</author><author>Li, X.</author><author>Jiang, B.</author></authors></contributors><auth-address>daggerShanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China.&#xD;double daggerCAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.&#xD;section signDepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.</auth-address><titles><title>Palladium-Catalyzed, Ligand-Free Suzuki Reaction in Water Using Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>1942-5</pages><volume>17</volume><number>8</number><edition>2015/04/10</edition><dates><year>2015</year><pub-dates><date>Apr 17</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>25856416</accession-num><urls><related-urls><url> 5-chloro-2-((fluorosulfonyl)oxy)benzoate (1d)General procedure was followed using 1.0 equiv of methyl 5-chloro-2-hydroxybenzoate (1.87 g, 10 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (9:1) to afford analytically pure title compound as a colorless oil (2.61 g, 97%).Anal. Calcd for C8H6ClFO5S: C, 35.77; H, 2.25; N, 0.00. Found: C, 35.78; H, 2.24; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 8.08 (dd, J = 2.7, 0.4 Hz, 1H), 7.62 (dd, J = 8.7, 2.7 Hz, 1H), 7.37 (ddd, J = 8.7, 1.4, 0.4 Hz, 1H), 3.98 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 162.7 (C=O), 146.8 (d, J = 1.2 Hz, C), 134.8 (C), 134.2 (CH), 132.8 (CH), 125.3 (d, J = 1.4 Hz, C), 123.9 (CH), 53.1 (CH3). 19F NMR (376 MHz, CDCl3) δ: 41.2 (d, J = 1.4 Hz). EI-MS m/z (calc. 268.0): 268.0 (33%, M+?), 270.0 (11%, M+?), 237.0 (61%), 154 (100%). IR (neat) cm-1: 1730.8, 1451.9, 1436.0, 1170.9, 911.05.2-Nitrophenyl sulfurofluoridate (1e)General procedure was followed using 1.0 equiv of 2-nitrophenol (1.39 g, 10 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (8:2) to afford analytically pure title compound as a faintly yellow oil (1.69 g, 77%).Anal. Calcd for C6H4FNO5S: C, 32.59; H, 1.82; N, 6.33. Found: C, 32.73; H, 1.80; N, 6.59. 1H NMR (400 MHz, CDCl3) δ: 8.20 (dd, J = 8.2, 1.7 Hz, 1H), 7.79 (ddd, J = 8.2, 7.6, 1.7 Hz, 1H), 7.63 (ddd, J = 8.2, 7.6, 1.4 Hz, 1H), 7.58 (dt, J = 8.2, 1.4 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 141.7 (d, J = 1.2 Hz, C), 141.3 (br. s, C), 135.4 (CH), 129.6 (CH), 126.9 (CH), 123.8 (d, J = 0.7 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 42.1 (d, J = 1.4 Hz). EI-MS m/z (calc. 221.0): 221.1 (100%, M+?), 191.2 (46%), 108.3 (41%), 80.1 (63%), 63.1 (87%). IR (neat) cm-1: 1533.5, 1453.0, 1345.8, 1234.0, 910.2.4-Methoxy-2-nitrophenyl sulfurofluoridate (1f)General procedure was followed using 1.0 equiv of 4-methoxy-2-nitrophenol (338 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (8:2) to afford analytically pure title compound as a faintly yellow oil (406 mg, 81%).Anal. Calcd for C7H6NFO6S: C, 33.47; H, 2.41; N, 5.58. Found: C, 33.82; H, 2.01; N, 6.07. 1H NMR (400 MHz, CDCl3) δ: 7.65 (d, J = 3.1 Hz, 1H), 7.46 (dd, J = 9.1, 1.4 Hz, 1H), 7.23 (dd, J = 9.1, 3.1 Hz, 1H), 3.92 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 159.4 (C), 141.7 (br. s, C), 135.0 (d, J = 1.2 Hz, C), 124.7 (CH), 120.7 (CH), 111.3 (CH), 56.4 (CH3). 19F NMR (376 MHz, CDCl3) δ: 41.1 (d, J = 1.4 Hz). EI-MS m/z (calc. 251.0): 251.2 (99%, M+?), 168.2 (87%), 110.2 (44%), 69.1 (100%). IR (neat) cm-1: 1616.5, 1451.2, 1232.7, 1173.5, 801.1.2-(Trifluoromethyl)phenyl sulfurofluoridate (1g)General procedure was followed using 1.0 equiv of 2-(trifluoromethyl)phenol (1.62 g, 10 mmol). The crude material was filtered through a short pad of silica using PE/EtOAc (98:2) to afford analytically pure title compound as a volatile colorless oil (2.30 g, 94%).Anal. Calcd for C7H4F4O3S: C, 34.44; H, 1.65; N, 0.00. Found: C, 34.27; H, 1.52; N, 0.00. 1 NMR (400 MHz, CDCl3) δ: 7.82 – 7.76 (m, 1H), 7.76 – 7.66 (m, 1H), 7.60 – 7.52 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ: 146.9 (qd, J = 1.8, 1.1 Hz, C), 134.0 (q, J = 1.1 Hz, CH), 128.6 (CH), 128.1 (q, J = 4.8 Hz, CH), 123.0 (qd, J = 33.0, 1.4 Hz, C), 122.00 (q, J = 273.0 Hz, CF3), 121.95 (d, J = 1.3 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 41.7 (qd, J = 5.6, 1.9 Hz), -61.5 (d, J = 5.5 Hz). EI-MS m/z (calc. 244.0): 244.0 (100%, M+?), 161.0 (67%), 133.1 (86%), 113.1 (60%). IR (neat) cm-1: 1453.2, 1316.9, 1137.0, 1114.9, 906.3.5-Fluoro-2-(trifluoromethyl)phenyl sulfurofluoridate (1h)General procedure was followed using 1.0 equiv of 2-(trifluoromethyl)phenol (1.08 g, 6 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (95:5 – 80:20) to afford two equally sized fractions. The first fraction provided the title compound as a highly volatile colorless oil (690 mg, 44%). Evaporation more polar fraction and recrystallization of the residue from boiling heptane afforded the corresponding diaryl sulfate (1h-2, vide infra) as a colorless crystalline solid (700 mg, 55%).Anal. Calcd for C7H3F5O3S: C, 32.07; H, 1.15; N, 0.00. Found: C, 32.60; H, 1.30; N 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.80 (ddqd, J = 8.8, 5.7, 0.7, 0.3 Hz, 1H), 7.34 (dm, J = 8.1 Hz, 1H), 7.26 (dddq, J = 8.8, 7.4, 2.4, 0.7 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 164.7 (dq, J = 258.5, 1.1 Hz, CF), 147.5 (dp, J = 11.0, 1.5 Hz, C), 129.7 (dq, J = 9.7, 4.8 Hz, CH), 121.7 (q, J = 272.7 Hz, CF3), 119.5 (qdd, J = 33.6, 4.2, 1.2 Hz, C), 115.9 (d, J = 21.7 Hz, CH), 110.7 (dd, J = 26.7, 1.3 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 41.9 (qd, J = 5.5, 1.4 Hz), -61.0 (ddq, J = 5.5, 1.6, 0.7 Hz), -101.4 (dddq, J = 8.1, 7.4, 5.7, 1.6 Hz). EI-MS m/z (calc. 262.0): 262.0 (66%, M+?), 179.1 (79%), 151.1 (100%), 101.1 (53%). IR (neat) cm-1: 1458.7, 1312.3, 1135.1, 1107.2, 814.1.Bis(5-fluoro-2-(trifluoromethyl)phenyl) sulfate (1h-2):Obtained during 1h synthesis in 55% yield (vide supra).Anal. Calcd for C14H6F8O4S: C, 39.84; H, 1.43; N, 0.00. Found: C, 39.94; H, 1.34; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.76 (ddqd, J = 8.8, 5.8, 0.6, 0.3 Hz, 2H), 7.46 (ddqd, J = 8.7, 2.4, 0.6, 0.3 Hz, 2H), 7.20 (dddq, J = 8.8, 7.4, 2.4, 0.7 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ: 164.7 (dq, J = 257.4, 1.1 Hz, CF), 148.0 (dq, J = 11.2, 1.6 Hz, C), 129.4 (dq, J = 10.1, 4.9 Hz, CH), 121.9 (q, J = 272.7 Hz, CF3), 119.1 (qd, J = 33.3, 4.1 Hz, C), 114.9 (d, J = 21.8 Hz, CH), 110.3 (d, J = 26.8 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: -61.0 (dh, J = 1.7, 0.7 Hz), -102.1 (dddq, J = 8.7, 7.4, 5.8, 1.7 Hz). EI-MS m/z (calc. 422.0): 422.0 (100%, M+?), 243.0 (78%), 179.1 (61%), 151.1 (66%), 101.1 (52%). IR (neat) cm-1:1128.3, 1109.0, 825.0.2-Fluorophenyl sulfurofluoridate (1i)General procedure was followed using 1.0 equiv of 2-fluorophenol (1.12 g, 0.893 mL, 10 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (95:5) to afford analytically pure title compound as a highly volatile colorless oil (1.64 g, 85%).1H NMR (400 MHz, CDCl3) δ: 7.45 – 7.37 (m, 2H), 7.32 – 7.22 (m, 2H). 13C{1H} NMR (125 MHz, CDCl3) δ: 153.6 (dd, J = 254.6, 0.6 Hz, CF), 137.2 (dd, J = 13.1, 0.9 Hz, C), 130.1 (d, J = 7.1 Hz, CH), 125.1 (d, J = 4.1 Hz, CH), 123.3 (t, J = 0.9 Hz, CH), 117.9 (d, J = 17.9 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 38.6 (dd, J = 10.3, 1.2 Hz), -128.3 (ddddd, J = 10.3, 9.9, 7.3, 4.7, 1.3 Hz). EI-MS m/z (calc. 194.0): 194.0 (80%, M+?), 111.0 (47%), 83.0 (100%), 57.0 (44%). IR (neat) cm-1: 1499.3, 1450.8, 1232.6, 942.1, 761.2.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Ma</Author><Year>2019</Year><RecNum>75</RecNum><DisplayText><style face="superscript">10e</style></DisplayText><record><rec-number>75</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1563385625">75</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ma, C.</author><author>Zhao, C. Q.</author><author>Xu, X. T.</author><author>Li, Z. M.</author><author>Wang, X. Y.</author><author>Zhang, K.</author><author>Mei, T. S.</author></authors></contributors><auth-address>State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.&#xD;School of Chemical &amp; Environmental Engineering , Wuyi University , Jiangmen 529020 , China.</auth-address><titles><title>Nickel-Catalyzed Carboxylation of Aryl and Heteroaryl Fluorosulfates Using Carbon Dioxide</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>2464-2467</pages><volume>21</volume><number>7</number><edition>2019/03/27</edition><dates><year>2019</year><pub-dates><date>Apr 5</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>30912447</accession-num><urls><related-urls><url> sulfurofluoridate (1j)General procedure was followed using 1.0 equiv of 2-methyl-4-nitrophenol (306 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (85:15) to afford analytically pure title compound as a faintly yellow oil (405 mg, 86%).Anal. Calcd for C7H6FNO5S: C, 35.75; H, 2.57; N, 5.96. Found: C, 35.59; H, 2.39; N, 6.36. 1H NMR (400 MHz, CDCl3) δ: 8.27 – 8.21 (m, 1H), 8.19 (ddq, J = 9.0, 2.8, 0.6 Hz, 1H), 7.52 (ddp, J = 9.0, 1.5, 0.4 Hz, 1H), 2.51 (br. s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 152.2 (d, J = 1.0 Hz, C), 147.0 (C), 132.9 (d, J = 1.0 Hz, C), 127.5 (CH), 123.3 (CH), 122.1 (d, J = 1.3 Hz, CH), 16.3 (d, J = 1.2 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: 40.3 (dq, J = 1.5, 0.7 Hz). EI-MS m/z (calc. 235.0): 235.0 (100%, M+?), 219.0 (15%), 205.0 (49%), 177.0 (38%). IR (neat) cm-1: 1530.0, 1449.3, 1349.8, 1233.8, 1222.0, 800.44-Acetyl-2-methylphenyl sulfurofluoridate (1k)General procedure was followed using 1.0 equiv of 4-acetyl-2-methylphenol (300 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (85:15) to afford analytically pure title compound as a colorless oil (450 mg, 97%).Anal. Calcd for C9H9FO4S: C, 46.55; H, 3.91; N, 0.00. Found: C, 46.80; H, 3.49; N 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.95 – 7.90 (m, 1H), 7.88 (ddq, J = 8.6, 2.3, 0.6 Hz, 1H), 7.42 (ddp, J = 8.6, 1.6, 0.4 Hz, 1H), 2.62 (s, 3H), 2.45 (br. s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 196.4 (C=O), 151.7 (d, J = 1.0 Hz, C), 136.9 (C), 132.3 (CH), 131.2 (d, J = 0.9 Hz, C), 128.0 (CH), 121.2 (d, J = 1.2 Hz, CH), 26.7 (CH3), 16.1 (d, J = 1.3 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: 39.6 (dq, J = 1.6, 0.8 Hz). EI-MS m/z (calc. 232.0): 232.0 (4%, M+?), 217.0 (100%), 134.0 (25%). IR (neat) cm-1: 1689.1, 1446.9, 1231.2, 1098.5, 806.2.4-Chloro-2-methylphenyl sulfurofluoridate (1l)General procedure was followed using 1.0 equiv of 4-chloro-2-methylphenol (285 mg, 2.0 mmol). The intermediate phenolate salt hindered stirring, therefore full conversion was not reached. The crude material was purified by flash chromatography on silica gel using PE/EtOAc (98:2) to afford analytically pure title compound as a colorless oil (256 mg, 57%).Anal. Calcd for C7H6ClFO3S: C, 37.43; H, 2.69; N, 0.00. Found: C, 37.85; H, 2.30; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.34 – 7.29 (m, 1H), 7.29 – 7.24 (m, 2H), 2.37 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 147.3 (d, J = 1.0 Hz, C), 134.1 (C), 132.5 (d, J = 0.9 Hz, C), 132.1 (CH), 127.8 (CH), 122.3 (d, J = 1.1 Hz, CH), 16.0 (d, J = 1.3 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: 38.7 (br. s). EI-MS m/z (calc. 224.0): 224.0 (98%, M+?), 226.0 (32%, M+?+2), 141.0 (100%), 143.0 (33%), 77.0 (96%). IR (neat) cm-1: 1446.6, 1232.2, 1099.4, 863.8, 805.2.4-Formyl-2-methoxyphenyl sulfurofluoridate (1m)General procedure was followed using 1.0 equiv of 4-hydroxy-3-methoxybenzaldehyde (304 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (7:3) to afford analytically pure title compound as an oxygen-sensitive colorless oil that solidified on standing (451 mg, 96%).Melting point: 49 – 50 °C. 1H NMR (400 MHz, CDCl3) δ: 10.00 (s, 1H), 7.59 (br. d, J = 1.5 Hz, 1H), 7.55 – 7.49 (m, 2H), 4.01 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 190.3 (CHO), 152.0 (d, J = 0.9 Hz, C), 142.8 (d, J = 1.3 Hz, C), 137.0 (C), 124.0 (CH), 123.1 (d, J = 0.9 Hz, CH), 112.1 (CH), 56.5 (CH3). 19F NMR (376 MHz, CDCl3) δ: 40.5 (d, J = 1.0 Hz). EI-MS m/z (calc. 234.0): 234.2 (100%, M+?), 151.2 (44%), 95.2 (33%), 77.2 (44%). IR (neat) cm-1: 1699.7, 1687.5, 1447.6, 1229.4, 904.8. The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Dong</Author><Year>2014</Year><RecNum>31</RecNum><DisplayText><style face="superscript">11a</style></DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554799045">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dong, J.</author><author>Krasnova, L.</author><author>Finn, M. G.</author><author>Sharpless, K. B.</author></authors></contributors><auth-address>Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037 (USA).</auth-address><titles><title>Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry</title><secondary-title>Angew Chem Int Ed Engl</secondary-title></titles><periodical><full-title>Angew Chem Int Ed Engl</full-title><abbr-1>Angew. Chem. Int. Ed.</abbr-1></periodical><pages>9430-48</pages><volume>53</volume><number>36</number><edition>2014/08/13</edition><keywords><keyword>Affinity Labels</keyword><keyword>Click Chemistry/*methods</keyword><keyword>Drug Discovery</keyword><keyword>Fluorides/*chemistry</keyword><keyword>Oxidation-Reduction</keyword><keyword>Sulfur Compounds/*chemistry</keyword><keyword>SuFEx</keyword><keyword>aryl fluorosulfate</keyword><keyword>click chemistry</keyword><keyword>diarylsulfate</keyword><keyword>sulfuryl fluoride</keyword></keywords><dates><year>2014</year><pub-dates><date>Sep 1</date></pub-dates></dates><isbn>1521-3773 (Electronic)&#xD;1433-7851 (Linking)</isbn><accession-num>25112519</accession-num><urls><related-urls><url> sulfurofluoridate (1n)Modified procedure was followed using 1.0 equiv of 2-hydroxybenzaldehyde (244 mg, 212 ?L 2.0 mmol), DIPEA (775 mg, 1.05 mL, 6 mmol, 3.0 equiv) as base and neat TFA (2.0 mL) as acid. The crude material was purified by flash chromatography on silica gel using PE/EtOAc (8:2) to afford analytically pure title compound as an oxygen sensitive colorless oil (315 mg, 77%).1H NMR (400 MHz, CDCl3) δ: 10.32 (t, J = 0.6 Hz, 1H), 8.03 (ddd, J = 7.7, 1.9, 0.4 Hz, 1H), 7.76 (ddd, J = 8.3, 7.5, 1.9 Hz, 1H), 7.60 (dddd, J = 7.7, 7.5, 1.1, 0.6 Hz, 1H), 7.50 (dddd, J = 8.3, 1.7, 1.1, 0.4 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 186.2 (d, J = 0.9 Hz, CHO), 150.6 (d, J = 0.8 Hz, C), 135.9 (CH), 130.8 (CH), 129.3 (CH), 128.1 (C), 122.1 (d, J = 0.9 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 38.8 (dd, J = 1.7, 0.6 Hz). EI-MS m/z (calc. 204.0): 204.0 (2%, M+?), 203.0 (11%), 120.0 (100%), 92.2 (46%). IR (neat) cm-1:1699.6, 1481.8, 1231.5, 911.0, 774.4.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Liang</Author><Year>2015</Year><RecNum>43</RecNum><DisplayText><style face="superscript">10b</style></DisplayText><record><rec-number>43</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555622948">43</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Liang, Q.</author><author>Xing, P.</author><author>Huang, Z.</author><author>Dong, J.</author><author>Sharpless, K. B.</author><author>Li, X.</author><author>Jiang, B.</author></authors></contributors><auth-address>daggerShanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China.&#xD;double daggerCAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.&#xD;section signDepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.</auth-address><titles><title>Palladium-Catalyzed, Ligand-Free Suzuki Reaction in Water Using Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>1942-5</pages><volume>17</volume><number>8</number><edition>2015/04/10</edition><dates><year>2015</year><pub-dates><date>Apr 17</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>25856416</accession-num><urls><related-urls><url> sulfurofluoridate (1o)General procedure was followed using 1.0 equiv of 2-hydroxybenzonitrile (1.19 g, 10 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (8:2) to afford analytically pure title compound as a colorless oil (1.71 g, 85%).1H NMR (400 MHz, CDCl3) δ: 7.81 (ddd, J = 7.8, 1.7, 0.4 Hz, 1H), 7.77 (ddd, J = 8.5, 7.8, 1.7 Hz, 1H), 7.57 (td, J = 7.8, 1.1 Hz, 1H), 7.57 (dddd, J = 8.5, 1.3, 1.1 Hz, 0.4 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 149.9 (d, J = 1.0 Hz, C), 135.0 (CH), 134.5 (CH), 129.2 (CH), 122.3 (d, J = 1.3 Hz, CH), 113.2 (C), 107.4 (d, J = 1.0 Hz, C). 19F NMR (376 MHz, CDCl3) δ: 40.2 (d, J = 1.3 Hz). EI-MS m/z (calc. 201.0): 201.1 (88%, M+?), 118.1 (57%), 90.1 (100%), 63.0 (53%). IR (neat) cm-1: 2239.4, 1448.4, 1235.0, 905.9, 819.1.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Liang</Author><Year>2015</Year><RecNum>43</RecNum><DisplayText><style face="superscript">10b</style></DisplayText><record><rec-number>43</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555622948">43</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Liang, Q.</author><author>Xing, P.</author><author>Huang, Z.</author><author>Dong, J.</author><author>Sharpless, K. B.</author><author>Li, X.</author><author>Jiang, B.</author></authors></contributors><auth-address>daggerShanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China.&#xD;double daggerCAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.&#xD;section signDepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.</auth-address><titles><title>Palladium-Catalyzed, Ligand-Free Suzuki Reaction in Water Using Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>1942-5</pages><volume>17</volume><number>8</number><edition>2015/04/10</edition><dates><year>2015</year><pub-dates><date>Apr 17</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>25856416</accession-num><urls><related-urls><url> bis(sulfurofluoridate) (1p)General procedure was followed using 0.5 equiv of 2,3-dimethylbenzene-1.4-diol (414 m, 3 mmol). The crude material was purified by flash chromatography on silica gel using PE/MTBE (7:3) to afford analytically pure title compound as a colorless oil (907 mg, 94%).Anal. Calcd for C8H8F2O6S2: C, 31.79; H, 2.67; N, 0.00. Found: C, 31.80; H, 2.70; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.31 (br. s, 2H), 2.36 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3) δ: 147.8 (d, J = 0.8 Hz, C), 133.0 (d, J = 0.8 Hz, C), 120.0 (d, J = 1.3 Hz, CH), 13.4 (d, J = 1.3 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: 39.1 (dq, J = 1.4, 0.7 Hz). EI-MS m/z (calc. 302.0): 302.2 (73%, M+?), 219.2 (100%), 136.2 (71%), 108.2 (54%). IR (neat) cm-1: 1445.8, 1235.0, 1171.4, 912.0, 797.4.Ethyl 4-((fluorosulfonyl)oxy)benzoate (1q)General procedure was followed using 1.0 equiv of ethyl 4-hydroxybenzoate (166 mg, 1.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (9:1) to afford analytically pure title compound as a colorless oil (234 mg, 94%).1H NMR (400 MHz, CDCl3) δ: 8.18 (AA’MM’X, JAM+AA’ = 9.0 Hz, JAX = 0 Hz, 2H), 7.42 (AA’MM’X, JAM+MM’ = 9.0 Hz, JMX = 1.0 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 164.9 (C), 152.7 (d, J = 0.8 Hz, C), 132.0 (CH), 131.0 (C), 120.9 (d, J = 1.2 Hz, CH), 61.6 (CH2), 14.2 (CH3). 19F NMR (376 MHz, CDCl3) δ: 38.2 (t, J = 1.1 Hz). EI-MS m/z (calc. 248.0): 248.2 (4%, M+?), 220.2 (57%), 203.2 (100%), 120.2 (19%). IR (neat) cm-1: 1719.8, 1450.2, 1273.6, 1232.3, 909.3.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Liang</Author><Year>2015</Year><RecNum>43</RecNum><DisplayText><style face="superscript">10b</style></DisplayText><record><rec-number>43</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1555622948">43</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Liang, Q.</author><author>Xing, P.</author><author>Huang, Z.</author><author>Dong, J.</author><author>Sharpless, K. B.</author><author>Li, X.</author><author>Jiang, B.</author></authors></contributors><auth-address>daggerShanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China.&#xD;double daggerCAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.&#xD;section signDepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.</auth-address><titles><title>Palladium-Catalyzed, Ligand-Free Suzuki Reaction in Water Using Aryl Fluorosulfates</title><secondary-title>Org Lett</secondary-title></titles><periodical><full-title>Organic Letters</full-title><abbr-1>Org. Lett.</abbr-1><abbr-2>Org Lett</abbr-2><abbr-3>OL</abbr-3></periodical><pages>1942-5</pages><volume>17</volume><number>8</number><edition>2015/04/10</edition><dates><year>2015</year><pub-dates><date>Apr 17</date></pub-dates></dates><isbn>1523-7052 (Electronic)&#xD;1523-7052 (Linking)</isbn><accession-num>25856416</accession-num><urls><related-urls><url> 3-((fluorosulfonyl)oxy)thiophene-2-carboxylate (1r)General procedure was followed using 1.0 equiv of methyl 3-hydroxythiophene-2-carboxylate (316 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (85:15) to afford analytically pure title compound as a colorless oil (440 mg, 92%).1H NMR (400 MHz, CDCl3) δ: 7.58 (d, J = 5.5 Hz, 1H), 7.12 (dd, J = 5.5, 1.2 Hz, 1H), 3.94 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 159.7 (C=O), 145.5 (d, J = 1.1 Hz, C), 130.7 (CH), 122.4 (d, J = 1.1 Hz, C), 121.9 (d, J = 0.7 Hz, CH), 52.7 (CH3). 19F NMR (376 MHz, CDCl3) δ: 39.6 (d, J = 1.2 Hz). EI-MS m/z (calc. 234.0): 240.2 (100%, M+?), 209.2 (74%), 126.2 (35%), 101.2 (35%). IR (neat) cm-1: 1719.3, 1438.0, 1234.0, 868.2, 773.6.The obtained analytical data is in agreement with literature.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2Mzc4NjkzOCI+Nzk8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlpoYW5nLCBFLjwvYXV0aG9yPjxhdXRob3I+VGFuZywg

