SAS Regression Examples - University of Michigan
SAS Regression Examples
/***********************************************
SAS EXAMPLE -- SIMPLE REGRESSION
MULTIPLE REGRESSION
COLLINEARITY DIAGNOSTICS
FILENAME: regress1.sas
************************************************/
OPTIONS NODATE FORMDLIM=" " PAGENO=1;
TITLE;
LIBNAME LABDATA "C:\TEMP\LABDATA";
DATA LABDATA.WERNER;
INFILE "c:\temp\labdata\werner2.dat";
INPUT ID $ 1-4 AGE 5-8 HT 9-12 WT 13-16
PILL 17-20 CHOL 21-24 ALB 25-28 1
CALC 29-32 1 URIC 33-36 1;
IF HT = 999 THEN HT = .;
IF WT = 999 THEN WT = .;
IF CHOL = 600 THEN CHOL = .;
IF ALB = 99 THEN ALB = .;
IF CALC = 99 THEN CALC = .;
IF URIC = 99 THEN URIC = .;
WTALB=WT+ALB;
/*CREATE AGEGRP AND AGE INDICATOR DUMMY VARIABLES*/
IF AGE NOT = . THEN DO;
IF AGE < 25 THEN AGEGRP = 1;
IF AGE >= 25 AND AGE < 32 THEN AGEGRP = 2;
IF AGE >= 32 AND AGE < 42 THEN AGEGRP = 3;
IF AGE >= 42 THEN AGEGRP = 4;
AGEDUM1 = (AGEGRP = 1);
AGEDUM2 = (AGEGRP = 2);
AGEDUM3 = (AGEGRP = 3);
AGEDUM4 = (AGEGRP = 4);
END;
RUN;
/*******************************************************
CHECK DATA
********************************************************/
OPTIONS NOLABEL;
PROC MEANS DATA=LABDATA.WERNER;
TITLE "DESCRIPTIVE STATISTICS";
RUN;
/***********************************************************
CORRELATION
************************************************************/
PROC CORR DATA=LABDATA.WERNER;
VAR AGE CHOL;
RUN;
/***********************************************************
SIMPLE SCATTER PLOT, OR DO THIS IN INSIGHT
************************************************************/
GOPTIONS RESET=ALL;
GOPTIONS DEVICE=WIN TARGET=WINPRTM;
SYMBOL1 COLOR=BLACK VALUE=DOT INTERPOL=RL;
PROC GPLOT;
PLOT CHOL*AGE;
TITLE "SCATTER PLOT WITH REGRESSION LINE";
RUN;
/***********************************************************
SIMPLE REGRESSION
************************************************************/
OPTIONS LABEL;
PROC REG DATA=LABDATA.WERNER;
MODEL CHOL=AGE;
TITLE "SIMPLE REGRESSION WITH NO OPTIONS";
RUN; QUIT;
PROC REG DATA=LABDATA.WERNER;
MODEL CHOL=AGE / P R CLI CLM;
PLOT (RSTUDENT.) * (PREDICTED. AGE OBS.);
OUTPUT OUT=OUTREG1 P=PREDICT1 R=RESID1 RSTUDENT=RSTUD1
LCL=LCL1 UCL=UCL1 LCLM=LCLM1 UCLM=UCLM1;
TITLE "SIMPLE REGRESSION WITH DIAGNOSTIC PLOTS";
TITLE2 "AND OUTPUT DATA SET TO GET RESIDUALS";
RUN;QUIT;
PROC PRINT DATA=OUTREG1(OBS=10) LABEL;
VAR ID PILL AGE CHOL PREDICT1 RESID1 RSTUD1 LCL1 UCL1 LCLM1 UCLM1;
TITLE "PARTIAL LISTING OF OUTPUT DATA SET";
TITLE2 "TO CHECK RESIDUALS AND PREDICTED VALUES";
RUN;
PROC UNIVARIATE DATA=OUTREG1 PLOT NORMAL;
VAR RSTUD1;
HISTOGRAM;
QQPLOT / NORMAL(MU=EST SIGMA=EST);
TITLE "CHECKING RESIDUALS FROM FIRST REGRESSION";
TITLE2 "FOR NORMALITY";
RUN;
/***********************************************
MULTIPLE REGRESSION--CHECK FOR COLLINEARITY
***********************************************/
/*FIRST, EXAMINE CORRELATION MATRIX*/
PROC CORR DATA=LABDATA.WERNER NOMISS;
VAR CHOL AGE CALC URIC ALB WT WTALB;
TITLE "PEARSON CORRELATION MATRIX";
RUN;
/*TO GET SCATTER-PLOT MATRIX, YOU CAN USE INSIGHT:
ANALYSIS > MULTIVARIATE(YX).
