Disk failures in the real world: What does an MTTF of ...
[Pages:16]In FAST'07: 5th USENIX Conference on File and Storage Technologies, San Jose, CA, Feb. 14-16, 2007.
Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?
Bianca Schroeder
Garth A. Gibson
Computer Science Department
Carnegie Mellon University
{bianca, garth}@cs.cmu.edu
Abstract
Component failure in large-scale IT installations is becoming an ever larger problem as the number of components in a single cluster approaches a million.
In this paper, we present and analyze field-gathered disk replacement data from a number of large production systems, including high-performance computing sites and internet services sites. About 100,000 disks are covered by this data, some for an entire lifetime of five years. The data include drives with SCSI and FC, as well as SATA interfaces. The mean time to failure (MTTF) of those drives, as specified in their datasheets, ranges from 1,000,000 to 1,500,000 hours, suggesting a nominal annual failure rate of at most 0.88%.
We find that in the field, annual disk replacement rates typically exceed 1%, with 2-4% common and up to 13% observed on some systems. This suggests that field replacement is a fairly different process than one might predict based on datasheet MTTF.
We also find evidence, based on records of disk replacements in the field, that failure rate is not constant with age, and that, rather than a significant infant mortality effect, we see a significant early onset of wear-out degradation. That is, replacement rates in our data grew constantly with age, an effect often assumed not to set in until after a nominal lifetime of 5 years.
Interestingly, we observe little difference in replacement rates between SCSI, FC and SATA drives, potentially an indication that disk-independent factors, such as operating conditions, affect replacement rates more than component specific factors. On the other hand, we see only one instance of a customer rejecting an entire population of disks as a bad batch, in this case because of media error rates, and this instance involved SATA disks.
Time between replacement, a proxy for time between failure, is not well modeled by an exponential distribution and exhibits significant levels of correlation, including autocorrelation and long-range dependence.
1 Motivation
Despite major efforts, both in industry and in academia, high reliability remains a major challenge in running large-scale IT systems, and disaster prevention and cost of actual disasters make up a large fraction of the total cost of ownership. With ever larger server clusters, maintaining high levels of reliability and availability is a growing problem for many sites, including high-performance computing systems and internet service providers. A particularly big concern is the reliability of storage systems, for several reasons. First, failure of storage can not only cause temporary data unavailability, but in the worst case it can lead to permanent data loss. Second, technology trends and market forces may combine to make storage system failures occur more frequently in the future [24]. Finally, the size of storage systems in modern, large-scale IT installations has grown to an unprecedented scale with thousands of storage devices, making component failures the norm rather than the exception [7].
Large-scale IT systems, therefore, need better system design and management to cope with more frequent failures. One might expect increasing levels of redundancy designed for specific failure modes [3, 7], for example. Such designs and management systems are based on very simple models of component failure and repair processes [22]. Better knowledge about the statistical properties of storage failure processes, such as the distribution of time between failures, may empower researchers and designers to develop new, more reliable and available storage systems.
Unfortunately, many aspects of disk failures in real systems are not well understood, probably because the owners of such systems are reluctant to release failure data or do not gather such data. As a result, practitioners usually rely on vendor specified parameters, such as mean-time-to-failure (MTTF), to model failure processes, although many are skeptical of the accuracy of
those models [4, 5, 33]. Too much academic and corporate research is based on anecdotes and back of the envelope calculations, rather than empirical data [28].
The work in this paper is part of a broader research agenda with the long-term goal of providing a better understanding of failures in IT systems by collecting, analyzing and making publicly available a diverse set of real failure histories from large-scale production systems. In our pursuit, we have spoken to a number of large production sites and were able to convince several of them to provide failure data from some of their systems.