Si48L2F1dGhvcj48YXV0aG9yPkxpLCBTLjwvYXV0aG9yPjxhdXRob3I+V3UsIFAuPC9hdXRob3I+

PGF1dGhvcj5Nb3NlcywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVzcywgSy4gQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Bc3ltY2hlbSBMaWZl

IFNjaWVuY2UgKFRpYW5qaW4pIENvLiwgTHRkLiwgNzEgN3RoIEF2ZW51ZSwgVEVEQSwgVGlhbmpp

biwgMzAwNDU3LCBQLiBSLiBDaGluYS4gemhhbmdlbnh1YW5AYXN5bWNoZW0uY29tLmNuLiYjeEQ7

QXN5bWNoZW0gTGlmZSBTY2llbmNlIChUaWFuamluKSBDby4sIEx0ZC4sIDcxIDd0aCBBdmVudWUs

IFRFREEsIFRpYW5qaW4sIDMwMDQ1NywgUC4gUi4gQ2hpbmEuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSBhbmQgVGhlIFNrYWdncyBJbnN0aXR1dGUgZm9yIENoZW1pY2FsIEJpb2xvZ3ksIFRo

ZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9ydGggVG9ycmV5IFBpbmVzIFJv

YWQsIExhIEpvbGxhLCBDQSwgOTIwMzcsIFVTQS4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWljYWwg

UGh5c2lvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAxMDU1MCBOb3J0aCBU

b3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiYjeEQ7U2Nob29sIG9m

IENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBOb3R0aW5naGFtLCBOb3R0aW5naGFtLCBORzcgMlJE

LCBVSy4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5IGFuZCBUaGUgU2thZ2dzIEluc3RpdHV0

ZSBmb3IgQ2hlbWljYWwgQmlvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAx

MDU1MCBOb3J0aCBUb3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiBz

aGFycGxlc0BzY3JpcHBzLmVkdS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGVtb3Nl

bGVjdGl2ZSBTeW50aGVzaXMgb2YgUG9seXN1YnN0aXR1dGVkIFB5cmlkaW5lcyBmcm9tIEhldGVy

b2FyeWwgRmx1b3Jvc3VsZmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbWlzdHJ5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTY5Mi03PC9wYWdlcz48dm9sdW1lPjIy

PC92b2x1bWU+PG51bWJlcj4xNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTYvMDMvMTk8L2VkaXRpb24+

PGtleXdvcmRzPjxrZXl3b3JkPkNhdGFseXNpczwva2V5d29yZD48a2V5d29yZD5FdG9yaWNveGli

PC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+

UGFsbGFkaXVtLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+UHlyaWRpbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1bGZvbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1enVraSByZWFjdGlvbjwv

a2V5d29yZD48a2V5d29yZD5jaGVtb3NlbGVjdGl2aXR5PC9rZXl3b3JkPjxrZXl3b3JkPmNyb3Nz

LWNvdXBsaW5nIHJlYWN0aW9uczwva2V5d29yZD48a2V5d29yZD5mbHVvcm9zdWxmYXRlczwva2V5

d29yZD48a2V5d29yZD5wYWxsYWRpdW08L2tleXdvcmQ+PGtleXdvcmQ+cG9seXN1YnN0aXR1dGVk

IHB5cmlkaW5lPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIx

LTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjI2OTkwNjkzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNjk5MDY5MzwvdXJsPjwvcmVsYXRl

ZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM0OTI5OTgyPC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxNjAwMTY3PC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2Mzc4NjkzOCI+Nzk8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlpoYW5nLCBFLjwvYXV0aG9yPjxhdXRob3I+VGFuZywg

Si48L2F1dGhvcj48YXV0aG9yPkxpLCBTLjwvYXV0aG9yPjxhdXRob3I+V3UsIFAuPC9hdXRob3I+

PGF1dGhvcj5Nb3NlcywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVzcywgSy4gQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Bc3ltY2hlbSBMaWZl

