Antibacterial Activities and Molecular Docking of Novel ...

[Pages:15]molecules

Article

Antibacterial Activities and Molecular Docking of Novel Sulfone Biscompound Containing Bioactive 1,2,3-Triazole Moiety

Huda R. M. Rashdan 1,* , Ihsan A. Shehadi 2, Mohamad T. Abdelrahman 3 and Bahaa A. Hemdan 4

1 Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt

2 Chemistry Department, College of Science, University of Sharjah, Sharjah 27272, United Arab Emirates; ishehadi@sharjah.ac.ae

3 Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 12311, Egypt; mohamadt.abdelrahman@

4 Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt; be.hemdan@iitg.ac.in

* Correspondence: hr.rashdan@nrc.sci.eg

Citation: Rashdan, H.R.M.; Shehadi, I.A.; Abdelrahman, M.T.; Hemdan, B.A. Antibacterial Activities and Molecular Docking of Novel Sulfone Biscompound Containing Bioactive 1,2,3-Triazole Moiety. Molecules 2021, 26, 4817. molecules26164817

Abstract: In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.

Academic Editor: Jianmin Gao

Keywords: 1,2,3-triazoles; dapsone; sulfone biscompounds; antibacterial activity; MIC; ATP level; toxicity

Received: 1 July 2021 Accepted: 7 August 2021 Published: 9 August 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: ? 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// licenses/by/ 4.0/).

1. Introduction

As the resistance of pathogenic bacteria to the available antibiotics is rapidly becoming a significant international challenge, the development of new compounds to combat antibiotic resistance is among the most significant facets of preliminary antimicrobial research. In particular, it is recognized that antibacterial medications do not even have specific potency, regardless of the biological similarity between human cells and types of pathogens [1].

A broad range of pathways are involved in the emergence of resistant bacteria, including the genetic modifications of horizontal genome transmission and alterations [2]. Additionally, the excessive consumption and abuse of antibiotics can produce multi-drug resistant bacteria that do not require a prescription, leading to the appearance and deployment of antibiotic resistance [3]. Fundamental features have been ascertained in various bacterial strains, encouraging them to resist and block antibiotic attacks [4]. The isolated strains of Staphylococcus aureus possess significant resistance to many types of antibiotics, including lactams, glycopeptides, aminoglycosides, and fluoroquinolones [5]. Moreover, Pseudomonas aeruginosa is distinguished by its capability to persist in highly antibiotic-resistant biofilm accumulation [6].

Molecules 2021, 26, 4817.



Molecules 2021, 26, 4817

in various bacterial strains, encouraging them to resist and block antibiotic attacks [4].

The isolated strains of Staphylococcus aureus possess significant resistance to many types

of antibiotics, including lactams, glycopeptides, aminoglycosides, and fluoroquinolones

[5]. Moreover, Pseudomonas aeruginosa is distinguished by its capability to persist in

highly antibiotic-resistant biofilm accumulation [6].