In this paper, we provide an analysis of seven data sets we have collected, with a focus on storage-related failures. The data sets come from a number of large-scale production systems, including high-performance computing sites and large internet services sites, and consist primarily of hardware replacement logs. The data sets vary in duration from one month to five years and cover in total a population of more than 100,000 drives from at least four different vendors. Disks covered by this data include drives with SCSI and FC interfaces, commonly represented as the most reliable types of disk drives, as well as drives with SATA interfaces, common in desktop and nearline systems. Although 100,000 drives is a very large sample relative to previously published studies, it is small compared to the estimated 35 million enterprise drives, and 300 million total drives built in 2006 [1]. Phenomena such as bad batches caused by fabrication line changes may require much larger data sets to fully characterize.
We analyze three different aspects of the data. We begin in Section 3 by asking how disk replacement frequencies compare to replacement frequencies of other hardware components. In Section 4, we provide a quantitative analysis of disk replacement rates observed in the field and compare our observations with common predictors and models used by vendors. In Section 5, we analyze the statistical properties of disk replacement rates. We study correlations between disk replacements and identify the key properties of the empirical distribution of time between replacements, and compare our results to common models and assumptions. Section 6 provides an overview of related work and Section 7 concludes.
2 Methodology
2.1 What is a disk failure?
While it is often assumed that disk failures follow a simple fail-stop model (where disks either work perfectly or fail absolutely and in an easily detectable manner [22, 24]), disk failures are much more complex in reality. For example, disk drives can experience latent sector faults or transient performance problems. Often it
is hard to correctly attribute the root cause of a problem to a particular hardware component.
Our work is based on hardware replacement records and logs, i.e. we focus on disk conditions that lead a drive customer to treat a disk as permanently failed and to replace it. We analyze records from a number of large production systems, which contain a record for every disk that was replaced in the system during the time of the data collection. To interpret the results of our work correctly it is crucial to understand the process of how this data was created. After a disk drive is identified as the likely culprit in a problem, the operations staff (or the computer system itself) perform a series of tests on the drive to assess its behavior. If the behavior qualifies as faulty according to the customer's definition, the disk is replaced and a corresponding entry is made in the hardware replacement log.
The important thing to note is that there is not one unique definition for when a drive is faulty. In particular, customers and vendors might use different definitions. For example, a common way for a customer to test a drive is to read all of its sectors to see if any reads experience problems, and decide that it is faulty if any one operation takes longer than a certain threshold. The outcome of such a test will depend on how the thresholds are chosen. Many sites follow a "better safe than sorry" mentality, and use even more rigorous testing. As a result, it cannot be ruled out that a customer may declare a disk faulty, while its manufacturer sees it as healthy. This also means that the definition of "faulty" that a drive customer uses does not necessarily fit the definition that a drive manufacturer uses to make drive reliability projections. In fact, a disk vendor has reported that for 43% of all disks returned by customers they find no problem with the disk [1].
It is also important to note that the failure behavior of a drive depends on the operating conditions, and not only on component level factors. For example, failure rates are affected by environmental factors, such as temperature and humidity, data center handling procedures, workloads and "duty cycles" or powered-on hours patterns.
We would also like to point out that the failure behavior of disk drives, even if they are of the same model, can differ, since disks are manufactured using processes and parts that may change. These changes, such as a change in a drive's firmware or a hardware component or even the assembly line on which a drive was manufactured, can change the failure behavior of a drive. This effect is often called the effect of batches or vintage. A bad batch can lead to unusually high drive failure rates or unusually high rates of media errors. For example, in the HPC3 data set (Table 1) the customer had 11,000 SATA drives replaced in Oct. 2006 after observing a high fre-
2
Data set HPC1 HPC2 HPC3
HPC4
COM1 COM2 COM3
Type of cluster HPC
HPC HPC HPC HPC Various HPC clusters Int. serv. Int. serv. Int. serv.