IFNjaWVuY2UgKFRpYW5qaW4pIENvLiwgTHRkLiwgNzEgN3RoIEF2ZW51ZSwgVEVEQSwgVGlhbmpp

biwgMzAwNDU3LCBQLiBSLiBDaGluYS4gemhhbmdlbnh1YW5AYXN5bWNoZW0uY29tLmNuLiYjeEQ7

QXN5bWNoZW0gTGlmZSBTY2llbmNlIChUaWFuamluKSBDby4sIEx0ZC4sIDcxIDd0aCBBdmVudWUs

IFRFREEsIFRpYW5qaW4sIDMwMDQ1NywgUC4gUi4gQ2hpbmEuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSBhbmQgVGhlIFNrYWdncyBJbnN0aXR1dGUgZm9yIENoZW1pY2FsIEJpb2xvZ3ksIFRo

ZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9ydGggVG9ycmV5IFBpbmVzIFJv

YWQsIExhIEpvbGxhLCBDQSwgOTIwMzcsIFVTQS4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWljYWwg

UGh5c2lvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAxMDU1MCBOb3J0aCBU

b3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiYjeEQ7U2Nob29sIG9m

IENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBOb3R0aW5naGFtLCBOb3R0aW5naGFtLCBORzcgMlJE

LCBVSy4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5IGFuZCBUaGUgU2thZ2dzIEluc3RpdHV0

ZSBmb3IgQ2hlbWljYWwgQmlvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAx

MDU1MCBOb3J0aCBUb3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiBz

aGFycGxlc0BzY3JpcHBzLmVkdS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGVtb3Nl

bGVjdGl2ZSBTeW50aGVzaXMgb2YgUG9seXN1YnN0aXR1dGVkIFB5cmlkaW5lcyBmcm9tIEhldGVy

b2FyeWwgRmx1b3Jvc3VsZmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbWlzdHJ5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTY5Mi03PC9wYWdlcz48dm9sdW1lPjIy

PC92b2x1bWU+PG51bWJlcj4xNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTYvMDMvMTk8L2VkaXRpb24+

PGtleXdvcmRzPjxrZXl3b3JkPkNhdGFseXNpczwva2V5d29yZD48a2V5d29yZD5FdG9yaWNveGli

PC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+

UGFsbGFkaXVtLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+UHlyaWRpbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1bGZvbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1enVraSByZWFjdGlvbjwv

a2V5d29yZD48a2V5d29yZD5jaGVtb3NlbGVjdGl2aXR5PC9rZXl3b3JkPjxrZXl3b3JkPmNyb3Nz

LWNvdXBsaW5nIHJlYWN0aW9uczwva2V5d29yZD48a2V5d29yZD5mbHVvcm9zdWxmYXRlczwva2V5

d29yZD48a2V5d29yZD5wYWxsYWRpdW08L2tleXdvcmQ+PGtleXdvcmQ+cG9seXN1YnN0aXR1dGVk

IHB5cmlkaW5lPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIx

LTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjI2OTkwNjkzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNjk5MDY5MzwvdXJsPjwvcmVsYXRl

ZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM0OTI5OTgyPC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxNjAwMTY3PC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 25Methyl 3-((fluorosulfonyl)oxy)picolinate (1s)General procedure was followed using 1.0 equiv of methyl 3-hydroxypicolinate (306 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using PE/EtOAc (6:4) to afford analytically pure title compound as a colorless oil (379 mg, 81%).Anal. Calcd for C7H6FNO5S: C, 35.75; H, 2.57; N, 5.96. Found: C, 36.03; H, 2.64; N, 6.30. 1H NMR (400 MHz, CDCl3) δ: 8.80 (dd, J = 4.6, 1.4 Hz, 1H), 7.84 (dt, J = 8.4, 1.4 Hz, 1H), 7.66 (dd, J = 8.4, 4.6 Hz, 1H), 4.06 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 162.5 (C=O), 149.4 (CH), 146.4 (d, J = 1.3 Hz, C), 141.4 (d, J = 0.9 Hz, C), 131.1 (CH), 128.2 (CH), 53.4 (CH3). 19F NMR (376 MHz, CDCl3) δ: 42.0 (d, J = 1.4 Hz). EI-MS m/z (calc. 235.0): 232.0 (0%, M+?), 204.1 (21%), 177.2 (100%), 82.1 (54%). IR (neat) cm-1: 1732.7, 1452.1, 1429.8, 1080.3, 906.3.Pyridin-2-yl sulfurofluoridate (1t)General procedure was followed using 1.0 equiv of 2-pyridone (190 mg, 2.0 mmol). The crude material was purified by flash chromatography on silica gel using pentane/DCM (50:50) to afford analytically pure title compound as a highly volatile colorless oil (265 mg, 75%).1H NMR (400 MHz, CDCl3) δ: 8.43 (ddd, J = 4.9, 2.0, 0.8 Hz, 1H), 7.93 (ddd, J = 8.3, 7.4, 2.0 Hz, 1H), 7.41 (ddd, J = 7.4, 4.9, 0.8 Hz, 1H), 7.20 (dt, J = 8.3, 0.8 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 156.3 (d, J = 1.5 Hz, C), 148.6 (CH), 141.2 (CH), 124.2 (CH), 114.1 (d, J = 2.6 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 43.9 (s). EI-MS m/z (calc. 177.0): 177.1 (36%, M+?), 149.1 (100%). IR (neat) cm-1: 1466.1, 1445.7, 1234.3, 1160.5, 910.7.The obtained analytical data is in agreement with literature.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2Mzc4NjkzOCI+Nzk8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlpoYW5nLCBFLjwvYXV0aG9yPjxhdXRob3I+VGFuZywg

Si48L2F1dGhvcj48YXV0aG9yPkxpLCBTLjwvYXV0aG9yPjxhdXRob3I+V3UsIFAuPC9hdXRob3I+

PGF1dGhvcj5Nb3NlcywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVzcywgSy4gQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Bc3ltY2hlbSBMaWZl

IFNjaWVuY2UgKFRpYW5qaW4pIENvLiwgTHRkLiwgNzEgN3RoIEF2ZW51ZSwgVEVEQSwgVGlhbmpp

biwgMzAwNDU3LCBQLiBSLiBDaGluYS4gemhhbmdlbnh1YW5AYXN5bWNoZW0uY29tLmNuLiYjeEQ7

QXN5bWNoZW0gTGlmZSBTY2llbmNlIChUaWFuamluKSBDby4sIEx0ZC4sIDcxIDd0aCBBdmVudWUs

IFRFREEsIFRpYW5qaW4sIDMwMDQ1NywgUC4gUi4gQ2hpbmEuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSBhbmQgVGhlIFNrYWdncyBJbnN0aXR1dGUgZm9yIENoZW1pY2FsIEJpb2xvZ3ksIFRo

ZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9ydGggVG9ycmV5IFBpbmVzIFJv

YWQsIExhIEpvbGxhLCBDQSwgOTIwMzcsIFVTQS4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWljYWwg

UGh5c2lvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAxMDU1MCBOb3J0aCBU

b3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiYjeEQ7U2Nob29sIG9m

IENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBOb3R0aW5naGFtLCBOb3R0aW5naGFtLCBORzcgMlJE

LCBVSy4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5IGFuZCBUaGUgU2thZ2dzIEluc3RpdHV0

ZSBmb3IgQ2hlbWljYWwgQmlvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAx

MDU1MCBOb3J0aCBUb3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiBz

aGFycGxlc0BzY3JpcHBzLmVkdS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGVtb3Nl

bGVjdGl2ZSBTeW50aGVzaXMgb2YgUG9seXN1YnN0aXR1dGVkIFB5cmlkaW5lcyBmcm9tIEhldGVy

b2FyeWwgRmx1b3Jvc3VsZmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbWlzdHJ5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTY5Mi03PC9wYWdlcz48dm9sdW1lPjIy

PC92b2x1bWU+PG51bWJlcj4xNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTYvMDMvMTk8L2VkaXRpb24+

PGtleXdvcmRzPjxrZXl3b3JkPkNhdGFseXNpczwva2V5d29yZD48a2V5d29yZD5FdG9yaWNveGli

PC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+

UGFsbGFkaXVtLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+UHlyaWRpbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1bGZvbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1enVraSByZWFjdGlvbjwv

a2V5d29yZD48a2V5d29yZD5jaGVtb3NlbGVjdGl2aXR5PC9rZXl3b3JkPjxrZXl3b3JkPmNyb3Nz

LWNvdXBsaW5nIHJlYWN0aW9uczwva2V5d29yZD48a2V5d29yZD5mbHVvcm9zdWxmYXRlczwva2V5

d29yZD48a2V5d29yZD5wYWxsYWRpdW08L2tleXdvcmQ+PGtleXdvcmQ+cG9seXN1YnN0aXR1dGVk

IHB5cmlkaW5lPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIx

LTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjI2OTkwNjkzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNjk5MDY5MzwvdXJsPjwvcmVsYXRl

ZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM0OTI5OTgyPC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxNjAwMTY3PC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2Mzc4NjkzOCI+Nzk8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlpoYW5nLCBFLjwvYXV0aG9yPjxhdXRob3I+VGFuZywg

Si48L2F1dGhvcj48YXV0aG9yPkxpLCBTLjwvYXV0aG9yPjxhdXRob3I+V3UsIFAuPC9hdXRob3I+

PGF1dGhvcj5Nb3NlcywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVzcywgSy4gQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Bc3ltY2hlbSBMaWZl

IFNjaWVuY2UgKFRpYW5qaW4pIENvLiwgTHRkLiwgNzEgN3RoIEF2ZW51ZSwgVEVEQSwgVGlhbmpp

biwgMzAwNDU3LCBQLiBSLiBDaGluYS4gemhhbmdlbnh1YW5AYXN5bWNoZW0uY29tLmNuLiYjeEQ7

QXN5bWNoZW0gTGlmZSBTY2llbmNlIChUaWFuamluKSBDby4sIEx0ZC4sIDcxIDd0aCBBdmVudWUs

IFRFREEsIFRpYW5qaW4sIDMwMDQ1NywgUC4gUi4gQ2hpbmEuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSBhbmQgVGhlIFNrYWdncyBJbnN0aXR1dGUgZm9yIENoZW1pY2FsIEJpb2xvZ3ksIFRo

ZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9ydGggVG9ycmV5IFBpbmVzIFJv

YWQsIExhIEpvbGxhLCBDQSwgOTIwMzcsIFVTQS4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWljYWwg

UGh5c2lvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAxMDU1MCBOb3J0aCBU

b3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiYjeEQ7U2Nob29sIG9m

IENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBOb3R0aW5naGFtLCBOb3R0aW5naGFtLCBORzcgMlJE

LCBVSy4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5IGFuZCBUaGUgU2thZ2dzIEluc3RpdHV0

ZSBmb3IgQ2hlbWljYWwgQmlvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAx

MDU1MCBOb3J0aCBUb3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiBz

aGFycGxlc0BzY3JpcHBzLmVkdS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGVtb3Nl

bGVjdGl2ZSBTeW50aGVzaXMgb2YgUG9seXN1YnN0aXR1dGVkIFB5cmlkaW5lcyBmcm9tIEhldGVy

b2FyeWwgRmx1b3Jvc3VsZmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbWlzdHJ5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTY5Mi03PC9wYWdlcz48dm9sdW1lPjIy

PC92b2x1bWU+PG51bWJlcj4xNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTYvMDMvMTk8L2VkaXRpb24+

PGtleXdvcmRzPjxrZXl3b3JkPkNhdGFseXNpczwva2V5d29yZD48a2V5d29yZD5FdG9yaWNveGli

PC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+

UGFsbGFkaXVtLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+UHlyaWRpbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1bGZvbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1enVraSByZWFjdGlvbjwv

a2V5d29yZD48a2V5d29yZD5jaGVtb3NlbGVjdGl2aXR5PC9rZXl3b3JkPjxrZXl3b3JkPmNyb3Nz

LWNvdXBsaW5nIHJlYWN0aW9uczwva2V5d29yZD48a2V5d29yZD5mbHVvcm9zdWxmYXRlczwva2V5

d29yZD48a2V5d29yZD5wYWxsYWRpdW08L2tleXdvcmQ+PGtleXdvcmQ+cG9seXN1YnN0aXR1dGVk

IHB5cmlkaW5lPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIx

LTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjI2OTkwNjkzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNjk5MDY5MzwvdXJsPjwvcmVsYXRl

ZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM0OTI5OTgyPC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxNjAwMTY3PC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 25Quinolin-8-yl sulfurofluoridate (1u)General procedure was followed using 1.0 equiv of quinolin-8-ol (290 mg, 2.0 mmol). The crude material was filtered through silica using PE/EtOAc (6:4) and recrystallized from heptane/MTBE (9:1) to afford analytically pure title compound as a white solid (348 mg, 77%).Melting point: 64 – 65 °C. 1H NMR (400 MHz, CDCl3) δ: 9.07 (ddd, J = 4.3, 1.7, 0.3 Hz, 1H), 8.25 (ddd, J = 8.4, 1.7, 0.3 Hz, 1H), 7.90 (ddt, J = 8.3, 1.3, 0.3 Hz, 1H), 7.76 (dddd, J = 7.7, 1.3, 1.2, 0.3 Hz, 1H), 7.60 (ddd, J = 8.2, 7.7, 0.3 Hz, 1H), 7.56 (ddt, J = 8.4, 4.3 Hz, 0.3 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 151.8 (CH), 145.9 (d, J = 1.2 Hz, C), 140.4 (C), 135.9 (CH), 129.9 (C), 128.7 (CH), 125.9 (CH), 122.7 (CH), 121.3 (d, J = 0.9 Hz, CH). 19F NMR (376 MHz, CDCl3) δ: 40.1 (d, J = 1.2 Hz). EI-MS m/z (calc. 227.0): 227.2 (95%, M+?), 144.2 (47%), 116.2 (100%), 89.16 (42%). IR (neat) cm-1: 1941.2, 1442.0, 1427.1, 846.9, 786.8.The obtained analytical data is in agreement with literature.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2Mzc4NjkzOCI+Nzk8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlpoYW5nLCBFLjwvYXV0aG9yPjxhdXRob3I+VGFuZywg

Si48L2F1dGhvcj48YXV0aG9yPkxpLCBTLjwvYXV0aG9yPjxhdXRob3I+V3UsIFAuPC9hdXRob3I+

PGF1dGhvcj5Nb3NlcywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVzcywgSy4gQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Bc3ltY2hlbSBMaWZl

IFNjaWVuY2UgKFRpYW5qaW4pIENvLiwgTHRkLiwgNzEgN3RoIEF2ZW51ZSwgVEVEQSwgVGlhbmpp

biwgMzAwNDU3LCBQLiBSLiBDaGluYS4gemhhbmdlbnh1YW5AYXN5bWNoZW0uY29tLmNuLiYjeEQ7

QXN5bWNoZW0gTGlmZSBTY2llbmNlIChUaWFuamluKSBDby4sIEx0ZC4sIDcxIDd0aCBBdmVudWUs

IFRFREEsIFRpYW5qaW4sIDMwMDQ1NywgUC4gUi4gQ2hpbmEuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSBhbmQgVGhlIFNrYWdncyBJbnN0aXR1dGUgZm9yIENoZW1pY2FsIEJpb2xvZ3ksIFRo

ZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9ydGggVG9ycmV5IFBpbmVzIFJv

YWQsIExhIEpvbGxhLCBDQSwgOTIwMzcsIFVTQS4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWljYWwg

UGh5c2lvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAxMDU1MCBOb3J0aCBU

b3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiYjeEQ7U2Nob29sIG9m

IENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBOb3R0aW5naGFtLCBOb3R0aW5naGFtLCBORzcgMlJE

LCBVSy4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5IGFuZCBUaGUgU2thZ2dzIEluc3RpdHV0

ZSBmb3IgQ2hlbWljYWwgQmlvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAx

MDU1MCBOb3J0aCBUb3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiBz

aGFycGxlc0BzY3JpcHBzLmVkdS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGVtb3Nl

bGVjdGl2ZSBTeW50aGVzaXMgb2YgUG9seXN1YnN0aXR1dGVkIFB5cmlkaW5lcyBmcm9tIEhldGVy

b2FyeWwgRmx1b3Jvc3VsZmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbWlzdHJ5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTY5Mi03PC9wYWdlcz48dm9sdW1lPjIy

PC92b2x1bWU+PG51bWJlcj4xNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTYvMDMvMTk8L2VkaXRpb24+

PGtleXdvcmRzPjxrZXl3b3JkPkNhdGFseXNpczwva2V5d29yZD48a2V5d29yZD5FdG9yaWNveGli

PC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+

UGFsbGFkaXVtLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+UHlyaWRpbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1bGZvbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1enVraSByZWFjdGlvbjwv

a2V5d29yZD48a2V5d29yZD5jaGVtb3NlbGVjdGl2aXR5PC9rZXl3b3JkPjxrZXl3b3JkPmNyb3Nz

LWNvdXBsaW5nIHJlYWN0aW9uczwva2V5d29yZD48a2V5d29yZD5mbHVvcm9zdWxmYXRlczwva2V5

d29yZD48a2V5d29yZD5wYWxsYWRpdW08L2tleXdvcmQ+PGtleXdvcmQ+cG9seXN1YnN0aXR1dGVk

IHB5cmlkaW5lPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIx

LTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjI2OTkwNjkzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNjk5MDY5MzwvdXJsPjwvcmVsYXRl

ZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM0OTI5OTgyPC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxNjAwMTY3PC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT43OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Nzk8L3JlYy1udW1iZXI+

PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ0cHdkMGYwd3ByczJ2a2Uwc2FkeGZy

dHh2dmR3OWRkZWZ3YXYiIHRpbWVzdGFtcD0iMTU2Mzc4NjkzOCI+Nzk8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlpoYW5nLCBFLjwvYXV0aG9yPjxhdXRob3I+VGFuZywg

Si48L2F1dGhvcj48YXV0aG9yPkxpLCBTLjwvYXV0aG9yPjxhdXRob3I+V3UsIFAuPC9hdXRob3I+

PGF1dGhvcj5Nb3NlcywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlNoYXJwbGVzcywgSy4gQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Bc3ltY2hlbSBMaWZl

IFNjaWVuY2UgKFRpYW5qaW4pIENvLiwgTHRkLiwgNzEgN3RoIEF2ZW51ZSwgVEVEQSwgVGlhbmpp

biwgMzAwNDU3LCBQLiBSLiBDaGluYS4gemhhbmdlbnh1YW5AYXN5bWNoZW0uY29tLmNuLiYjeEQ7

QXN5bWNoZW0gTGlmZSBTY2llbmNlIChUaWFuamluKSBDby4sIEx0ZC4sIDcxIDd0aCBBdmVudWUs

IFRFREEsIFRpYW5qaW4sIDMwMDQ1NywgUC4gUi4gQ2hpbmEuJiN4RDtEZXBhcnRtZW50IG9mIENo

ZW1pc3RyeSBhbmQgVGhlIFNrYWdncyBJbnN0aXR1dGUgZm9yIENoZW1pY2FsIEJpb2xvZ3ksIFRo

ZSBTY3JpcHBzIFJlc2VhcmNoIEluc3RpdHV0ZSwgMTA1NTAgTm9ydGggVG9ycmV5IFBpbmVzIFJv

YWQsIExhIEpvbGxhLCBDQSwgOTIwMzcsIFVTQS4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWljYWwg

UGh5c2lvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAxMDU1MCBOb3J0aCBU

b3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiYjeEQ7U2Nob29sIG9m

IENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBOb3R0aW5naGFtLCBOb3R0aW5naGFtLCBORzcgMlJE

LCBVSy4mI3hEO0RlcGFydG1lbnQgb2YgQ2hlbWlzdHJ5IGFuZCBUaGUgU2thZ2dzIEluc3RpdHV0

ZSBmb3IgQ2hlbWljYWwgQmlvbG9neSwgVGhlIFNjcmlwcHMgUmVzZWFyY2ggSW5zdGl0dXRlLCAx

MDU1MCBOb3J0aCBUb3JyZXkgUGluZXMgUm9hZCwgTGEgSm9sbGEsIENBLCA5MjAzNywgVVNBLiBz

aGFycGxlc0BzY3JpcHBzLmVkdS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGVtb3Nl

bGVjdGl2ZSBTeW50aGVzaXMgb2YgUG9seXN1YnN0aXR1dGVkIFB5cmlkaW5lcyBmcm9tIEhldGVy

b2FyeWwgRmx1b3Jvc3VsZmF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2hlbWlzdHJ5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2hlbWlzdHJ5

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTY5Mi03PC9wYWdlcz48dm9sdW1lPjIy

PC92b2x1bWU+PG51bWJlcj4xNjwvbnVtYmVyPjxlZGl0aW9uPjIwMTYvMDMvMTk8L2VkaXRpb24+

PGtleXdvcmRzPjxrZXl3b3JkPkNhdGFseXNpczwva2V5d29yZD48a2V5d29yZD5FdG9yaWNveGli

PC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTdHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+

UGFsbGFkaXVtLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtleXdvcmQ+UHlyaWRpbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1bGZvbmVzLypjaGVtaWNh

bCBzeW50aGVzaXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlN1enVraSByZWFjdGlvbjwv

a2V5d29yZD48a2V5d29yZD5jaGVtb3NlbGVjdGl2aXR5PC9rZXl3b3JkPjxrZXl3b3JkPmNyb3Nz

LWNvdXBsaW5nIHJlYWN0aW9uczwva2V5d29yZD48a2V5d29yZD5mbHVvcm9zdWxmYXRlczwva2V5

d29yZD48a2V5d29yZD5wYWxsYWRpdW08L2tleXdvcmQ+PGtleXdvcmQ+cG9seXN1YnN0aXR1dGVk

IHB5cmlkaW5lPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTIx

LTM3NjUgKEVsZWN0cm9uaWMpJiN4RDswOTQ3LTY1MzkgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjI2OTkwNjkzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yNjk5MDY5MzwvdXJsPjwvcmVsYXRl

