Linguistic Data Management
[Pages:69]Linguistic Data Management
Steven Bird
University of Melbourne, AUSTRALIA
August 27, 2008
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
Introduction
? language resources, types, proliferation ? role in NLP, CL ? enablers: storage/XML/Unicode; digital publication;
resource catalogues ? obstacles: discovery, access, format, tool ? data types: texts and lexicons ? useful ways to access data using Python: csv, html, xml ? adding a corpus to NLTK
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- crm data management best practices
- provider data management system
- nonprofit data management software
- enterprise data management edm
- electronic data management system edms
- electronic data management system
- data management maturity model
- data management for nonprofits
- best nonprofit data management systems
- data management salesforce
- salesforce data management tools
- salesforce data management platform