2 of 15

Consequently, a large number of studies should be devoted to producing new an-

tibacterial drugs with entirely different chemical formulations and specific potential applicatCioonnsse[q7u].enFotlry,saolmaregeconmumpobuenr dosf swtuidthie1s,s2h,3o-utrlidazboeled,evthoeteirdatnotpimroidcruocbiniagl naecwtivaintytibhaacsbteereinalrdecruoggnsiwzeidth[8en?1ti3r]e.lDy adpifsfoenreen, tacshuelmphicoanlefoanrmaluoglatkinoonws annads sdpiaecmifiincopdoiptehnetniayllaspuplfloicnae(tDioDnsS)[,7i]s. aFosrtasnodmaerdcoamntpiboiuotnidc swwiditehly1u,2s,e3d-triinazcoolme,btihneaitrioanntwimitihcrcolboifaalzaimctiinveityanhdasribfaemenpreicciongnfoizretdhe[8t?re1a3t]m. Deanpt soofnlee,parossuylp. Ihtoinsethaenasleocgonkdn-olwinne amseddiiacmatiinoondfioprhtehneylpsruevlfeonnteio(nDDanSd), taphwpitorsrneltneeiahartteaasipheutmstmrmemtmpatisoicoenekofsrnonodicionstrrtyabmrsoidoiimdtnaffiiislsslamp,eopapnapargnutndctrieeniebnoeneueuiersntomsmy,ftt[.uas[i1ooc1Inn5ctnw4wdc]yii].tsias.iiottdo.hItitthnAeshlhpe.edypaIorsdtnusoesihesckrbteiuaoieoidnsmnemnndaidaonml-lisdnllscoiyuioono,ancrbemi.duteemAcebmefarinudensendndnua[bci1titsctiete4eoiaidod]ount.ninsaoIfwea.tosndlrIhilattyfathdnoo,hserceaiprbltftsmorfheeefceeaaacvanlzttpensiiindtovrmiebteosbvitecnhaoeeuneexeunmrtnoatsipipmneeoeudnldntaisticserfetramoidodofnrabodmafpmisosaritirpslserae,vianidcanageietecnneprmnfnmtfafeeeottt,acinro[eatt1txtiinn5hvtootid]eessf-.

22.. RReessuullttss aanndd DDiissccuussssiioonn 2.1. CChheemmiissttrryy

4,4--sulfonylbis(azidobbeennzzeennee))((11))wwaasssusubbmmitittetdedtotoreraecat cwt iwthitahceatcyelatycleatocenteoinneeitnhaentho-l ainnotlhienpthrespernecseenocfesofdsioudmiummemtheotxhiodxeiduenudnedr errerfleuflxuxtotoafaffofrodrdththeeccoorrrreessppoonnddiinngg target compound ((SScchheemmee11))..11HHNMR ssppeeccttrruummooffththeepprordoudcutcsthsohwowedecdhcahracrtaecrtiesrticsttiwc otwsoingsilnetgsilgetnsailgsnaatls a2t.362a.3n6da2n.4d22f.o42r tfhoer tphreoptornostoonfs4o-mf 4e-tmhyetlhgyrlogurposu,pasn,dantwd otwdooudpouleptlseitgsnigalnsaalst a7t.775.7a5ndan8d.118.f1o1r ftohre tahreomaraotmic aptrioctponros;to13nCs;-N13CM-RNMshRowshedowsiegdnisfiicganniftisciagnntaslsigantals9.a7t4,297..7649,, 2172.66.695, ,112269.6.353,, 12398.3130, 113398..1180,,114319.4.118, ,14124.19.84,11, 9134.323.9;8t,he19s3tr.3u3c;tutrheewsatrsuacltsuoresuwppasoratelsdobsyuiptspmoarstesdspbeyctirtusmm(amss/szp(e4c6t4r)u)m[M(+m]/,zw(h46ic4h))a[gMre+e]s, whitihchitsagmroeelescwuliatrhfiotrsmmuolaleCcu22laHr2f0oNrm6Ou4lSa C(d2e2Hta2i0lNs a6Ore4Sp.resented in the Supplementary Chart 1 and Chart 2).

SScchheemmee 11.. SSyynnththeesissisofo1f,11-,(1(s-u((lsfounlfyolbniysl(b4,i1s-(p4,h1e-npyhleennye)l)ebnise()5)b-mise(5th-myl-e1tHhy-1l-,21,H3--t1r,i2az,3o-lter-i1a,z4o-dleiy-1l),)4b-ids(iyetlh))abni-s1(e-othnae)ny-1ie-oldn9e5) %yi(e2l)d.

95% (2).