ZC11cmxzPjwvdXJscz48Y3VzdG9tMj5QTUM0OTI5OTgyPC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMDAyL2NoZW0uMjAxNjAwMTY3PC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 25Methyl 2-(((trifluoromethyl)sulfonyl)oxy)benzoate (5a)Neat Tf2O (1.693 g, 1.02 mL, 6.0 mmol, 1.2 equiv) was added dropwise to a solution of methyl 2-hydroxybenzoate (761 mg, .650 ?L, 5 mmol) and pyridine (791 mg, 650 ?L, 10 mmol, 2.0 equiv) in DCM (10 mL) at 0 °C and the resulting suspension was stirred for 6 hours. It was then diluted with DCM (40 mL), washed with 1N HCl (2 × 50 mL), water (50 mL) and sat. aq NaHCO3 (50 mL), dried with Na2SO4 and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel using PE/EtOAc (9:1) to afford the pure target material as a faintly straw-colored oil (1.286 g, 91%).1H NMR (400 MHz, CDCl3) δ: 8.10 (ddd, J = 7.8, 1.9, 0.4 Hz, 1H), 7.63 (ddd, J = 8.3, 7.5, 1.9 Hz, 1H), 7.48 (ddd, J = 7.8, 7.5, 1.1 Hz, 1H), 7.31 (dp, J = 8.3, 0.4 Hz, 1H), 3.97 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 164.2 (C=O), 148.3 (C), 134.3 (CH), 132.8 (CH), 128.4 (CH), 124.4 (C), 122.7 (q, J = 1.3 Hz, CH), 118.7 (q, J = 320.6 Hz, CF3), 52.6 (CH3). 19F NMR (376 MHz, CDCl3) δ: -74.0 (s). EI-MS m/z (calc. 284.0): 284.2 (61%, M+?), 253.2 (45%), 189.2 (100%), 95.2 (32%). IR (neat) cm-1: 1728.7, 1422.4, 1201.6, 1135.4, 888.8.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Jourden</Author><Year>2011</Year><RecNum>78</RecNum><DisplayText><style face="superscript">26</style></DisplayText><record><rec-number>78</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1563786458">78</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jourden, J. L.</author><author>Daniel, K. B.</author><author>Cohen, S. M.</author></authors></contributors><auth-address>Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.</auth-address><titles><title>Investigation of Self-immolative Linkers in the Design of Hydrogen Peroxide Activated Metalloprotein Inhibitors</title><secondary-title>Chem Commun (Camb)</secondary-title></titles><periodical><full-title>Chem Commun (Camb)</full-title><abbr-1>Chem. Commun.</abbr-1></periodical><pages>7968-70</pages><volume>47</volume><number>28</number><edition>2011/06/17</edition><keywords><keyword>*Drug Design</keyword><keyword>Hydrogen Peroxide/*chemistry</keyword><keyword>*Matrix Metalloproteinase Inhibitors</keyword><keyword>Matrix Metalloproteinases/chemistry/metabolism</keyword><keyword>Metals/metabolism</keyword><keyword>Protease Inhibitors/*chemistry/metabolism/*pharmacology</keyword></keywords><dates><year>2011</year><pub-dates><date>Jul 28</date></pub-dates></dates><isbn>1364-548X (Electronic)&#xD;1359-7345 (Linking)</isbn><accession-num>21677985</accession-num><urls><related-urls><url> 2-((methylsulfonyl)oxy)benzoate (6a)Neat MsCl (550 mg, 374 ?L, 4.8 mmol, 1.2 equiv) was added dropwise to a solution of methyl 2-hydroxybenzoate (609 mg, .520 ?L, 4 mmol) and TEA (567 mg, 781 ?L, 6.4 mmol, 1.4 equiv) in DCM (8 mL) at 0 °C and the resulting suspension was stirred for 6 hours. It was left to stir for 12 hours at ambient temperature and then diluted with DCM (40 mL), washed with 1N HCl (2 × 50 mL), water (50 mL) and sat. aq NaHCO3 (50 mL), dried with Na2SO4 and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel using PE/EtOAc (6:4) to afford the pure target material as a viscous colorless oil (850 mg, 92%).1H NMR (400 MHz, CDCl3) δ: 7.98 (ddd, J = 7.8, 1.8, 0.4 Hz, 1H), 7.58 (ddd, J = 8.3, 7.4, 1.8 Hz, 1H), 7.44 (ddd, J = 8.3, 1.2, 0.4 Hz, 1H), 7.39 (ddd, J = 7.8, 7.4, 1.2 Hz, 1H), 3.93 (s, 4H), 3.28 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 164.7, 147.7, 133.8, 132.0, 127.2, 124.4, 124.1, 52.4, 38.4. EI-MS m/z (calc. 230.0): 230.1 (18%, M+?), 199.1 (20%), 152.1 (100%), 120.1 (86%), 92.1 (49%). IR (neat) cm-1: 1722.2, 1157.2, 1079.2, 867.5.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Percec</Author><Year>1995</Year><RecNum>77</RecNum><DisplayText><style face="superscript">27</style></DisplayText><record><rec-number>77</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1563783931">77</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Percec, Virgil</author><author>Bae, Jin-Young</author><author>Zhao, Mingyang</author><author>Hill, Dale H.</author></authors></contributors><titles><title>Aryl Mesylates in Metal-Catalyzed Homocoupling and Cross-Coupling Reactions. 1. Functional Symmetrical Biaryls from Phenols via Nickel-Catalyzed Homocoupling of Their Mesylates</title><secondary-title>The Journal of Organic Chemistry</secondary-title></titles><periodical><full-title>The Journal of Organic Chemistry</full-title><abbr-1>J. Org. Chem.</abbr-1></periodical><pages>176-185</pages><volume>60</volume><number>1</number><section>176</section><dates><year>1995</year></dates><isbn>0022-3263&#xD;1520-6904</isbn><urls></urls><electronic-resource-num>10.1021/jo00106a031</electronic-resource-num></record></Cite></EndNote>27Typical small-scale Catellani procedure (0.4 mmol)Methyl 6-butyl-(1,1'-biphenyl)-2-carboxylate (4aaa)Palladium acetate (4.5 mg, 0.02 mmol, 5 mol%) and fine dry potassium carbonate (332 mg, 2.4 mmol, 6.0 equiv) was weighed into a 5 mL screw-cap pressure vial which was then capped and subjected to 5 vacuum/argon cycles. Norbornene (18.8 mg, 0.20 mmol, 0.5 equiv), phenylboronic acid (3a, 61.0 mg, 0.50 mmol, 1.25 equiv) and methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 93.7 mg, 0.40 mmol) were weighed into a 1.5 mL screw-cap vial and briefly flushed with argon. 1-bromobutane (2a, 65.8 mg, 51.9 ?L 0.48 mmol, 1.20 equiv) and DMF (0.8 mL) were then added under inert atmosphere. The obtained solution was transferred via 1mL syringe to the 5 mL screw-cap pressure vial containing the catalyst and the base. The pressure vial was immediately immersed into a pre-heated oil bath (70 °C) and the reaction was conducted for 4 hours under vigorous stirring.The blackened reaction mixture was poured into water (40 mL) and extracted with PE (20 mL). The organic phase was then washed with water (40 mL) and brine (10 mL), dried with Na2SO4 and concentrated under reduced pressure. The black residue was purified by flash chromatography on silica gel using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous colorless oil (88 mg, 82%). Analytical information provided with the scaled-up procedure (vide infra).Typical scaled-up Catellani procedure (4.0 mmol)Methyl 6-butyl-(1,1'-biphenyl)-2-carboxylate (4aaa)Palladium acetate (45 mg, 0.20 mmol, 5 mol%) and fine dry potassium carbonate (2.76 g, 20 mmol, 5.0 equiv) was weighed into a 25 mL round-bottom flask, which was then capped with a septa and subjected to 5 vacuum/argon cycles. Norbornene (188 mg, 2.0 mmol, 0.5 equiv), phenylboronic acid (3a, 610 mg, 5.0 mmol, 1.25 equiv) and methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 937 mg, 673 ?L, 4.0 mmol) were weighed into a 10 mL flask and briefly flushed with argon. 1-bromobutane (2a, 658 mg, 519 ?L, 4.8 mmol, 1.20 equiv) and DMF (8.0 mL) were then added under inert atmosphere. The obtained solution was transferred via 10 mL syringe to the 25 mL round-bottom flask containing the catalyst and the base. The flask was immediately immersed into a pre-heated oil bath (70 °C) and the reaction was conducted for 4 hours under vigorous stirring.The blackened reaction mixture was poured into water (200 mL) and extracted with PE (60 mL). The organic phase was then washed with water (100 mL) and brine (20 mL), dried with Na2SO4 and concentrated under reduced pressure. The black residue was purified by flash chromatography on silica gel using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous colorless oil (879 mg, 82%). Anal. Calcd for C18H20O2: C, 80.56; H, 7.51; N, 0.00. Found: C, 80.56; H, 7.64; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.65 (dd, J = 7.6, 1.5 Hz, 1H), 7.42 (dd, J = 7.7, 1.5 Hz, 1H), 7.41 – 7.39(m, 4H), 7.17 (AA’BB’C, 2H), 3.52 (s, 3H), 2.52 – 2.27 (m, 2H), 1.44 – 1.32 (m, 2H), 1.16 (h, J = 7.3 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.9 (C=O), 142.0 (C), 141.3 (C), 139.8 (C), 132.2 (CH), 131.9 (C), 128.9 (CH), 127.6 (CH), 127.1 (CH), 126.8 (CH), 126.7 (CH), 51.7 (CH3), 33.4 (CH2), 32.8 (CH2), 22.4 (CH2), 13.7 (CH3). EI-MS m/z (calc. 268.1): 268.1 (77%, M+?), 236.2 (84%), 207.2 (74%), 193.2 (60%), 165.3 (100%). IR (neat) cm-1: 2954.3, 1729.6, 1286.7, 1136.8, 761.3.Typical telescoped fluorosulfation – Catellani procedure Methyl 6-butyl-4-chloro-4'-methoxy-(1,1'-biphenyl)-2-carboxylate (4dab)Chamber A of a small two-chamber reactor was charged with 1,1’-sulfonyldiimidazole (496 mg, 2.5 mmol, 1.25 equiv) and potassium fluoride (349 mg, 6.0 mmol, 3.0 equiv). Next, chamber B was charged with methyl 5-chloro-2-hydroxybenzoate (11d, 187mg, 1 mmol, 1.0 equiv) and fine dry potassium carbonate (276 mg, 2 mmol, 2.0 equiv). The reactor was capped and subjected to 5 vacuum – argon cycles. DMF (2 mL) was injected into chamber B and trifluoroacetic acid/water mixture (2 mL, 50:50 v/v) was injected into chamber A through the corresponding septa using a syringe. A short delay followed by gradual gas evolution was observed over the next 30 minutes. Contents of both chambers were vigorously stirred at ambient temperature (20 °C) for 3 hours.Palladium acetate (11.2 mg, 0.05 mmol, 5 mol%), fine dry potassium carbonate (553 mg, 4.0 mmol, 4.0 equiv), norbornene (47.1 mg, 0.50 mmol, 0.5 equiv) and 4-methoxyphenylboronic acid (3b, 182 mg, 1.20 mmol, 1.20 equiv) were weighed into a 5 mL screw-cap pressure vial and the vial was briefly flushed with argon. The suspension from the chamber B of the actively stirred two-chamber reactor was then transferred to this pressure vial via a 3 mL syringe, 1-bromobutane was added (2a, 164 mg, 130 ?L, 1.20 mmol, 1.20 equiv) and the vial was immersed into a pre-heated oil bath (70 °C). The reaction was conducted for 3 hours under vigorous stirring.The blackened reaction mixture was poured into water (200 mL) and extracted with PE (50 mL). The organic phase was then washed with water (100 mL) and brine (20 mL), dried with Na2SO4 and concentrated under reduced pressure. The black residue was purified by flash chromatography on silica gel using PE/MTBE (9:1) as solvent to afford the title compound as a viscous colorless oil (261 mg, 78%).Anal. Calcd for C19H21ClO3: C, 68.57; H, 6.36; N, 0.00. Found: C, 68.63; H, 6.05; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.60 (d, J = 2.3 Hz, 1H), 7.37 (d, J = 2.3 Hz, 1H), 7.05 (AA’XX’, JAX+AA’ = 8.7 Hz, 2H), 6.92 (AA’XX’, JAX+XX’ = 8.7 Hz, 2H), 3.85 (s, 3H), 3.56 (s, 3H), 2.43 – 2.34 (m, 2H), 1.43 – 1.32 (m, 3H), 1.17 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 167.8 (C=O), 158.7 (C), 144.5 (C), 139.5 (C), 133.6 (C), 132.7 (C), 131.7 (CH), 130.8 (C), 130.0 (CH), 126.5 (CH), 113.3 (CH), 55.2 (CH3), 52.1 (CH3), 33.1 (CH2), 32.8 (CH2), 22.3 (CH2), 13.7 (CH3). EI-MS m/z (calc. 332.1): 332.1 (100%, M+?), 334.1 (33%, M+?+2), 300.1 (48%), 272.1 (60%). IR (neat) cm-1: 2954.8, 1734.2, 1284.2, 1242.2, 1153.0, 830.7.Methyl 6-butyl-4-chloro-(1,1'-biphenyl)-2-carboxylate (4daa)Typical small-scale procedure was followed using methyl 5-chloro-2-((fluorosulfonyl)oxy)benzoate (1d, 107 mg, 0.4 mmol). The reaction was conducted for 3 hours. The crude product was purified by flash chromatography using PE/EtOAc (96:4) as solvent to afford the title compound as a viscous colorless oil (93 mg, 77%).Anal. Calcd for C18H19ClO2: C, 71.40; H, 6.33; N, 0.00. Found: C, 71.36; H, 6.47; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.64 (d, J = 2.3 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 7.37 (AA’BB’C, 3H), 7.13 (AA’BB’C, 2H), 3.53 (s, 3H), 2.42 – 2.34 (m, 2H), 1.42 – 1.33 (m, 2H), 1.16 (h, J = 7.3 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 167.5 (C=O), 144.1 (C), 139.9 (C), 138.7 (C), 133.2 (C), 132.9 (C), 131.9 (CH), 128.9 (CH), 127.8 (CH), 127.2 (CH), 126.7 (CH), 52.0 (CH3), 33.1 (CH2), 32.8 (CH2), 22.3 (CH2), 13.7 (CH3). EI-MS m/z (calc. 302.1): 302.3 (100%, M+?), 304.3 (100%, M+?+2), 270.2 (8%), 241.2 (96%), 227.3 (70%), 199.3 (65%). IR (neat) cm-1: 2955.2, 1735.2, 1282.2, 1192.7, 700.3.2-Butyl-6-nitro-1,1'-biphenyl (4eaa)Typical small-scale procedure was followed using 2-nitrophenyl sulfurofluoridate (1e, 59.0 ?L, 88.5 mg, 0.4 mmol). The reaction was conducted for 2 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous faintly yellow oil (74 mg, 73%).Anal. Calcd for C16H17NO2: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.49; H, 6.78; N, 5.93. 