Duration
08/01 - 05/06
01/04 - 07/06 12/05 - 11/06 12/05 - 11/06 12/05 - 08/06 09/03 - 08/06 11/05 - 08/06 09/05 - 08/06
May 2006 09/04 - 04/06 01/05 - 12/05
#Disk events
474 124 14 103 4 253 269 7 9 84 506 2 132 108 104
# Servers
765 64 256 1,532 N/A N/A N/A N/A N/A N/A 9,232 N/A N/A N/A N/A
Disk Count 2,318 1,088
520 3,064
144 11,000 8,430 2,030 3,158 26,734 39,039
56 2,450
796 432
Disk Parameters 18GB 10K SCSI 36GB 10K SCSI 36GB 10K SCSI 146GB 15K SCSI 73GB 15K SCSI 250GB 7.2K SATA 250GB SATA 500GB SATA 400GB SATA 10K SCSI 15K SCSI
10K FC 10K FC 10K FC 10K FC
MTTF (Mhours)
1.2 1.2 1.2 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2
Date of first Deploym.
08/01
12/01 08/05
09/03 11/05 09/05 2001 2004 N/A N/A N/A 1998
ARR (%) 4.0 2.2 1.1 3.7 3.0 3.3 2.2 0.5 0.8 2.8 3.1 3.6 5.4 13.6 24.1
Table 1: Overview of the seven failure data sets. Note that the disk count given in the table is the number of drives in the system at the end of the data collection period. For some systems the number of drives changed during the data collection period, and we account for that in our analysis. The disk parameters 10K and 15K refer to the rotation speed in revolutions per minute; drives not labeled 10K or 15K probably have a rotation speed of 7200 rpm.
quency of media errors during writes. Although it took a year to resolve, the customer and vendor agreed that these drives did not meet warranty conditions. The cause was attributed to the breakdown of a lubricant leading to unacceptably high head flying heights. In the data, the replacements of these drives are not recorded as failures.
In our analysis we do not further study the effect of batches. We report on the field experience, in terms of disk replacement rates, of a set of drive customers. Customers usually do not have the information necessary to determine which of the drives they are using come from the same or different batches. Since our data spans a large number of drives (more than 100,000) and comes from a diverse set of customers and systems, we assume it also covers a diverse set of vendors, models and batches. We therefore deem it unlikely that our results are significantly skewed by "bad batches". However, we caution the reader not to assume all drives behave identically.
2.2 Specifying disk reliability and failure frequency
Drive manufacturers specify the reliability of their products in terms of two related metrics: the annualized failure rate (AFR), which is the percentage of disk drives in a population that fail in a test scaled to a per year estimation; and the mean time to failure (MTTF). The AFR of a new product is typically estimated based on accelerated life and stress tests or based on field data from earlier products [2]. The MTTF is estimated as the number of power on hours per year divided by the AFR. A
common assumption for drives in servers is that they are powered on 100% of the time. Our data set providers all believe that their disks are powered on and in use at all times. The MTTFs specified for today's highest quality disks range from 1,000,000 hours to 1,500,000 hours, corresponding to AFRs of 0.58% to 0.88%. The AFR and MTTF estimates of the manufacturer are included in a drive's datasheet and we refer to them in the remainder as the datasheet AFR and the datasheet MTTF.
In contrast, in our data analysis we will report the annual replacement rate (ARR) to reflect the fact that, strictly speaking, disk replacements that are reported in the customer logs do not necessarily equal disk failures (as explained in Section 2.1).
2.3 Data sources
Table 1 provides an overview of the seven data sets used in this study. Data sets HPC1, HPC2 and HPC3 were collected in three large cluster systems at three different organizations using supercomputers. Data set HPC4 was collected on dozens of independently managed HPC sites, including supercomputing sites as well as commercial HPC sites. Data sets COM1, COM2, and COM3 were collected in at least three different cluster systems at a large internet service provider with many distributed and separately managed sites. In all cases, our data reports on only a portion of the computing systems run by each organization, as decided and selected by our sources.
It is important to note that for some systems the number of drives in the system changed significantly during
3
the data collection period. While the table provides only the disk count at the end of the data collection period, our analysis in the remainder of the paper accounts for the actual date of these changes in the number of drives. Second, some logs also record events other than replacements, hence the number of disk events given in the table is not necessarily equal to the number of replacements or failures. The ARR values for the data sets can therefore not be directly computed from Table 1.