2.2. Biology

2.2. BIinoltohgiys study, an inhibitory zone assay was applied to assess the antibacterial properties of thIennthewislsytusdyny,thaensiiznehdibcitoomrypozounnedatsoswayarwdassEa.pcpolliieOd1t5o7a, sPs.eassertuhgeinaonstai,bKac.teprnieaulmporonpia-, eSr.taieusreoufs,tBh.esunbetwililsy, asynndtLh.emsizonedocyctoomgepnoesu,nudsintogwaanrdagsaEr.wcoellil dOi1ff5u7s,ioPn. aaesrsuagyi.nTohsae, oKb.tapinneeudmreosnuilat,sSi.naduirceautse,dBt.hsautbttihlies,naenwdlLy. smyonnthoceystiozgeednecso, muspinougnadn daigsaprlawyeeldl dsiigffnuisfiiocannatlsysahyi.gThheer opbottaeinnceydfroersiunlhtsibinitdinicgataedbrtohaadt tshpeecnteruwmlyosfyenxthaemsiizneedd cGormampo-unengdadtiivseplsapyeecdiessi,ginnicfliucadnintlgy wwfwthcwwEZatochuhlosib.uOeieegeesesmttcrldrilhahaIololeeee-piy-eilxxnbdndnit,11roahaegieOi9a9aufmpfmeidfnsfnn1?E?uousiZdig5rdnta.nss0eeO70iyiecet2.stono,.o2hd,hdI2u2ncnPl6aea6ilby.GG,?ntn,aaeOZsa1dr1sfrsieGo7Oasnsa107srthamrma5.ugrh?I1?yoy7agie4--b2n,mw0ipp(,(0n2Zeh.TPTo1o.2-ioOti1aap.n?6ss3bsh6bbii,aogaIita0t,?tl,leiasibt.eeivarv2i1anneutGne4e41n10idgigvdn,))r.dss?i2..eaa12gpnp18S.SmK83oee82b,0iisc.cmm4??-.raa?i1inpoe,en?u40u0neassad0,..lgle0,d,22ntt.u2.iiaa2a2821dnn6msnt2,n,54icpc,evraeo,K?lle?erouunno2e.ecsu6dudid0tspbpa0rsipsi.?enaenun.l22l2eyccey0a45ggm3cutt,,.teit2?maSSttmviarhh4ovn..eio0eaemfceaadaln.ylouul2neZZiy,,s23anrrxd,OOpeere7uacmuueu2eemsIaIs?sssc7inmtpv,,ivniint?eBBnaeaag0,rgsclel..a0.ruuc1ttdsstwet.hio1i2eueuhvsoe2nsesGbbpeemnrttcomewlorweiieyllacomffii,nemmtmessfttilut,,,hlhvl2r,lo-aa-sr-eaee0nrdrednnitleneecisyciddismfogofpgo,sfpfnamuLLumeuugeatc.s.ss/scioppitmmcviditoifonoemoiveivnoonpugsu2enneLsc0tnnlaaooplaiy,ysbdcddcs,ewsmyyd,slicuaeaatauftiiiofgoygssyegtstuggchi/..osaianesen,mTTiindnittgnngiohhhheienLssfsnsaeeeaet-t-,,,

The obtained results are in agreement with El Malah et al. [16], who revealed that the novel synthesized 1,2,3-triazoles have potent antibacterial activity against a spectrum of bacterial species, including P. aeruginosa and S. aureus, with the inhibitory zone diameter being around 25 and 19 mm. On another side, the width of the ZOI around discs was smaller than that around wells. These results are compatible with El Nahrawy et al. (2021a), who exhibited that the width of the ZOI in the well-diffusion assay is larger than the disc diffusion assay. The ZOI width of Vancomycin as a reference drug was less than the ZOI of

Molecules 2021, 26, 4817

3 of 15

the newly synthesized compounds 2. This means that the inhibitory efficacy of the tested compound is higher than the reference drugs (Vancomycin and Ciprofloxacin) [17] used.

Table 1. Inhibition zone testing and ZOI diameters of the synthesized compound against tested harmful bacterial strains.