1H NMR (400 MHz, CDCl3) δ: 7.63 (dd, J = 8.0, 1.4 Hz, 1H), 7.49 (dd, J = 7.7, 1.4 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.20 (AA’BB’C, 2H), 2.49 – 2.39 (m, 2H), 1.45 – 1.33 (m, 2H), 1.17 (h, J = 7.3 Hz, 2H), 0.76 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 150.6 (C), 143.9 (C), 135.5 (C), 134.9 (C), 132.9 (CH), 128.8 (CH), 128.3 (CH), 127.88 (CH), 127.86 (CH), 120.8 (CH), 33.2 (CH2), 32.8 (CH2), 22.3 (CH2), 13.7 (CH3). EI-MS m/z (calc. 255.1): 255.2 (13%, M+?), 238.3 (100%), 210.3 (35%), 196.3 (59%), 165.3 (91%). IR (neat) cm-1: 2957.0, 1524.1, 1358.4, 744.9, 699.7.2-Butyl-4-methoxy-6-nitro-1,1'-biphenyl (4faa)Typical small-scale procedure was followed using 4-methoxy-2-nitrophenyl sulfurofluoridate (1f, 100 mg, 0.4 mmol). The reaction was conducted for 3 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous yellow oil (89 mg, 78%).Melting point: 68 – 70 °C. Anal. Calcd for C17H19NO3: C, 71.56; H, 6.71; N, 4.91. Found: C, 71.25; H, 6.67; N, 5.26. 1H NMR (400 MHz, CDCl3) δ: 7.38 (AA’BB’C, 3H), 7.17 (AA’BB’C, 2H), 7.17 (d, J = 2.7 Hz, 1H), 7.03 (d, J = 2.7 Hz, 1H), 3.88 (s, 3H), 2.46 – 2.30 (m, 2H), 1.45 – 1.32 (m, 2H), 1.16 (h, J = 7.3 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 158.6 (C), 151.1 (C), 145.1 (C), 135.5 (C), 129.3 (CH), 128.2 (CH), 127.7 (CH), 127.6 (C), 119.2 (CH), 105.7 (CH), 55.7 (CH3), 33.08 (CH2), 33.07 (CH2), 22.3 (CH2), 13.7 (CH3). EI-MS m/z (calc. 285.1): 285.1 (100%, M+?), 268.4 (47%), 266.4 (46%), 165.3 (33%), 152.3 (34%). IR (neat) cm-1: 2957.3, 1527.4, 1466.6, 766.6, 700.4.2-Butyl-6-(trifluoromethyl)-1,1'-biphenyl (4gaa)Typical small-scale procedure was followed using 2-(trifluoromethyl)phenyl sulfurofluoridate (1g, 67.8 ?L, 97.7 mg, 0.4 mmol). The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using heptane as solvent to afford the title compound as a colorless oil (78 mg, 70%).Anal. Calcd for C17H17F3: C, 73.35; H, 6.16; N, 0.00. Found: C, 73.60; H, 6.34; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.58 (dd, J = 7.7, 1.4 Hz, 1H), 7.45 (br. d, J = 7.2 Hz, 1H), 7.42 – 7.34 (m, 4H), 7.22 – 7.16 (m, 2H), 2.34 – 2.26 (m, 2H), 1.44 – 1.32 (m, 2H), 1.15 (h, J = 7.3 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 143.3 (C), 140.1 (q, J = 1.6 Hz, C), 137.4 (C), 132.4 (q, J = 1.0 Hz, CH), 129.7 (q, J = 1.4 Hz, CH), 129.1 (q, J = 28.8 Hz, C), 127.44 (CH), 127.36 (CH), 127.2 (CH), 124.2 (q, J = 274.2 Hz, CF3), 123.2 (q, J = 5.5 Hz, CH), 33.4 (CH2), 32.8 (CH2), 22.4 (CH2), 13.7 (CH3). 19F NMR (376 MHz, CDCl3) δ: -57.9 (q, J = 0.7 Hz). EI-MS m/z (calc. 278.1): 278.1 (89%, M+?), 249.1 (26%), 235.1 (100%), 215.1 (87%), 165.1 (49%). IR (neat) cm-1: 2958.7, 1314.3, 1123.2, 653.1.2-Butyl-3-fluoro-6-(trifluoromethyl)-1,1'-biphenyl (4haa)Typical small-scale procedure was followed using 5-fluoro-2-(trifluoromethyl)phenyl sulfurofluoridate (1h, 110 mg, 0.4 mmol). The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using heptane as solvent to afford the title compound as a colorless oil (36 mg, 30%).Anal. Calcd for C17H16F4: C, 68.91; H, 5.44; N, 0.00. Found: C, 69.92; H, 5.82; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.57 (br. dd, J = 8.8, 5.3 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.22 – 7.14 (m, 2H), 7.11 (br. t, J = 8.9 Hz, 1H), 2.36 – 2.27 (m, 2H), 1.37 – 1.27 (m, 2H), 1.14 (h, J = 7.3 Hz, 2H), 0.72 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 163.0 (dq, J = 251.0, 1.2 Hz, CF), 143.0 (dq, J = 5.9, 1.7 Hz, C), 136.3 (d, J = 2.2 Hz, C), 131.1 (d, J = 16.0 Hz, C), 129.5 (q, J = 1.3 Hz, CH), 127.8 (CH), 127.5 (CH), 125.3 (qd, J = 29.5, 3.3 Hz, C), 125.0 (dq, J = 10.0, 5.7 Hz, CH), 123.8 (q, J = 273.8 Hz, CF3), 114.1 (d, J = 24.0 Hz, CH), 32.1 (d, J = 1.3 Hz, CH2), 26.1 (d, J = 2.4 Hz, CH2), 22.6 (CH2), 13.5 (CH3). 19F NMR (376 MHz, CDCl3) δ: -57.6 (dp, J = 2.2, 0.7 Hz), -111.7 (ddq, J = 9.2, 5.3, 2.2 Hz). EI-MS m/z (calc. 296.1): 296.1 (78%, M+?), 267.1 (30%), 253.1 (82%), 233.1 (100%), 183.2 (39%). IR (neat) cm-1: 2960.2, 1314.7, 1126.0, 1099.1, 701.1.2-Butyl-6-fluoro-1,1'-biphenyl (4iaa)Typical small-scale procedure was followed using 2-fluorophenyl sulfurofluoridate (1i, 77.7 mg, 0.4 mmol) and 1.4 equiv of 1-bromobutane (2a, 60.4 ?L, 76.7 mg, 0.56 mmol) The reaction was conducted for 5 hours. The crude product was purified by flash chromatography using PE/toluene (95:5) as solvent to afford the title compound as a colorless oil (47 mg, 52%).Anal. Calcd for C16H17F: C, 84.17; H, 7.51; N, 0.00. Found: C, 84.29; H, 7.65; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.47 – 7.40 (m, 2H), 7.40 – 7.34 (m, 1H), 7.30 – 7.24 (m, 2H), 7.25 (ddd, J = 8.2, 7.7, 5.8 Hz, 1H), 7.07 (ddd, J = 7.7, 1.2, 0.6 Hz, 1H), 6.96 (ddd, J = 9.3, 8.2, 1.2 Hz, 1H), 2.51 – 2.40 (m, 2H), 1.46 – 1.34 (m, 2H), 1.18 (h, J = 7.3 Hz, 2H), 0.76 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 159.9 (d, J = 243.8 Hz, CF), 143.5 (d, J = 2.3 Hz, C), 134.7 (d, J = 1.2 Hz, C), 130.0 (d, J = 1.0 Hz, CH), 129.2 (d, J = 16.0 Hz, C), 128.3 (d, J = 8.9 Hz, CH), 128.1 (CH), 127.4 (CH), 124.5 (d, J = 3.1 Hz, CH), 112.6 (d, J = 23.2 Hz, CH), 33.3 (CH2), 32.5 (d, J = 2.6 Hz, CH2), 22.4 (CH2), 13.7 (CH3). 19F NMR (376 MHz, CDCl3) δ: -115.2 (dd, J = 9.3, 5.8 Hz). EI-MS m/z (calc. 228.1): 228.1 (90%, M+?), 199.1 (21%), 186.1 (57%), 185.1 (90%), 183.1 (49%), 165.1 (100%). IR (neat) cm-1: 2956.4, 1456.8, 1241.4, 762.5, 736.6, 699.2.2-Butyl-6-methyl-4-nitro-1,1'-biphenyl (4jaa)Typical small-scale procedure was followed using 2-methyl-4-nitrophenyl sulfurofluoridate (1j, 94.1 mg, 0.4 mmol) and 1-bromobutane (2a, 60.4 ?L, 76.7 mg, 0.56 mmol, 1.4 equiv). The reaction was conducted for 5 hours. The crude product was purified by flash chromatography using heptane/DCM/EtOAc (80:19:1) as solvent to afford the title compound as a colorless oil (74 mg, 69%).Anal. Calcd for C17H19NO2: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.88; H, 7.21; N, 5.59. 1H NMR (400 MHz, CDCl3) δ: 7.97 (ABq, ?AB = 11.1 Hz, JAB = 2.4 Hz, 2H), 7.46 (AA’BB’C, 2H), 7.40 (AA’BB’C, 1H), 7.10 (AA’BB’C, 2H), 2.49 – 2.27 (m, 2H), 2.09 (t, J = 0.6 Hz, 3H), 1.48 – 1.36 (m, 2H), 1.18 (h, J = 7.3 Hz, 2H), 0.76 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 148.2 (C), 146.9 (C), 142.9 (C), 138.8 (C), 138.3 (C), 128.6 (CH), 128.4 (CH), 127.5 (CH), 121.8 (CH), 121.2 (CH), 33.3 (CH2), 33.0 (CH2), 22.3 (CH2), 21.2 (CH3), 13.7 (CH3). EI-MS m/z (calc. 269.1): 269.1 (92%, M+?), 266.1 (39%), 210.1 (50%), 180.1 (100%), 165.2 (78%). IR (neat) cm-1: 2957.0, 1514.6, 1342.6, 745.1, 702.4.2-Butyl-4-acetyl-6-methyl-1,1'-biphenyl (4kaa)Modified typical small-scale procedure was followed using 4-acetyl-2-methylphenyl sulfurofluoridate (1k, 92.9 mg, 0.4 mmol), 1.4 equiv of 1-bromobutane (2a, 60.4 ?L, 76.7 mg, 0.56 mmol) and 1 equiv of norbornene (37.7 mg, 0.4 mmol). The reaction was conducted for 5 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a colorless oil (79 mg, 74%).Anal. Calcd for C19H22O: C, 85.67; H, 8.32; N, 0.00. Found: C, 86.05; H, 8.35; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.72 (d, J = 1.9 Hz, 1H), 7.69 (d, J = 1.9 Hz, 1H), 7.44 (AA’BB’C, 2H), 7.36 (AA’BB’C, 1H), 7.12 (AA’BB’C, 2H), 2.63 (s, 3H), 2.42 – 2.32 (m, 2H), 2.06 (s, 3H), 1.46 – 1.34 (m, 2H), 1.17 (h, J = 7.4 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 198.4 (C=O), 146.6 (C), 141.5 (C), 139.8 (C), 136.8 (C), 136.0 (C), 128.7 (CH), 128.4 (CH), 127.12 (CH), 127.05 (CH), 126.4 (CH), 33.4 (CH2), 33.3 (CH2), 26.7 (CH3), 22.5 (CH2), 21.1 (CH3), 13.7 (CH3). EI-MS m/z (calc. 266.2): 266.1 (38%, M+?), 251.2 (100%), 181.1 (27%), 165.2 (16%). IR (neat) cm-1: 2955.6, 1680.7, 1197.8, 702.6.2-butyl-6-methoxy-[1,1'-biphenyl]-4-carbaldehyde (4maa)Typical small-scale procedure was followed using 4-formyl-2-methoxyphenyl sulfurofluoridate (1m, 93.6 mg, 0.4 mmol). The reaction was conducted for 3 hours. The crude product was purified by flash chromatography using PE/EtOAc (93:7) as solvent to afford the title compound as a colorless oil (79 mg, 74%).Anal. Calcd for C18H20O2: C, 80.56; H, 7.51; N, 0.00. Found: C, 80.73; H, 7.38; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 9.99 (s, 1H), 7.44 (AA’BB’C, 2H), 7.43 (d, J = 1.6 Hz, 1H), 7.37 (AA’BB’C, 1H), 7.31 (d, J = 1.6 Hz, 1H), 7.19 (AA’BB’C, 2H), 3.77 (s, 3H), 2.47 – 2.39 (m, 2H), 1.49 – 1.36 (m, 2H), 1.18 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ: 192.3 (CHO), 157.7 (C), 143.5 (C), 137.3 (C), 136.4 (C), 136.3 (C), 129.5 (CH), 128.0 (CH), 127.3 (CH), 125.3 (CH), 106.6 (CH), 55.9 (CH3), 33.1 (CH2), 32.7 (CH2), 22.4 (CH2), 13.7 (CH3). EI-MS m/z (calc. 268.1): 268.1 (66%, M+?), 226.1 (24%), 197.1 (100%), 165.2 (33%). IR (neat) cm-1: 2955.8, 1692.9, 1381.0, 1148.4, 699.9.6-butyl-4'-methoxy-2,3-dimethyl-[1,1'-biphenyl]-4-yl sulfurofluoridate (4pab)Modified typical small-scale procedure was followed using 2,3-dimethyl-1,4-phenylene bis(sulfurofluoridate) (1p, 121 mg, 0.4 mmol), 1.4 equiv of 1-bromobutane (2a, 60.4 ?L, 76.7 mg, 0.56 mmol), 1 equiv of norbornene (37.7 mg, 0.4 mmol) and 4-methoxyphenylboronic acid (3b, 76.0 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 6 hours. The crude product was purified by flash chromatography using heptane/EtOAc (96:4) as solvent to afford the title compound as a colorless oil (81 mg, 55%).Anal. Calcd for C19H23FO4S: C, 62.28; H, 6.33; N, 0.00. Found: C, 62.49; H, 6.28; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.07 (br. s, 1H), 7.00 (AA’BB’, JAB+AA’ = 8.9 Hz, 2H), 6.96 (AA’BB’, JAB+BB’ = 8.9 Hz, 2H), 3.87 (s, 3H), 2.34 – 2.24 (m, 2H), 2.27 (s, 3H) 1.96 (s, 3H), 1.41 – 1.30 (m, 2H), 1.16 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 158.6 (C), 148.1 (d, J = 0.9 Hz, C), 141.7 (C), 141.0 (C), 138.5 (C), 132.2 (C), 130.2 (CH), 125.9 (d, J = 0.8 Hz, C), 118.0 (d, J = 1.0 Hz, CH), 113.8 (CH), 55.2 (CH3), 33.2 (CH2), 33.0 (CH2), 22.3 (CH2), 18.0 (CH3), 13.8 (CH3), 13.0 (d, J = 1.3 Hz, CH3). 19F NMR (376 MHz, CDCl3) δ: 38.3 (dq, J = 1.7, 0.8 Hz). EI-MS m/z (calc. 366.1): 366.4 (100%, M+?), 283.4 (52%), 241.4 (79%), 224.4 (48%), 223.4 (48%). IR (neat) cm-1: 2956.7, 1442.3, 1222.4, 1033.2, 792.0.Methyl 4-butyl-3-phenylthiophene-2-carboxylate (4raa)Typical small-scale procedure was followed using methyl 3-((fluorosulfonyl)oxy)thiophene-2-carboxylate (1r, 93.6 mg, 0.4 mmol). The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a colorless oil (82 mg, 74%).Anal. Calcd for C16H18O2S: C, 70.04; H, 6.61; N, 0.00. Found: C, 69.95; H, 6.57; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.46 – 7.33 (AA’BB’C, 3H), 7.21 (AA’BB’C, 2H), 7.20 (s, 1H), 3.69 (s, 3H), 2.38 – 2.32 (m, 2H), 1.47 – 1.35 (m, 2H), 1.21 (h, J = 7.2 Hz, 2H), 0.80 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 162.4 (C=O), 148.7 (C), 144.3 (C), 136.1 (C), 129.0 (CH), 128.2 (C), 127.9 (CH), 127.5 (CH), 125.9 (CH), 51.7 (CH3), 31.9 (CH2), 28.8 (CH2), 22.2 (CH2), 13.8 (CH3). EI-MS m/z (calc. 274.1): 274.2 (31%, M+?), 232.2 (100%), 200.15 (48%), 172.2 (80%). IR (neat) cm-1: 2952.7, 1721.1, 1699.1, 1210.3, 697.8.Methyl 4-butyl-3-phenylpicolinate (4saa)Typical small-scale procedure was followed using methyl 3-((fluorosulfonyl)oxy)picolinate (1s, 94.1 mg, 0.4 mmol). The reaction was conducted for 6 hours. The crude product was purified by flash chromatography using PE/EtOAc (7:3) as solvent to afford the title compound as a colorless oil (20 mg, 19%).Anal. Calcd for C17H19O2N: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.69; H, 7.24; N, 5.66. 