Below we describe each data set and the environment it comes from in more detail.
HPC1 is a five year log of hardware replacements collected from a 765 node high-performance computing cluster. Each of the 765 nodes is a 4-way SMP with 4 GB of memory and three to four 18GB 10K rpm SCSI drives. Of these nodes, 64 are used as filesystem nodes containing, in addition to the three to four 18GB drives, 17 36GB 10K rpm SCSI drives. The applications running on this system are typically large-scale scientific simulations or visualization applications. The data contains, for each hardware replacement that was recorded during the five year lifetime of this system, when the problem started, which node and which hardware component was affected, and a brief description of the corrective action.
HPC2 is a record of disk replacements observed on the compute nodes of a 256 node HPC cluster. Each node is a 4-way SMP with 16 GB of memory and contains two 36GB 10K rpm SCSI drives, except for eight of the nodes, which contain eight 36GB 10K rpm SCSI drives each. The applications running on this system are typically large-scale scientific simulations or visualization applications. For each disk replacement, the data set records the number of the affected node, the start time of the problem, and the slot number of the replaced drive.
HPC3 is a record of disk replacements observed on a 1,532 node HPC cluster. Each node is equipped with eight CPUs and 32GB of memory. Each node, except for four login nodes, has two 146GB 15K rpm SCSI disks. In addition, 11,000 7200 rpm 250GB SATA drives are used in an external shared filesystem and 144 73GB 15K rpm SCSI drives are used for the filesystem metadata. The applications running on this system are typically large-scale scientific simulations or visualization applications. For each disk replacement, the data set records the day of the replacement.
The HPC4 data set is a warranty service log of disk replacements. It covers three types of SATA drives used in dozens of separately managed HPC clusters. For the first type of drive, the data spans three years, for the other two types it spans a little less than a year. The data records, for each of the 13,618 drives, when it was first shipped and when (if ever) it was replaced in the field.
COM1 is a log of hardware failures recorded by an internet service provider and drawing from multiple dis-
tributed sites. Each record in the data contains a timestamp of when the failure was repaired, information on the failure symptoms, and a list of steps that were taken to diagnose and repair the problem. The data does not contain information on when each failure actually happened, only when repair took place. The data covers a population of 26,734 10K rpm SCSI disk drives. The total number of servers in the monitored sites is not known.
COM2 is a warranty service log of hardware failures recorded on behalf of an internet service provider aggregating events in multiple distributed sites. Each failure record contains a repair code (e.g. "Replace hard drive") and the time when the repair was finished. Again there is no information on the start time of each failure. The log does not contain entries for failures of disks that were replaced in the customer site by hot-swapping in a spare disk, since the data was created by the warranty processing, which does not participate in on-site hot-swap replacements. To account for the missing disk replacements we obtained numbers for the periodic replenishments of on-site spare disks from the internet service provider. The size of the underlying system changed significantly during the measurement period, starting with 420 servers in 2004 and ending with 9,232 servers in 2006. We obtained quarterly hardware purchase records covering this time period to estimate the size of the disk population in our ARR analysis.
The COM3 data set comes from a large external storage system used by an internet service provider and comprises four populations of different types of FC disks (see Table 1). While this data was gathered in 2005, the system has some legacy components that were as old as from 1998 and were known to have been physically moved after initial installation. We did not include these "obsolete" disk replacements in our analysis. COM3 differs from the other data sets in that it provides only aggregate statistics of disk failures, rather than individual records for each failure. The data contains the counts of disks that failed and were replaced in 2005 for each of the four disk populations.
2.4 Statistical methods
We characterize an empirical distribution using two import metrics: the mean and the squared coefficient of variation (C2). The squared coefficient of variation is a measure of the variability of a distribution and is defined as the squared standard deviation divided by the squared mean. The advantage of using the squared coefficient of variation as a measure of variability, rather than the variance or the standard deviation, is that it is normalized by the mean, and so allows comparison of variability across distributions with different means.