Tested Bacterial Pathogens

E. coli O157 P. aeruginosa K. pneumoniae S. aureus B. subtilis L. monocytogenes

Synthesized Compound

Disc Diffusion Well Diffusion

22 ? 0.14 23 ? 0.28 25 ? 0.23 19 ? 0.26 17 ? 0.16 18 ? 0.22

24 ? 0.14 26 ? 0.24 27? 0.12 22 ? 0.21 20 ? 0.23 21 ? 0.16

Width of ZOI (mm)

Vancomycin

Disc Diffusion Well Diffusion

15 ? 0.22 17 ? 0.17 16 ? 0.15 13 ? 0.24 12 ? 0.18 10 ? 0.20

17 ? 0.24 19 ? 0.11 18 ? 0.25 15 ? 0.15 14 ? 0.16 13 ? 0.18

Ciprofloxacin

Disc Diffusion Well Diffusion

16 ? 0.23 18 ? 0.09 17 ? 0.25 12 ? 0.21 10 ? 0.14 8 ? 0.12

18 ? 0.14 20 ? 0.05 19 ? 0.22 14 ? 0.14 12 ? 0.13 11 ? 0.08

2.3. Estimation of MIC and IC50

Different concentrations of the newly tested compound were then subjected to the MIC test to confirm their antibacterial activities further. Interestingly, as shown in Figure 1, the tested compound revealed good antibacterial effects against all bacteria tested, with different values of MICs depending upon the concentrations (mg/mL) and contact times (min). The results of the MIC test exhibited hat the compound has powerful antibacterial effects against E. coli (MIC = 40 mg/mL within 20 min), P. aeruginosa (MIC = 40 mg/mL within 10 min), K. pneumonia (MIC = 40 mg/mL within 10 min), S. aureus (MIC = 50 mg/mL within 20 min), B. subtilis (MIC = 40 mg/mL within 20 min) and L. monocytogenes (MIC = 40 mg/mL within 30 min). Results noticed that the MIC values of the compound were lower in Gramnegative than in Gram-positive bacteria. The antibacterial activity difference of the tested compound could be found due to variations in chemical composition in bacterial cell walls and its ability to enter the membranes of bacterial cells [18].

Regarding the estimated MIC values for the reference antibiotics drugs (Vancomycin and Ciprofloxacin), the results indicated that S. aureus was more susceptible to Vancomycin, while E. coli O157 and P. aeruginosa were more resistant than the others. On the other hand, S. aureus was more resistant to Ciprofloxacin (Table 2).

The IC50 values for the newly synthesized compound against the investigated bacterial strains are presented in Table 3 and Figure 2. From the IC50 value results, the compound appears to act as a vigorous bactericidal agent against the tested bacteria. The IC50 values of E. coli O157, P. aeruginosa, K. pneumoniae, S. aureus, B. subtilis, and L. monocytogenes were 22.42, 11.11, 16.54, 25.31, 26.66, and 31.38 ?M, respectively. These results accord with the results of El Nahrawy et al. [19]. In other words, to develop several pharmaceutical coatings expressing anti-HIV, antitumor, and antimicrobial actions, the 1,2,3-triazole dependent heterocycles are well manipulated [13,20?23].

2.4. Kinetic Modeling Using the Pseudo-First-Order Kinetic Model

The pseudo-first-order kinetic model was applied to estimate the inactivation frequencies of the examined bacterial species after their being exposed to the studied compound. The results revealed that the compound could quickly suppress the growth of P. aeruginosa from kinetic modeling using the pseudo-first-order model, whereas the minimum inhibition frequency was registered for L. monocytogenes organisms. Further, the effective concentration of the compound was the one that could efficiently suppress the growth of all bacterial strains studied, depending on the type of bacterial species tested, throughout various retention periods. It is significant to mention that the L. monocytogenes species studied were damaged over a prolonged period. The results acquired revealed that the rate of inactivation of the tested compound as a K1 constant was rapid in E. coli > P. aeruginosa > K. pneumoniae > S. aureus > B. subtilis > L. monocytogenes (Table 4).