CHOOSE CHOL CALC URIC AGE AS Y
CLICK ON THE OUTPUT BUTTON AND CHOOSE > SCATTER-PLOT MATRIX*/
PROC REG DATA=LABDATA.WERNER;
MODEL CHOL = AGE CALC URIC ALB WT / STB TOL VIF COLLIN;
PLOT RESIDUAL.*PREDICTED.;
OUTPUT OUT=OUTREG2 P=PREDICT2 R=RESID2 RSTUDENT=RSTUD2;
TITLE "MULTIPLE REGRESSION ANALYSIS";
TITLE2 "WITH RESIDUAL DIAGNOSTICS";
RUN;QUIT;
PROC UNIVARIATE DATA=OUTREG2 PLOT NORMAL;
VAR RESID2;
HISTOGRAM;
QQPLOT / NORMAL(MU=EST SIGMA=EST);
TITLE "CHECKING RESIDUALS FROM MULTIPLE REGRESSION";
RUN;
PROC PRINT DATA=OUTREG2;
WHERE RESID2 50;
MODEL CHOL = AGE CALC URIC ALB WT / STB TOL VIF COLLIN;
PLOT RESIDUAL.*PREDICTED.;
OUTPUT OUT=OUTREG3 P=PREDICT3 R=RESID3 RSTUDENT=RSTUD3;
TITLE "MULTIPLE REGRESSION ANALYSIS";
TITLE2 "WITH RESIDUAL DIAGNOSTICS";
TITLE3 "REMOVE OUTLIER FOR CHOLESTEROL";
RUN;QUIT;
PROC UNIVARIATE DATA=OUTREG3 PLOT NORMAL;
VAR RESID3;
HISTOGRAM;
QQPLOT / NORMAL(MU=EST SIGMA=EST);
TITLE "CHECKING RESIDUALS FROM MULTIPLE REGRESSION";
TITLE2 "WITH OUTLIER REMOVED";
RUN;
/*COLLINEARITY DIAGNOSTICS*/
PROC REG DATA=LABDATA.WERNER;
MODEL CHOL = AGE CALC URIC ALB WT WTALB/ STB TOL VIF COLLIN;
TITLE "MULTIPLE REGRESSION ANALYSIS";
TITLE2 "WITH COLLINEARITY";
RUN;QUIT;
PROC REG DATA=LABDATA.WERNER;
MODEL CHOL = AGE CALC URIC WT WTALB/ STB TOL VIF COLLIN;
TITLE "MULTIPLE REGRESSION ANALYSIS";
TITLE2 "REMOVE ALB, BUT STILL HAS COLLINEARITY";
RUN;QUIT;
DESCRIPTIVE STATISTICS
The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
AGE 188 33.8191489 10.1126942 19.0000000 55.0000000
HT 186 64.5107527 2.4850673 57.0000000 71.0000000
WT 186 131.6720430 20.6605767 94.0000000 215.0000000
PILL 188 1.5000000 0.5013351 1.0000000 2.0000000
CHOL 187 235.1550802 44.5706219 50.0000000 390.0000000
ALB 186 4.1112903 0.3579694 3.2000000 5.0000000
CALC 185 9.9621622 0.4795556 8.6000000 11.1000000
URIC 187 4.7705882 1.1572312 2.2000000 9.9000000
WTALB 184 135.7978261 20.6557047 98.1000000 219.3000000
AGEGRP 188 2.5425532 1.1106186 1.0000000 4.0000000
AGEDUM1 188 0.2340426 0.4245295 0 1.0000000
AGEDUM2 188 0.2446809 0.4310457 0 1.0000000
AGEDUM3 188 0.2659574 0.4430215 0 1.0000000
AGEDUM4 188 0.2553191 0.4372048 0 1.0000000
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
The CORR Procedure
2 Variables: AGE CHOL
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
AGE 188 33.81915 10.11269 6358 19.00000 55.00000
CHOL 187 235.15508 44.57062 43974 50.00000 390.00000
Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations
AGE CHOL
AGE 1.00000 0.36923
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- regression analysis simple
- benchmarking and regression
- example of three predictor multiple regression
- steps for conducting multiple linear regression
- sas regression examples university of michigan
- multiple regression example statistics department
- 5 regression with qualitative explanatory variables
- examples of regression analysis statistics department
- case study logistic regression
Related searches
- university of michigan admissions staff
- university of michigan admission requirement
- university of michigan sat scores
- university of michigan payroll office
- university of michigan application deadline
- university of michigan act requirements
- university of michigan entrance requirements
- university of michigan transfer deadline
- university of michigan philosophy dept
- university of michigan applicant portal
- university of michigan neurology
- university of michigan hospital neurology