We also consider the empirical cumulative distribu-
4
tion function (CDF) and how well it is fit by four prob-
ability distributions commonly used in reliability theory:
the exponential distribution; the Weibull distribution; the
gamma distribution; and the lognormal distribution. We
parameterize the distributions through maximum likeli-
hood estimation and evaluate the goodness of fit by vi-
sual inspection, the negative log-likelihood and the chi-
square tests.
We will also discuss the hazard rate of the distribu-
tion of time between replacements. In general, the hazard
rate of a random variable t with probability distribution
f (t) and cumulative distribution function F(t) is defined
as [25]
h(t )
=
f (t) 1 - F(t)
Intuitively, if the random variable t denotes the time between failures, the hazard rate h(t) describes the instantaneous failure rate as a function of the time since the most recently observed failure. An important property of t's distribution is whether its hazard rate is constant (which is the case for an exponential distribution) or increasing or decreasing. A constant hazard rate implies that the probability of failure at a given point in time does not depend on how long it has been since the most recent failure. An increasing hazard rate means that the probability of a failure increases, if the time since the last failure has been long. A decreasing hazard rate means that the probability of a failure decreases, if the time since the last failure has been long.
The hazard rate is often studied for the distribution of lifetimes. It is important to note that we will focus on the hazard rate of the time between disk replacements, and not the hazard rate of disk lifetime distributions.
Since we are interested in correlations between disk failures we need a measure for the degree of correlation. The autocorrelation function (ACF) measures the correlation of a random variable with itself at different time lags l. The ACF, for example, can be used to determine whether the number of failures in one day is correlated with the number of failures observed l days later. The autocorrelation coefficient can range between 1 (high positive correlation) and -1 (high negative correlation). A value of zero would indicate no correlation, supporting independence of failures per day.
Another aspect of the failure process that we will study is long-range dependence. Long-range dependence measures the memory of a process, in particular how quickly the autocorrelation coefficient decays with growing lags. The strength of the long-range dependence is quantified by the Hurst exponent. A series exhibits long-range dependence if the Hurst exponent, H, is 0.5 < H < 1. We use the Selfis tool [14] to obtain estimates of the Hurst parameter using five different methods: the absolute value method, the variance method, the R/S method,
HPC1
Component
%
CPU
44
Memory
29
Hard drive
16
PCI motherboard 9
Power supply
2
Table 2: Node outages that were attributed to hardware problems broken down by the responsible hardware component. This includes all outages, not only those that required replacement of a hardware component.
the periodogram method, and the Whittle estimator. A brief introduction to long-range dependence and a description of the Hurst parameter estimators is provided in [15].
3 Comparing disk replacement frequency with that of other hardware components
The reliability of a system depends on all its components, and not just the hard drive(s). A natural question is therefore what the relative frequency of drive failures is, compared to that of other types of hardware failures. To answer this question we consult data sets HPC1, COM1, and COM2, since these data sets contain records for all types of hardware replacements, not only disk replacements. Table 3 shows, for each data set, a list of the ten most frequently replaced hardware components and the fraction of replacements made up by each component. We observe that while the actual fraction of disk replacements varies across the data sets (ranging from 20% to 50%), it makes up a significant fraction in all three cases. In the HPC1 and COM2 data sets, disk drives are the most commonly replaced hardware component accounting for 30% and 50% of all hardware replacements, respectively. In the COM1 data set, disks are a close runner-up accounting for nearly 20% of all hardware replacements.
While Table 3 suggests that disks are among the most commonly replaced hardware components, it does not necessarily imply that disks are less reliable or have a shorter lifespan than other hardware components. The number of disks in the systems might simply be much larger than that of other hardware components. In order to compare the reliability of different hardware components, we need to normalize the number of component replacements by the component's population size.