Molecules 2021, 26, x FOR PEER REVIEW Molecules 2021, 26, 4817

4 of 17 4 of 15

FigFuirgeur1e. 1M. iMniimniummuminihnihbiibtoitroyrycocnoncecnentrtaratitoionnvvaalluueess ooff tthhee nneewwllyy ssyynntthheessizizeeddcocmomppouonudndtotwowaradrsdesxaemxaimneidnebdacbtaercitaelrial

spescpieecsie(sa)(aE) .Ec.ocloil,i,(b(b))PP.. aaeerruuggiinnoossaa, ,(c()cK) .Kp.npenuemuomnioan, i(ad,)(Sd.)auSr.eauus,re(eu)s,B(.es)ubBti.lissuabntidlis(fa) nLd. m(ofn) oLc.ytmogoennoecsy. tTohgeenreesm. aTihneingrevmiaabilneing viacbellel pceolpl uploaptiuolnastiaotnvsaaritovuasrtiiomues itnimteervianltserovf a5l,s1o0f, 155, ,1a0n, d153,0amndin3a0rme ainlsuotsehsoawrena. lTswo osh-woawyna.nTawlyos-iws oafyvaanriaalnycseis(AofNvOaVriAa)nce (ANstOatVesA*)*sitnadteicsa*te*sinmdoicdaetreastemcoodrreerlaattieocno(rprela0t.i0o1n),(*p**i0n.d0i1c)a,t*e*s*hinigdhiccaotrerselhatigiohnc(oprrel0a.0ti0o1n).(p 0.001).

Table 2. Estimated MIC values of reference antibiotics drugs used.

Tested Bacterial Pathogens

E. coli O157 P. aeruginosa K. pneumonia S. aureus B. subtilis L. monocytogenes

Reference Antibiotics Drugs Used

Vancomycin

Ciprofloxacin

50 ?g/mL

20 ?g/mL

50 ?g/mL

20 ?g/mL

40 ?g/mL

30 ?g/mL

20 ?g/mL

50 ?g/mL

30 ?g/mL

40 ?g/mL

30 ?g/mL

40 ?g/mL

Molecules 2021, 26, 4817

5 of 15

Molecules 2021, 26, x FOR PEER REVIEW Table 2. Estimated MIC values of reference antibiotics drugs used.

5 of 17

Reference Antibiotics Drugs Used Tested Bacterial Pathogens

The IC50 values for the newly synVthaensciozmedyccinompound against tChieprionflvoexsatciginated bac-

teEri.aclolsitOra1i5n7s are presented in Table 3 an5d0 F?igg/umreL 2. From the IC50 valu2e0 ?regs/umltLs, the compoPu. anedruagipnposeaars to act as a vigorous bacte5r0ic?igd/aml aLgent against the teste2d0b?agc/tmerLia. The IC50 vaKl.upenseuomf oEn.iacoli O157, P. aeruginosa, K. p4n0e?ugm/omnLiae, S. aureus, B. subtili3s0, ?agn/dmLL. monocytogeSn.easuwreuesre 22.42, 11.11, 16.54, 25.31, 26.6260,?agn/dm3L1.38 ?M, respectively50. T?gh/emseLresults accoBr.dsuwbtiitlhis the results of El Nahrawy et a3l0. ?[1g9/]m. ILn other words, to dev40el?ogp/smeLveral pharmLa.cmeuontioccayltogceonaestings expressing anti-H3I0V?, ga/nmtiLtumor, and antimicr4o0b?iga/l maLctions, the

1,2,3-triazole dependent heterocycles are well manipulated [13,20?23].

Table 3. The calculated IC50, Log IC50, and R2 of the studied compound. Table 3. The calculated IC50, Log IC50, and R2 of the studied compound.

Compound

Tested Bacterial Pathogens

Tested Bacterial Pathogens IC50 (?M)

Compound IC50 (?MLo)g IC50 (?ML)og IC50 (?M)

R2R2

E. coli O157 P. aeruginosa K. pneumonia S. aureus B. subtilis L. monocytogenes

E. coli O157 22.42

P. aeruginosa 11.11

K. pneumonia 16.54

S. aureus 25.31

B. L.

msuobntoilciys togen2361es..6368

22.42 1.35

1.35

11.11 1.02

1.02

16.54 1.21

1.21

25.31 1.40

1.40

26.66 1.43

1.43

31.38 1.50

1.50

09069464

0.904.9545 0.903.9636 0.907.9878 0.908.9383 0.906.9565

Figure 2. Normalized absorbance (%) of the newly synthesized compound against (a) Gram-negative and (b) GramFpiogsuitrieve2b.acNteorrima. alized absorbance (%) of the newly synthesized compound against (a) Gram-negative and (b) Gram-positive bacteria.