1H NMR (400 MHz, CDCl3) δ: 8.55 (d, J = 5.0 Hz, 1H), 7.46 – 7.36 (AA’BB’C, 3H), 7.34 (d, J = 5.0 Hz, 1H), 7.20 (AA’BB’C, 2H), 3.66 (s, 3H), 2.55 – 2.37 (m, 2H), 1.48 – 1.37 (m, 2H), 1.19 (h, 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 167.0 (C=O), 151.7 (C), 149.0 (C), 148.0 (CH), 136.9 (C), 136.4 (C), 128.9 (CH), 128.1 (CH), 127.7 (CH), 125.8 (CH), 52.3 (CH3), 32.25 (CH2), 32.23 (CH2), 22.3 (CH2), 13.6 (CH3). EI-MS m/z (calc. 269.1): 269.3 (0.3%, M+?), 239.2 (33%), 210.3 (20%), 182.3 (100%). IR (neat) cm-1: 2955.0, 1736.2, 1299.2, 1152.0, 700.9.Methyl 6-(cyclopropylmethyl)-[1,1'-biphenyl]-2-carboxylate (4aba)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and (bromomethyl)cyclopropane (2b, 46.6 ?L, 64.8 mg, 0.48 mmol, 1.20 equiv). The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (94:6) as solvent to afford the title compound as a viscous colorless oil (83 mg, 78%).Anal. Calcd for C18H18O2: C, 81.17; H, 6.81; N, 0.00. Found: C, 81.10; H, 7.01; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.69 (ddt, J = 7.7, 1.4, 0.5 Hz, 1H), 7.62 (ddt, J = 7.8, 1.4, 0.6 Hz, 1H), 7.42 – 7.30 (m, 4H), 7.16 (AA’BB’C, 2H), 3.52 (s, 3H), 2.32 (d, J = 6.9 Hz, 2H), 0.86 – 0.72 (m, 1H), 0.50 – 0.35 (m, 2H), 0.08 – -0.04 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.8 (C=O), 141.3 (C), 139.9 (C), 131.9 (CH), 131.7 (C), 128.9 (CH), 127.7 (CH), 127.2 (CH), 126.92 (CH), 126.87 (CH), 51.7 (CH3), 37.6 (CH2), 11.3 (CH), 4.8 (CH2). EI-MS m/z (calc. 266.1): 266.3 (6%, M+?), 234.2 (54%), 206.2 (100%), 205.2 (95%), 178.3 (83%). IR (neat) cm-1: 3000.9, 1728.7, 1286.5, 1137.2, 759.5, 700.1.Methyl 6-isopropyl-(1,1'-biphenyl)-2-carboxylate (4aca)Modified small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol), 2-bromopropane (2c, 75.1 ?L, 98.4 mg, 0.80 mmol, 2.0 equiv), 1.0 equiv of norbornene (37.7 mg, 0.4 mmol) and 10 mol% of Pd(OAc)2 (9.0 mg). The reaction was conducted for 12 hours. The crude product was purified by flash chromatography using PE/EtOAc (94:6) as solvent to afford the title compound as a viscous colorless oil (61 mg, 60%).Anal. Calcd for C17H18O2: C, 80.28; H, 7.13; N, 0.00. Found: C, 80.05; H, 6.90; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.63 (dd, J = 7.6, 1.4 Hz, 1H), 7.52 (dd, J = 7.9, 1.4 Hz, 1H), 7.43 – 7.31 (m, 4H), 7.18 (AA’BB’C, 2H), 3.51 (s, 3H), 2.84 (hept, J = 7.0 Hz, 1H), 1.10 (d, J = 7.0 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.9 (C=O), 147.9 (C), 140.4 (C), 139.8 (C), 131.8 (C), 128.9 (CH), 128.6 (CH), 127.7 (CH), 127.5 (CH), 126.8 (CH), 126.5 (CH), 51.7 (CH3), 29.4 (CH), 24.0 (CH3). EI-MS m/z (calc. 254.1): 254.4 (37%, M+?), 222.4 (57%), 207.4 (100%), 179.4 (58%). IR (neat) cm-1: 2962.6, 1729.9, 1720.0, 1286.1, 700.5.Methyl 6-benzyl-(1,1'-biphenyl)-2-carboxylate (4afa)Small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol), benzyl chloride (2f, 55.2 ?L, 60.8 mg, 0.48 mmol, 1.2 equiv), The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (92:8) as solvent to afford the title compound as a viscous colorless oil (88 mg, 73%).HRMS (ESI-TOF) m/z: [M+Na] Calcd for C21H18O2Na: 325.1199; found: 325.1199. 1H NMR (400 MHz, CDCl3) δ: 7.75 – 7.66 (m, 1H), 7.40 – 7.28 (m, 5H), 7.23 – 7.11 (m, 3H), 7.13 – 7.06 (m, 2H), 6.94 – 6.86 (m, 2H), 3.80 (s, 2H), 3.53 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.7 (C=O), 141.8 (C), 140.7 (C), 140.1 (C), 139.5 (C), 133.2 (CH), 132.1 (C), 128.90 (CH), 128.85 (CH), 128.2 (CH), 127.8 (CH), 127.4 (CH), 127.3 (CH), 127.0 (CH), 125.9 (CH), 51.8 (CH3), 39.1 (CH2). EI-MS m/z (calc. 302.1): 302.3 (30%, M+?), 270.3 (100%), 242.3 (67%), 241.3 (71%), 165.2 (92%).Methyl 6-hexyl-(1,1'-biphenyl)-2-carboxylate (4aga)Modified small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 1-chlorohexane (2g, 110 ?L, 96.5 mg, 0.80 mmol, 2.0 equiv). The reaction was conducted for 12 hours. The crude product was purified by flash chromatography using PE/EtOAc (96:4) as solvent to afford the title compound as a viscous colorless oil (52 mg, 44%).Anal. Calcd for C20H24O2: C, 81.04; H, 8.16; N, 0.00. Found: C, 81.51; H, 8.29; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.65 (dd, J = 7.6, 1.5 Hz, 1H), 7.41 (dd, J = 7.7, 1.5 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.40 – 7.29 (AA’BB’C, 3H), 7.17 (AA’BB’C, 2H), 3.52 (s, 3H), 2.44 – 2.36 (m, 2H), 1.44 – 1.32 (m, 2H), 1.24 – 1.04 (m, 6H), 0.81 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.9 (C=O), 142.0 (C), 141.3 (C), 139.8 (C), 132.2 (CH), 131.9 (C), 128.9 (CH), 127.6 (CH), 127.1 (CH), 126.8 (CH), 126.7 (CH), 51.7 (CH3), 33.1 (CH2), 31.4 (CH2), 31.1 (CH2), 29.0 (CH2), 22.4 (CH2), 14.0 (CH3). EI-MS m/z (calc. 296.2): 296.5 (58%, M+?), 264.4 (60%), 207.4 (72%), 193.4 (67%), 165.4 (100%). IR (neat) cm-1: 2926.5, 1730.2, 1287.8, 1136.4, 699.9.Methyl 6-butyl-4'-methoxy-(1,1'-biphenyl)-2-carboxylate (4aab)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 4-methoxyphenylboronic acid (3b, 76.0 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (93:7) as solvent to afford the title compound as a viscous colorless oil (104 mg, 87%).Anal. Calcd for C19H22O3: C, 76.48; H, 7.43; N, 0.00. Found: C, 76.45; H, 7.63; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.61 (dd, J = 7.6, 1.5 Hz, 1H), 7.40 (dd, J = 7.7, 1.5 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.09 (AA’XX’, JAX+AA’ = 8.8 Hz, 2H), 6.92 (AA’XX’, JAX+XX’ = 8.8 Hz, 2H), 3.85 (s, 3H), 3.55 (s, 3H), 2.47 – 2.37 (m, 2H), 1.44 – 1.32 (m, 2H), 1.17 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 169.1 (C=O), 158.4 (C), 142.4 (C), 140.9 (C), 132.3 (C), 132.1 (CH), 132.0 (C), 130.0 (CH), 127.0 (CH), 126.5 (CH), 113.1 (CH), 55.1 (CH3), 51.8 (CH3), 33.4 (CH2), 32.8 (CH2), 22.4 (CH2), 13.8 (CH3). EI-MS m/z (calc. 298.2): 298.4 (100%, M+?), 266.4 (39%), 238.4 (51%), 195.4 (42%). IR (neat) cm-1: 2954.1, 1729.5, 1285.7, 1241.5, 1135.7.Methyl 6-butyl-4'-fluoro-(1,1'-biphenyl)-2-carboxylate (4aac)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 4-fluorophenylboronic acid (3c, 70.0 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous colorless oil (91 mg, 79%).Anal. Calcd for C18H19FO2: C, 75.50; H, 6.69; N, 0.00. Found: C, 75.50; H, 6.65; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.66 (dd, J = 7.6, 1.5 Hz, 1H), 7.42 (dd, J = 7.7, 1.5 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.14 (AA’MM’X, JAM+AA’ = 8.8 Hz, JAX = 5.5 Hz, 2H), 7.08 (AA’MM’X, JAM+MM’ = 8.8 Hz, JMX = 8.8 Hz, 2H), 3.56 (s, 3H), 2.43 – 2.34 (m, 2H), 1.44 – 1.30 (m, 2H), 1.23 – 1.10 (h, J = 7.3 Hz, 2H), 0.76 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.7 (C=O), 161.9 (d, J = 245.4 Hz, CF), 142.2 (C), 140.3 (C), 135.7 (d, J = 3.7 Hz, C), 132.4 (CH), 131.9 (C), 130.5 (d, J = 7.9 Hz, CH), 127.4 (CH), 126.9 (CH), 114.7 (d, J = 21.3 Hz, CH), 51.8 (CH3), 33.4 (CH2), 32.8 (CH2), 22.4 (CH2), 13.7 (CH3). 19F NMR (376 MHz, CDCl3) δ: -116.3 (tt, J = 8.7, 5.5 Hz). EI-MS m/z (calc. 286.1): 286.4 (100%, M+?), 254.3 (65%), 225.3 (74%), 183.4 (85%). IR (neat) cm-1: 2955.3, 1729.1, 1219.8, 1137.1, 761.4.Methyl 6-butyl-3'-methoxy-(1,1'-biphenyl)-2-carboxylate (4aad)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 3-methoxyphenylboronic acid (3d, 76.0 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (93:7) as solvent to afford the title compound as a viscous colorless oil (101 mg, 85%).Anal. Calcd for C19H22O3: C, 76.48; H, 7.43; N, 0.00. Found: C, 76.70; H, 7.34; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.63 (dd, J = 7.6, 1.5 Hz, 1H), 7.41 (dd, J = 7.7, 1.5 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.29 (ddd, J = 8.3, 7.5, 0.4 Hz, 1H), 6.88 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 6.77 (ddd, J = 7.5, 1.5, 1.0 Hz, 1H), 6.73 (ddd, J = 2.6, 1.5, 0.4 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 2.50 – 2.36 (m, 2H), 1.46 – 1.35 (m, 2H), 1.18 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.9 (C=O), 159.0 (C), 141.9 (C), 141.2 (C), 141.0 (C), 132.2 (CH), 131.9 (C), 128.6 (CH), 127.2 (CH), 126.6 (CH), 121.6 (CH), 114.5 (CH), 112.5 (CH), 55.2 (CH3), 51.8 (CH3), 33.5 (CH2), 32.8 (CH2), 22.4 (CH2), 13.8 (CH3). EI-MS m/z (calc. 298.2): 298.3 (32%, M+?), 266.3 (53%), 238.4 (100%), 209.4 (32%). IR (neat) cm-1:2953.7, 1730.0, 1285.5, 1136.4, 759.9.Methyl 6-butyl-3'-fluoro-(1,1'-biphenyl)-2-carboxylate (4aae)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 3-fluorophenylboronic acid (3e, 70.0 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous colorless oil (85 mg, 74%).Anal. Calcd for C18H19FO2: C, 75.50; H, 6.69; N, 0.00. Found: C, 75.40; H, 6.74; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.69 (dd, J = 7.6, 1.5 Hz, 1H), 7.43 (dd, J = 7.7, 1.5 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.34 (dddd, J = 8.3, 7.6, 6.0, 0.4 Hz, 1H), 7.04 (dddd, J = 8.8, 8.3, 2.6, 1.0 Hz, 1H), 6.95 (ddd, J = 7.6, 1.5, 1.0 Hz, 1H), 6.91 (dddd, J = 9.6, 2.6, 1.5, 0.4 Hz, 1H), 3.56 (s, 3H), 2.43 – 2.36 (m, 2H), 1.44 – 1.33 (m, 2H), 1.17 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.4 (C=O), 162.3 (d, J = 245.9 Hz, CF), 142.1 (d, J = 7.9 Hz, C), 141.9 (C), 140.1 (d, J = 1.9 Hz, C), 132.4 (CH), 131.5 (C), 129.1 (d, J = 8.4 Hz, CH), 127.5 (CH), 127.0 (CH), 124.8 (d, J = 2.9 Hz, CH), 116.1 (d, J = 21.6 Hz, CH), 113.8 (d, J = 21.0 Hz, CH), 51.8 (CH3), 33.4 (CH2), 32.7 (CH2), 22.4 (CH2), 13.7 (CH3). 19F NMR (376 MHz, CDCl3) δ: -114.6 (ddd, J = 9.6, 8.8, 6.0 Hz). EI-MS m/z (calc. 286.1): 286.2 (32%, M+?), 254.2 (100%), 225.3 (74%), 183.4 (93%). IR (neat) cm-1: 2955.0, 1728.6, 1284.3, 1136.8, 759.7.Methyl 6-butyl-3'-chloro-(1,1'-biphenyl)-2-carboxylate (4aaf)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 3-chlorophenylboronic acid (3f, 78.2 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous colorless oil (85 mg, 70%).Anal. Calcd for C18H19ClO2: C, 71.40; H, 6.33; N, 0.00. Found: C, 71.57; H, 6.50; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.69 (dd, J = 7.6, 1.5 Hz, 1H), 7.42 (dd, J = 7.7, 1.5 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.19 – 7.17 (m, 1H), 7.10 – 7.03 (m, 1H), 3.57 (s, 3H), 2.46 – 2.33 (m, 2H), 1.45 – 1.33 (m, 2H), 1.18 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.4 (C=O), 141.9 (C), 141.8 (C), 140.0 (C), 133.6 (C), 132.5 (CH), 131.4 (C), 129.0 (CH), 128.9 (CH), 127.6 (CH), 127.3 (CH), 127.1 (CH), 127.0 (CH), 51.9 (CH3), 33.4 (CH2), 32.8 (CH2), 22.4 (CH2), 13.7 (CH3). EI-MS m/z (calc. 302.1): 302.0 (60%, M+?), 304.2 (20%, M+?+2), 270.0 (90%), 235.2 (100%), 199.1 (71%). IR (neat) cm-1: 2954.5, 1728.3, 1286.0, 1138.0, 758.4.Methyl 3'-bromo-6-butyl- (1,1'-biphenyl)-2-carboxylate (4aag)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and 3-bromophenylboronic acid (3g, 100 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the partially purified title compound as a tan oil (12 mg, 9%).HRMS (ESI-TOF) m/z: [M+Na] C18H19BrO2Na: 369.0460; found: 369.0461. 1H NMR (400 MHz, CDCl3) δ: 7.69 (dd, J = 7.6, 1.5 Hz, 1H), 7.48 (ddd, J = 8.0, 2.0, 1.1 Hz, 1H), 7.42 (dd, J = 7.7, 1.5 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.34 (ddd, J = 2.0, 1.6, 0.4 Hz, 1H), 7.26 (ddd, J = 8.0, 7.6, 0.4 Hz, 1H), 7.11 (ddd, J = 7.6, 1.6, 1.1 Hz, 1H), 3.57 (s, 3H), 2.43 – 2.34 (m, 2H), 1.44 – 1.34 (m, 2H), 1.18 (h, J = 7.3 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.3 (C=O), 142.0 (C), 141.9 (C), 139.9 (C), 132.5 (CH), 131.8 (CH), 131.4 (C), 129.9 (CH), 129.2 (CH), 127.8 (CH), 127.6 (CH), 127.1 (CH), 121.7 (C), 51.9 (CH3), 33.4 (CH2), 32.8 (CH2), 22.4 (CH2), 13.7 (CH3). EI-MS m/z (calc. 346.0): 346.2 (26%, M+?), 348.2 (26%, M+?+2), 314.3 (30%), 235.3 (100%), 165.3 (78%). IR (neat) cm-1: 2952.9, 1728.7, 1285.9, 1138.0, 758.6.Methyl 3-butyl-2-(naphthalen-2-yl)benzoate (4aah)Typical small-scale procedure was followed using methyl 2-((fluorosulfonyl)oxy)benzoate (1a, 67.3 ?L, 93.7 mg, 0.4 mmol) and naphthalen-2-ylboronic acid (3h, 86.0 mg, 0.5 mmol, 1.25 eqiuv.) The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (95:5) as solvent to afford the title compound as a viscous colorless oil (99 mg, 78%).Anal. Calcd for C22H22O2: C, 82.99; H, 6.96; N, 0.00. Found: C, 83.01; H, 6.72; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.91 – 7.87 (m, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.84 – 7.78 (m, 1H), 7.69 (dd, J = 7.6, 1.5 Hz, 1H), 7.60 (br. s, 1H), 7.53 – 7.46 (m, 2H), 7.45 (dd, J = 7.7, 1.5 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.35 (dd, J = 8.4, 1.7 Hz, 1H), 3.44 (s, 3H), 2.42 (ABX2, ?AB = 11.2 Hz, JAB = 13.8 Hz, JAX = JBX = 7.4 Hz, 2H), 1.46 – 1.34 (m, 2H), 1.12 (h, J = 7.3 Hz, 2H), 0.71 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 168.9 (C=O), 142.2 (C), 141.2 (C), 137.5 (C), 133.0 (C), 132.3 (C), 132.2 (CH), 132.1 (C), 128.0 (CH), 127.80 (CH), 127.75 (CH), 127.29 (CH), 127.25 (CH), 127.0 (CH), 126.8 (CH), 126.0 (CH), 125.7 (CH), 51.7 (CH3), 33.4 (CH2), 32.9 (CH2), 22.3 (CH2), 13.7 (CH3). EI-MS m/z (calc. 318.2): 318.5 (100%, M+?), 286.5 (62%), 258.5 (65%), 215.5 (95%). IR (neat) cm-1: 2953.0, 1728.0, 1285.4, 1136.5, 757.6, 743.7.2-Butyl-4'-methoxy-6-nitro-1,1'-biphenyl (4eab)Typical telescoped procedure was followed using 2-nitrophenol (11e, 139 mg, 1.0 mmol). The Catellani reaction step was conducted for 3 hours. The crude product was purified by flash chromatography using PE/EtOAc (96:4) as solvent to afford the title compound as a viscous yellow oil (191 mg, 67%).Anal. Calcd for C17H19NO3: C, 71.56; H, 6.71; N, 4.91. Found: C, 71.25; H, 6.43; N, 5.32. 