Unfortunately, we do not have, for any of the systems, exact population counts of all hardware components. However, we do have enough information in HPC1 to estimate counts of the four most frequently replaced hard-
5
HPC1
Component
%
Hard drive
30.6
Memory
28.5
Misc/Unk
14.4
CPU
12.4
PCI motherboard 4.9
Controller
2.9
QSW
1.7
Power supply
1.6
MLB
1.0
SCSI BP
0.3
COM1
Component
%
Power supply 34.8
Memory
20.1
Hard drive
18.1
Case
11.4
Fan
8.0
CPU
2.0
SCSI Board
0.6
NIC Card
1.2
LV Power Board 0.6
CPU heatsink
0.6
COM2
Component
%
Hard drive
49.1
Motherboard 23.4
Power supply 10.1
RAID card
4.1
Memory
3.4
SCSI cable
2.2
Fan
2.2
CPU
2.2
CD-ROM
0.6
Raid Controller 0.6
Table 3: Relative frequency of hardware component replacements for the ten most frequently replaced components in systems HPC1, COM1 and COM2, respectively. Abbreviations are taken directly from service data and are not known to have identical definitions across data sets.
ware components (CPU, memory, disks, motherboards). We estimate that there is a total of 3,060 CPUs, 3,060 memory dimms, and 765 motherboards, compared to a disk population of 3,406. Combining these numbers with the data in Table 3, we conclude that for the HPC1 system, the rate at which in five years of use a memory dimm was replaced is roughly comparable to that of a hard drive replacement; a CPU was about 2.5 times less often replaced than a hard drive; and a motherboard was 50% less often replaced than a hard drive.
The above discussion covers only failures that required a hardware component to be replaced. When running a large system one is often interested in any hardware failure that causes a node outage, not only those that necessitate a hardware replacement. We therefore obtained the HPC1 troubleshooting records for any node outage that was attributed to a hardware problem, including problems that required hardware replacements as well as problems that were fixed in some other way. Table 2 gives a breakdown of all records in the troubleshooting data, broken down by the hardware component that was identified as the root cause. We observe that 16% of all outage records pertain to disk drives (compared to 30% in Table 3), making it the third most common root cause reported in the data. The two most commonly reported outage root causes are CPU and memory, with 44% and 29%, respectively.
For a complete picture, we also need to take the severity of an anomalous event into account. A closer look at the HPC1 troubleshooting data reveals that a large number of the problems attributed to CPU and memory failures were triggered by parity errors, i.e. the number of errors is too large for the embedded error correcting code to correct them. In those cases, a simple reboot will bring the affected node back up. On the other hand, the majority of the problems that were attributed to hard
disks (around 90%) lead to a drive replacement, which is a more expensive and time-consuming repair action.
Ideally, we would like to compare the frequency of hardware problems that we report above with the frequency of other types of problems, such software failures, network problems, etc. Unfortunately, we do not have this type of information for the systems in Table 1. However, in recent work [27] we have analyzed failure data covering any type of node outage, including those caused by hardware, software, network problems, environmental problems, or operator mistakes. The data was collected over a period of 9 years on more than 20 HPC clusters and contains detailed root cause information. We found that, for most HPC systems in this data, more than 50% of all outages are attributed to hardware problems and around 20% of all outages are attributed to software problems. Consistently with the data in Table 2, the two most common hardware components to cause a node outage are memory and CPU. The data of this recent study [27] is not used in this paper because it does not contain information about storage replacements.