Table 4. Kinetic values (K1 (min-1)) of pseudo-first-order calculation for the newly synthesized

2c.o4m. Kpoinuentdic'sMinoadcetliivnagtioUnsionfgtetshteedPbseauctdeor-iFalirssttr-aOinrsd. er Kinetic Model

The pseudo-first-order kinetic model was applied to estimate the inactivation frequeTnesctieeds BoafcttheeriaelxPaamthinogeednbs acterial specieTsheafSteyrntthheesiirzebdeiCnogmepxopuonsded(5t0omthg/emsLtu) died compound. The results revealed that the compoKu1nd could quickly suppress tRh2e growth of P. aeEru. cgoilni oOs1a5f7rom kinetic modeling using th0e.4p27s3eudo-first-order model, w0.9h6e8r8eas the minimP.uameruignihnoibsaition frequency was registered0.3f7o0r2 L. monocytogenes organi0s.m97s3.7Further, the efKfe.cptniveuemcoonniacentration of the compound w0.3a0s0t1he one that could efficie0n.t9l9y31suppress the grSo.wautrheuosf all bacterial strains studied, dep0.e2n9d81ing on the type of bacter0ia.9l8s1p2ecies tested, thBLr..omsuuogbnthoilociysuttogveanreisous retention periods. It is00s..i21g48n7487ificant to mention that the00..L9988. 88m86onocytogenes species studied were damaged over a prolonged period. The results acquired revealed that the rate of inactivation of the tested compound as a K1 constant was rapid in E. coli > P. aeruginosa > K. pneumoniae > S. aureus > B. subtilis > L. monocytogenes (Table 4).

Molecules 2021, 26, 4817

6 of 15

2.5. Physiological Altering of Bacterial Species

As seen in Figure 3, the results revealed that all the tested bacterial species' growth rates decreased gradually and significantly after exposure to the new combined effective dose of the compound. The results obtained showed that when comparing the bacterial growth curves in all studied bacteria, the slope of the bacterial growth curve was faster and Molecules 2021, 26, x FOR PEER REVIEWmore significant for P. aeruginosa bacteria, and conversely, the rate of decrea8soef 1w8 as lower for L. monocytogenes species.

FFiigguurree33..TThheeggrorwowththcucruvrevseosfo(fa)(aE). Eco.lci oOli1O571,5(7b,)(Pb.)aPe.ruagerinuogsian,o(sca),K(c. )pnKe.upmnoenuimaeo(ndia) eS(.dau) rSe.uasu, (reu) sB,.(seu)bBti.lisu, (bft)ilLis.,m(fo)nLo-. monocytocgyetnoegsenbeesfboerfeoarendanadftaefrtesrusbujbejcetcitninggththeemmttoo tthe tesstteeddccoommppoouunnd.d.

In the same context, the level of ATP is an excellent indicator of the activity and vitality of the bacterial cells and the extent of their ability to grow and cause infection and damage. The results represented in Figure 4 revealed that the level of ATP was significantly decreased in the bacterium P. aeruginosa compared to that in the other species tested, while the level of decrease was lower in L. monocytogenes.

MMoolleeccuulleess

2021, 2021,

2266,,

x FOR 4817

PEER

REVIEW

8 of 17 7 of 15

FFiigguurree 44.. AAmmoouunnttssooffAATTPPpprroodduucceeddfrforomm(a(a) )EE. c. ocloilOi O15175,7(,b()bP) .Pa.eareurguignionsoas,a(,c)(cK).Kp.npeunmeuomnoianeia(de )(dS). aSu.raeuurse,u(se,)(Be.)sBu.bstiulibst,il(ifs), (Lf.)mL.onmoocnyotocygteongeesnbeesfboerfeoarendanadftearftseurbsjuebctjeinctginthgetmhetmo tthoethteestteesdtecdomcopmopuonudn. d.