1H NMR (400 MHz, CDCl3) δ: 7.58 (dd, J = 8.0, 1.4 Hz, 1H), 7.47 (dd, J = 7.8, 1.4 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.12 (AA’XX’, JAX+AA’ = 8.8 Hz, 2H), 6.94 (AA’XX’, JAX+XX’ = 8.8 Hz, 2H), 3.85 (s, 3H), 2.49 – 2.41 (m, 2H), 1.45 – 1.34 (m, 2H), 1.18 (h, J = 7.5 Hz, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 159.2 (C), 151.1 (C), 144.3 (C), 134.5 (C), 132.6 (CH), 130.0 (CH), 127.7 (CH), 127.4 (C), 120.6 (CH), 113.7 (CH), 55.2 (CH3), 33.2 (CH2), 32.8 (CH2), 22.3 (CH2), 13.7 (CH3). EI-MS m/z (calc. 285.1): 285.5 (100%, M+?), 268.5 (43%), 226.5 (34%), 210.5 (43%). IR (neat) cm-1: 2956.7, 1524.9, 1514.3, 1244.2, 831.3.Dimethyl (1,1':2',1''-terphenyl)-2,3'-dicarboxylate (9aa)Typical small-scale procedure was followed using methyl 2-iodobenzoate (8a, 58.8 ?L, 105 mg, 0.4 mmol). The reaction was conducted for 4 hours. The crude product was purified by flash chromatography using PE/EtOAc (8:2) as solvent to afford the title compound as a viscous colorless oil (31 mg, 45%).1H NMR (400 MHz, CDCl3) δ: 7.83 (dd, J = 7.6, 1.5 Hz, 1H), 7.72 (ddd, J = 7.7, 1.5, 0.5 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.39 (dd, J = 7.7, 1.5 Hz, 1H), 7.33 (td, J = 7.6, 1.5 Hz, 1H), 7.23 (td, J = 7.7, 1.4 Hz, 1H), 7.14 – 7.07 (m, 3H), 7.07 (ddd, J = 7.6, 1.4, 0.5 Hz, 1H), 6.97 (br. s, 2H), 3.61 (s, 3H), 3.55 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ: 169.1 (C=O), 167.4 (C=O), 142.2 (C), 141.9 (C), 140.0 (C), 139.2 (C), 132.0 (CH), 132.0 (CH), 131.8 (CH), 131.0 (CH), 130.4 (C), 129.7 (CH), 129.4 (CH), 128.5 (CH), 127.2 (br., CH), 126.9 (CH), 126.8 (CH), 126.6 (CH), 51.84 (CH3), 51.80 (CH3). EI-MS m/z (calc. 346.1): 346.3 (4%, M+?), 314.3 (100%), 383.3 (55%), 225.3 (95%). IR (neat) cm-1: 2949.7, 1721.1, 1286.3, 1256.1, 701.4.The obtained analytical data is in agreement with literature. ADDIN EN.CITE <EndNote><Cite><Author>Motti</Author><Year>2003</Year><RecNum>10</RecNum><DisplayText><style face="superscript">19a</style></DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="tpwd0f0wprs2vke0sadxfrtxvvdw9ddefwav" timestamp="1554797734">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Motti, E.</author></authors></contributors><titles><title>A New Type of Palladium-Catalysed Aromatic Cross-Coupling Combined With a Suzuki Reaction: Synthesis of Selectively 2,3′-substituted 1,1′;2′,1″-terphenyl Derivatives</title><secondary-title>Journal of Molecular Catalysis A: Chemical</secondary-title></titles><periodical><full-title>Journal of Molecular Catalysis A: Chemical</full-title><abbr-1>J. Mol. Catal. A: Chem.</abbr-1><abbr-2>J Mol Catal A: Chem</abbr-2><abbr-3>JMO</abbr-3></periodical><pages>115-124</pages><volume>204-205</volume><section>115</section><dates><year>2003</year></dates><isbn>13811169</isbn><urls></urls><electronic-resource-num>10.1016/s1381-1169(03)00290-5</electronic-resource-num></record></Cite></EndNote>19aEthyl 2,6-dibutyl-(1,1'-biphenyl)-4-carboxylate (10qaa)Modified small-scale procedure was followed using ethyl 4-((fluorosulfonyl)oxy)benzoate (1q, 99.3 mg, 0.4 mmol) and 1-bromobutane (2a, 97.3 ?L, 123 mg, 0.9 mmol, 2.25 equiv). Reaction conducted for 3 hours. The crude product was purified by flash chromatography using PE/MTBE (95:5) as solvent to afford the title compound as a viscous colorless oil (100 mg, 74%).Anal. Calcd for C23H30O2: C, 81.61; H, 8.93; N, 0.00. Found: C, 81.60; H, 8.91; N, 0.00. 1H NMR (400 MHz, CDCl3) δ: 7.78 (s, 2H), 7.41 (AA’BB’C, 2H), 7.35 (AA’BB’C, 1H), 7.12 (AA’BB’C, 2H), 4.40 (q, J = 7.1 Hz, 2H), 2.36 – 2.29 (m, 4H), 1.42 (t, J = 7.1 Hz, 3H), 1.44 – 1.33 (m, 4H), 1.15 (h, J = 7.4 Hz, 4H), 0.74 (t, J = 7.3 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3) δ: 167.0 (C=O), 145.8 (C), 141.4 (C), 139.6 (C), 129.18 (C), 129.15 (CH), 128.0 (CH), 127.4 (CH), 126.9 (CH), 60.8 (CH2), 33.39 (CH2), 33.35 (CH2), 22.5 (CH2), 14.4 (CH3), 13.7 (CH3). EI-MS m/z (calc. 338.2): 338.1 (45%, M+?), 295.1 (25%), 223.2 (43%), 167.2 (100%). IR (neat) cm-1: 2955.9, 1716.5, 1202.6, 768.8, 703.6.Supporting informationPicture of the two-chamber reactors, detailed optimization table, and 1H, 13C{1H}, 13C{1H} APT and 19F NMR spectra of the synthesized compounds (PDF). AcknowledgementsThis research has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721290. The Hercules Foundation of the Flemish Government is acknowledged for supporting the purchase of a 400 MHz NMR spectrometer through project AKUL1311 and providing high-resolution mass spectrometry equipment through grant 20100225–7.The authors declare no competing financial interest.REFERENCES ADDIN EN.REFLIST 1. Catellani, M.; Frignani, F.; Rangoni, A. A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o′-Disubstituted Vinylarenes. Angew. Chem. Int. Ed. 1997, 36, 119-122.2. (a) Ye, J.; Lautens, M. Palladium-Catalysed Norbornene-Mediated C-H Functionalization of Arenes. Nat. Chem. 2015, 7, 863-870; (b) Della Ca, N.; Fontana, M.; Motti, E.; Catellani, M. Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation. Acc. Chem. Res. 2016, 49, 1389-1400; (c) Wegmann, M.; Henkel, M.; Bach, T. C-H alkylation reactions of indoles mediated by Pd(II) and norbornene: applications and recent developments. Org. Biomol. Chem. 2018, 16, 5376-5385; (d) Cheng, H. G.; Chen, S.; Chen, R.; Zhou, Q. Pd(II)-Initiated Catellani-Type Reactions. Angew. Chem. Int. Ed. 2019, 58, 5832-5844; (e) Wang, J.; Dong, G. Palladium/Norbornene Cooperative Catalysis. Chem. Rev. 2019, 119, 7478-7528.3. (a) Dong, Z.; Lu, G.; Wang, J.; Liu, P.; Dong, G. Modular ipso/ortho Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis. J. Am. Chem. Soc. 2018, 140, 8551-8562; (b) Elsayed, M. S. A.; Griggs, B.; Cushman, M. Synthesis of Benzo[1,6]naphthyridinones Using the Catellani Reaction. Org. Lett. 2018, 20, 5228-5232.4. (a) Chen, S.; Liu, Z. S.; Yang, T.; Hua, Y.; Zhou, Z.; Cheng, H. G.; Zhou, Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani Reaction. Angew. Chem. Int. Ed. 2018, 57, 7161-7165; (b) Shi, G.; Shao, C.; Ma, X.; Gu, Y.; Zhang, Y. Pd(II)-Catalyzed Catellani-Type Domino Reaction Utilizing Arylboronic Acids as Substrates. ACS Catal. 2018, 8, 3775-3779.5. (a) Lautens, M.; G?bel, M.; Stark, T.; Suhartono, M. A Palladium-Catalyzed Domino Reaction as Key Step for the Synthesis of Functionalized Aromatic Amino Acids. Synlett 2013, 24, 2730-2734; (b) Blanchot, M.; Candito, D. A.; Larnaud, F.; Lautens, M. Formal Synthesis of Nitidine and NK109 via Palladium-Catalyzed Domino Direct Arylation/N-arylation of Aryl Triflates. Org. Lett. 2011, 13, 1486-1489.6. Gribble, G. W. The Diversity of Naturally Produced Organohalogens. Chemosphere 2003, 52, 289-297.7. Lochab, B.; Shukla, S.; Varma, I. K. Naturally Occurring Phenolic Sources: Monomers and Polymers. RSC Adv. 2014, 4, 21712-21752.8. Chassaing, S.; Specklin, S.; Weibel, J.-M.; Pale, P. Vinyl and Aryl Sulfonates: Preparations and Applications in Total Synthesis. Curr. Org. Synth. 2012, 9, 806-827.9. (a) So, C. M.; Kwong, F. Y. Palladium-Catalyzed Cross-Coupling Reactions of Aryl Mesylates. Chem. Soc. Rev. 2011, 40, 4963-4972; (b) Zeng, H.; Qiu, Z.; Domínguez-Huerta, A.; Hearne, Z.; Chen, Z.; Li, C.-J. An Adventure in Sustainable Cross-Coupling of Phenols and Derivatives via Carbon–Oxygen Bond Cleavage. ACS Catal. 2016, 7, 510-519.10. (a) Roth, G. P.; Fuller, C. E. Palladium Cross-Coupling Reactions of Aryl Fluorosulfonates: An Alternative to Triflate Chemistry. J. Org. Chem. 1991, 56, 3493-3496; (b) Liang, Q.; Xing, P.; Huang, Z.; Dong, J.; Sharpless, K. B.; Li, X.; Jiang, B. Palladium-Catalyzed, Ligand-Free Suzuki Reaction in Water Using Aryl Fluorosulfates. Org. Lett. 2015, 17, 1942-1945; (c) Hanley, P. S.; Clark, T. P.; Krasovskiy, A. L.; Ober, M. S.; O’Brien, J. P.; Staton, T. S. Palladium- and Nickel-Catalyzed Amination of Aryl Fluorosulfonates. ACS Catal. 2016, 6, 3515-3519; (d) Lim, T.; Byun, S.; Kim, B. M. Pd(PPh3)4-Catalyzed Buchwald-Hartwig Amination of Aryl Fluorosulfonates with Aryl Amines. Asian J. Org. Chem. 2017, 6, 1222-1225; (e) Ma, C.; Zhao, C. Q.; Xu, X. T.; Li, Z. M.; Wang, X. Y.; Zhang, K.; Mei, T. S. Nickel-Catalyzed Carboxylation of Aryl and Heteroaryl Fluorosulfates Using Carbon Dioxide. Org. Lett. 2019, 21, 2464-2467.11. (a) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem. Int. Ed. 2014, 53, 9430-9448; (b) Derrick, M. R.; Burgess, H. D.; Baker, M. T.; Binnie, N. E. Sulfuryl Fluoride (Vikane): A Review of Its Use as a Fumigant. J. Am. Inst. Conserv. 1990, 29, 77-90.12. Veryser, C.; Demaerel, J.; Bieliūnas, V.; Gilles, P.; De Borggraeve, W. M. Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates. Org. Lett. 2017, 19, 5244-5247.13. Hanley, P. S.; Ober, M. S.; Krasovskiy, A. L.; Whiteker, G. T.; Kruper, W. J. Nickel- and Palladium-Catalyzed Coupling of Aryl Fluorosulfonates with Aryl Boronic Acids Enabled by Sulfuryl Fluoride. ACS Catal. 2015, 5, 5041-5046.14. Catellani, M.; Motti, E.; Minari, M. Symmetrical and Unsymmetrical 2,6-dialkyl-1,1′-biaryls by Combined Catalysis of Aromatic Alkylation via Palladacycles and Suzuki-Type Coupling. Chem. Commun. 2000, 157-158.15. Higher temperatures promoted premature precipitation of Pd-black, causing incomplete conversion.16. Methyl [1,1'‐biphenyl]‐2‐carboxylate was identified by GC-MS as the sole reaction product.17. Large quantities of chromatographically inseparable 5-norbornene-2-carboxylic acid butyl ester were observed in the crude mixture.18. Rasina, D.; Kahler-Quesada, A.; Ziarelli, S.; Warratz, S.; Cao, H.; Santoro, S.; Ackermann, L.; Vaccaro, L. Heterogeneous Palladium-Catalysed Catellani Reaction in Biomass-Derived γ-Valerolactone. Green Chem. 2016, 18, 5025-5030.19. (a) Motti, E. A New Type of Palladium-Catalysed Aromatic Cross-Coupling Combined With a Suzuki Reaction: Synthesis of Selectively 2,3′-substituted 1,1′;2′,1″-terphenyl Derivatives. J. Mol. Catal. A: Chem. 2003, 204-205, 115-124; (b) Casnati, A.; Gemoets, H. P. L.; Motti, E.; Della Ca, N.; Noel, T. Homogeneous and Gas-Liquid Catellani-Type Reaction Enabled by Continuous-Flow Chemistry. Chemistry 2018, 24, 14079-14083.20. Catellani, M.; Motti, E.; Della Ca, N. Catalytic Sequential Reactions Involving Palladacycle-Directed Aryl Coupling Steps. Acc. Chem. Res. 2008, 41, 1512-1522.21. Chu, L.; Shang, M.; Tanaka, K.; Chen, Q.; Pissarnitski, N.; Streckfuss, E.; Yu, J. Q. Remote Meta-C-H Activation Using a Pyridine-Based Template: Achieving Site-Selectivity via the Recognition of Distance and Geometry. ACS Cent. Sci. 2015, 1, 394-399.22. (a) Lautens, M.; Qureshi, Z.; Schlundt, W. Introduction of Hindered Electrophiles via C–H Functionalization in a Palladium-Catalyzed Multicomponent Domino Reaction. Synthesis 2015, 47, 2446-2456; (b) Masson, E.; Leroux, F. The Effect of Ring Size on Reactivity: The Diagnostic Value of ‘Rate Profiles’. Helv. Chim. Acta 2005, 88, 1375-1386.23. (a) Wright, S. W.; Hageman, D. L.; McClure, L. D. Fluoride-Mediated Boronic Acid Coupling Reactions. J. Org. Chem. 1994, 59, 6095-6097; (b) Littke, A. F.; Dai, C.; Fu, G. C. Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions. J. Am. Chem. Soc. 2000, 122, 4020-4028.24. Cívicos, J. F.; Alonso, D. A.; Nájera, C. Microwave-Promoted Copper-Free Sonogashira-Hagihara Couplings of Aryl Imidazolylsulfonates in Water. Adv. Synth. Catal. 2013, 355, 203-208.25. Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chemoselective Synthesis of Polysubstituted Pyridines from Heteroaryl Fluorosulfates. Chemistry 2016, 22, 5692-5697.26. Jourden, J. L.; Daniel, K. B.; Cohen, S. M. Investigation of Self-immolative Linkers in the Design of Hydrogen Peroxide Activated Metalloprotein Inhibitors. Chem. Commun. 2011, 47, 7968-7970.27. Percec, V.; Bae, J.-Y.; Zhao, M.; Hill, D. H. Aryl Mesylates in Metal-Catalyzed Homocoupling and Cross-Coupling Reactions. 1. Functional Symmetrical Biaryls from Phenols via Nickel-Catalyzed Homocoupling of Their Mesylates. J. Org. Chem. 1995, 60, 176-185. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download