4 Disk replacement rates
4.1 Disk replacements and MTTF
In the following, we study how field experience with disk replacements compares to datasheet specifications of disk reliability. Figure 1 shows the datasheet AFRs (horizontal solid and dashed line), the observed ARRs for each of the seven data sets and the weighted average ARR for all disks less than five years old (dotted line). For HPC1, HPC3, HPC4 and COM3, which cover different types of disks, the graph contains several bars, one for each type of disk, in the left-to-right order of the corresponding top-to-bottom entries in Table 1. Since at this
6
6
Avrg. ARR
ARR=0.88
5
ARR=0.58
Annual replacement rate (%)
4
3
2
1
0 HPC1 HPC2 HPC3
HPC4 COM1 COM2 COM3
Figure 1: Comparison of datasheet AFRs (solid and dashed line in the graph) and ARRs observed in the field. Each bar in the graph corresponds to one row in Table 1. The dotted line represents the weighted average over all data sets. Only disks within the nominal lifetime of five years are included, i.e. there is no bar for the COM3 drives that were deployed in 1998. The third bar for COM3 in the graph is cut off ? its ARR is 13.5%.
point we are not interested in wearout effects after the end of a disk's nominal lifetime, we have included in Figure 1 only data for drives within their nominal lifetime of five years. In particular, we do not include a bar for the fourth type of drives in COM3 (see Table 1), which were deployed in 1998 and were more than seven years old at the end of the data collection. These possibly "obsolete" disks experienced an ARR, during the measurement period, of 24%. Since these drives are well outside the vendor's nominal lifetime for disks, it is not surprising that the disks might be wearing out. All other drives were within their nominal lifetime and are included in the figure.
Figure 1 shows a significant discrepancy between the observed ARR and the datasheet AFR for all data sets. While the datasheet AFRs are between 0.58% and 0.88%, the observed ARRs range from 0.5% to as high as 13.5%. That is, the observed ARRs by data set and type, are by up to a factor of 15 higher than datasheet AFRs.
Most commonly, the observed ARR values are in the 3% range. For example, the data for HPC1, which covers almost exactly the entire nominal lifetime of five years exhibits an ARR of 3.4% (significantly higher than the datasheet AFR of 0.88%). The average ARR over all data sets (weighted by the number of drives in each data set) is 3.01%. Even after removing all COM3 data, which exhibits the highest ARRs, the average ARR was still 2.86%, 3.3 times higher than 0.88%.
It is interesting to observe that for these data sets there is no significant discrepancy between replacement rates for SCSI and FC drives, commonly represented as the most reliable types of disk drives, and SATA drives, frequently described as lower quality. For example, the
ARRs of drives in the HPC4 data set, which are exclusively SATA drives, are among the lowest of all data sets. Moreover, the HPC3 data set includes both SCSI and SATA drives (as part of the same system in the same operating environment) and they have nearly identical replacement rates. Of course, these HPC3 SATA drives were decommissioned because of media error rates attributed to lubricant breakdown (recall Section 2.1), our only evidence of a bad batch, so perhaps more data is needed to better understand the impact of batches in overall quality.
It is also interesting to observe that the only drives that have an observed ARR below the datasheet AFR are the second and third type of drives in data set HPC4. One possible reason might be that these are relatively new drives, all less than one year old (recall Table 1). Also, these ARRs are based on only 16 replacements, perhaps too little data to draw a definitive conclusion.
A natural question arises: why are the observed disk replacement rates so much higher in the field data than the datasheet MTTF would suggest, even for drives in the first years of operation. As discussed in Sections 2.1 and 2.2, there are multiple possible reasons.
First, customers and vendors might not always agree on the definition of when a drive is "faulty". The fact that a disk was replaced implies that it failed some (possibly customer specific) health test. When a health test is conservative, it might lead to replacing a drive that the vendor tests would find to be healthy. Note, however, that even if we scale down the ARRs in Figure 1 to 57% of their actual values, to estimate the fraction of drives returned to the manufacturer that fail the latter's health test [1], the resulting AFR estimates are still more than a factor of two higher than datasheet AFRs in most cases.
7
Second, datasheet MTTFs are typically determined based on accelerated (stress) tests, which make certain assumptions about the operating conditions under which the disks will be used (e.g. that the temperature will always stay below some threshold), the workloads and "duty cycles" or powered-on hours patterns, and that certain data center handling procedures are followed. In practice, operating conditions might not always be as ideal as assumed in the tests used to determine datasheet MTTFs. A more detailed discussion of factors that can contribute to a gap between expected and measured drive reliability is given by Elerath and Shah [6].