2.6. PCrootnevinerRseelleya,sethe cell wall of Gram-positive bacterial strains makes up about 90% of the pIenpttiedrmogslyocfapnr,owtehiniclheagkiavgees ftrhoemir wweaallksemneodrebraoctbeursiatlmceelclsh,aansicsaeel nprionpFeirgtuierse.5W, thheerfionndeoinfgtshsehseowfeeadtuthreast acfatneresnuhbamnictteintghethreesciesltlasntocethoefstuhcecseessmfuilccroobnicaelnstrpaetcioiensotfothaenctiommicprooubniadl, cthome qpuoaunntditsie[s27o]f. pSreovteerianl rpeileecaessedofinevcrideaesnecde dinrdaimcaatteictahlalyt.thTeheslloepveelinofthperobtaecinterreialel agsreodwbthy cPu. arvereu,gains owsae,lal nasintdhiecaletovrelofoGf rrealmea-sneedgaptirvoetebinacatesraia,rewsausltinocfrceealsleddeisntrwuchtiicohnt,hweearme omuonrtes soifglniibfeicraantetdinpGrortaemin-nweegraetigvreebataecrtetrhiaancofomrpoatrheedr tsopethcieesG(rFaimgu-preos5i)t.ivDeusepetcoieths,easnmdatlhlicseilsl dwuaell,topothroeursiginidtearsntditiianlfsletrxuibctleursetsr,uacntudrethoeffothrme Gatriaomn -opfowsietaivkelicpeollpwolaylsla, cwchhaicrhidmesa, ktheessiet mreosureltrsecsoisrtraonbtotroatbeatchtoersieciodfaJliaanggenettsa[l2. 8[2].4], who reported that the protein release rate and quantities from compromised E. coli cells were quicker and more meaningful, respectively than those found in S. aureus. Therefore, it could be inferred that the studied compound may trigger substantial morphological changes in the microbial cell wall and measurable cell material outflow [25]. Gram-negative bacteria such as E. coli and P. aeruginosa have less

Molecules 2021, 26, 4817

8 of 15

ability to withstand environmental stress, which results in losses or deformation due to a Molecules 2021, 26, x FOR PEER REVIElaWck of bacterial arrangements. Softly porous bacterial cells are produced by antimic9roobf i1a7l

compounds [26].

Figure 5. Quantities of protein leakage from (a) E. coli O157, (b) P. aeruginosa, (c) K. pneumoniae (d) S. aureus, (e) B. subtiilliiss,, ((ff)) LL.. mmoonnooccyyttooggeenneess bbeeffoorree aanndd aafftteerr ssuubbjjeeccttiinngg tthheemm ttoo tthhee tteesstteedd ccoommppoouunndd..

2.7. TCoxoincovleogrsiceally,PtehreforcmelalnwcealAl sosfayGorfaCmo-mpoposuitnivde bacterial strains makes up about 90% of the pDeputeidtoogthlyecparne,vwahleinchcegoivf easntthibeiiortwic-arlelssimstaonret sropbecuisetsm, dercuhganmicaanlupfaroctpuerretriessa. rWe lhoeorkoinnge foofrtphreosme fiseiantguraelstecrannateivnehabniocceotmheparteisbilsetaanncteiboafcttehreiasleamgeicnrtosbtihaaltsdpoecnieost tsohoawntilmonicgr-otebrimal toxicity. Appraising cytotoxic effects is obviously a noteworthy phase in evaluating a potential antimicrobial drug since a helpful drug must be safe and non-toxic for the intended host. By testing its possible toxicity to the bioluminescent marine bacterium `Aliivibriofischeri,' the biocompatibility of the studied compound was assessed. In Table 4,

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download