Below we summarize the key observations of this section.
Figure 2: Lifecycle failure pattern for hard drives [33].
Observation 1: Variance between datasheet MTTF and disk replacement rates in the field was larger than we expected. The weighted average ARR was 3.4 times larger than 0.88%, corresponding to a datasheet MTTF of 1,000,000 hours.
Observation 2: For older systems (5-8 years of age), data sheet MTTFs underestimated replacement rates by as much as a factor of 30.
Observation 3: Even during the first few years of a system's lifetime (< 3 years), when wear-out is not expected to be a significant factor, the difference between datasheet MTTF and observed time to disk replacement was as large as a factor of 6.
Observation 4: In our data sets, the replacement rates of SATA disks are not worse than the replacement rates of SCSI or FC disks. This may indicate that diskindependent factors, such as operating conditions, usage and environmental factors, affect replacement rates more than component specific factors. However, the only evidence we have of a bad batch of disks was found in a collection of SATA disks experiencing high media error rates. We have too little data on bad batches to estimate the relative frequency of bad batches by type of disk, although there is plenty of anecdotal evidence that bad batches are not unique to SATA disks.
4.2 Age-dependent replacement rates
One aspect of disk failures that single-value metrics such as MTTF and AFR cannot capture is that in real life failure rates are not constant [5]. Failure rates of hardware products typically follow a "bathtub curve" with high failure rates at the beginning (infant mortality) and the end (wear-out) of the lifecycle. Figure 2 shows the failure rate pattern that is expected for the life cycle of hard drives [4, 5, 33]. According to this model, the first year
of operation is characterized by early failures (or infant mortality). In years 2-5, the failure rates are approximately in steady state, and then, after years 5-7, wear-out starts to kick in.
The common concern, that MTTFs do not capture infant mortality, has lead the International Disk drive Equipment and Materials Association (IDEMA) to propose a new standard for specifying disk drive reliability, based on the failure model depicted in Figure 2 [5, 33]. The new standard requests that vendors provide four different MTTF estimates, one for the first 1-3 months of operation, one for months 4-6, one for months 7-12, and one for months 13-60.
The goal of this section is to study, based on our field replacement data, how disk replacement rates in largescale installations vary over a system's life cycle. Note that we only see customer visible replacement. Any infant mortality failure caught in the manufacturing, system integration or installation testing are probably not recorded in production replacement logs.
The best data sets to study replacement rates across the system life cycle are HPC1 and the first type of drives of HPC4. The reason is that these data sets span a long enough time period (5 and 3 years, respectively) and each cover a reasonably homogeneous hard drive population, allowing us to focus on the effect of age.
We study the change in replacement rates as a function of age at two different time granularities, on a per-month and a per-year basis, to make it easier to detect both short term and long term trends. Figure 3 shows the annual replacement rates for the disks in the compute nodes of system HPC1 (left), the file system nodes of system HPC1 (middle) and the first type of HPC4 drives (right), at a yearly granularity.
We make two interesting observations. First, replacement rates in all years, except for year 1, are larger than the datasheet MTTF would suggest. For example, in HPC1's second year, replacement rates are 20% larger than expected for the file system nodes, and a factor of
8
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- externalities problems and solutions
- lecture 7 externalities
- disk failures in the real world what does an mttf of
- failures of large computer companies
- understanding market failure in the 2007 08 crisis
- how do market failures justify interventions in rural
- output tax market failure negative externality tariff
- market failure and the structure of externalities
Related searches
- what does an orthopedic doctor do
- what does an orthopedic doctor treat
- what does an accounting assistant do
- what does an introduction paragraph include
- what does an exempt employee mean
- examples of market failures in the us
- what does an autoimmune panel show
- what does an fha inspector look for
- what does an annuity pay
- what is an mra of the brain
- what does an open mri look like
- what does an abscess gum look like