California State University, Northridge



[pic]

|College of Engineering and Computer Science

Mechanical Engineering Department

Mechanical Engineering 390

Fluid Mechanics | |

| |Spring 2008 Number: 11971 Instructor: Larry Caretto |

February 12 Homework Solutions

2.49 A rectangular gate having a width of 5 ft is located in the sloping slide of a tank as shown in the figure on the right (copied from the text.) The gate is hinged along its top edge and is held in place by the force P. Friction in the hinge and the weight of the gate can be neglected. Find the force, P.

The force P has to offset the force created by the water pressure at the gate. This pressure creates an average resultant force, FR, that acts at the center of pressure, yCP, and by taking moments about the hinge we can find the force P. In the equations for the resultant force, FR = γAycsinθ, the centroid coordinate, yc, is measured from the top of the water. Since the centroid of a rectangle is at its midpoint (half of the 6 ft. height of the gate) yc = 10 + 6/2 = 13 ft. The area is (6 ft)(5 ft) = 30 ft2. We can then find the resultant force as follows.

[pic]

In order to find the location of the center of pressure we need to find the moment of inertia about the x axis, Ixc. As shown in the diagram at the left, Ixc = ba3/12 where a is the dimension along the y axis. In our case a = 6 ft and b = 5 ft so Ixc = (5 ft)(6 ft)3/12 = 90 ft4. We then use the formula for the center of pressure to find yR = yCP as follows.

[pic]We can now use a moment balance around the hinge as shown in the free-body diagram to the right. The moment balance gives P(6 ft) = FR(yCP – 10 ft). Note that we have to correct the value of yCP to make it relative to the location of the hinge instead of the value we have which is relative to the top of the wall. We can thus find P = (2.11x104 lbf) (3.23 ft) /(6 ft).

P =1.14x104 lbf

2.52 A homogenous 4-ft wide, 8-ft long rectangular gate, weighing 800 lbf is held in place by a horizontal flexible cable as shown in the figure in the right copied from the text. Water acts against the gate which is hinged at point A. Friction in the cable is negligible. Determine the tension in the cable.

This problem is similar to problem 49, except that the gate extends above the top of the water. Since the distance along the gate where water is present is 6 ft, the centroid of the area where there is water pressure is yc = 3 ft. The area impacted by the water pressure is A = (6 ft)(4 ft) = 24 ft2. We can find the resultant force by the usual equation.

[pic]

In order to find the location of the center of pressure we need to find the moment of inertia about the x axis. As shown in the diagram for problem 49, Ixc = ba3/12 where a is the dimension along the y axis that is exposed to the fluid. In this case a = 6 ft and b = 4 ft so Ixc = (4 ft)(6 ft)3/12 = 72 ft4. We then use the formula for the center of pressure to find yR = yCP as follows.

[pic]

We next take a moment balance around the hinge as shown in the free-body diagram to the left. The resultant force is normal to the gate at a location 2 ft above the hinge. The cable tension, T, acts 8 ft above the hinge and the component normal to the gate is Tsin60o. The weight acts 4 ft above the hinge and has a component Wcos60o normal to the gate. Using these results gives the following moment balance.

[pic]

Solving this equation for T and substituting the values for weight and resultant force gives the desired numerical result.

[pic]

T =1.35x103 lbf

2.57 A 3-m wide, 8-m high rectangular gate is located at the end of a rectangular passage that is connected to a large open tank filled with water as shown in the figure at the right (copied from the text). The gate is hinged at its bottom and held closed by a horizontal force, FH located at the center of the gate. The maximum value for FH is 3500 kN. (a) Determine the maximum water depth, h, above the center of the gate that can exist without the gate opening. (b) Is your answer the same if the gate is hinged at the top? Explain your answer.

The resultant force on the gate, whose area is (3 m)(8 m) = 24 m2, is given by the usual formula, FR = γycAsinθ. Here yc must be computed from the top of the liquid to the center of the gate giving yc = h. Since we are trying to find h, we have to carry h (or yc) as an unknown throughout the calculation. Thus the resultant force becomes

[pic]

The location of the resultant force requires the calculation of the moment of inertia about the x axis through the centroid. See the solution to problem 49 for a discussion of this calculation. For the rectangular gate here the moment of inertia, Ixc = ba3/12 = (3 m)(8 m)3/12 = 128 m4. We can now obtain an equation for yCP from the usual equation.

[pic]

The free-body diagram to the left shows that there are two forces on the gate. The first is the resultant pressure force that is a distance ℓ above the hinge and the opposing force, FH that is 4 m above the hinge. The distance from the surface of the liquid to the bottom of the liquid is yc + 4 m from the diagram. The distance, ℓ, is the difference between this distance to the bottom and yCP so, ℓ = yc + (4 m) – yCP. With these dimensions a momentum balance about the hinge gives:

[pic]

When FH has its maximum value of 3500 kN, the value of yc = h is given by the following equation.

[pic]

[pic]

h = yc = 16.6 mf

The free-body diagram at the left shows the forces when the gate is hinged at the top. Here the length, ℓ1 = yCP – (yc – 4) = (5.333 m2)/yc + yc – (yc – 4 m) = (5.333 m2)/yc + 4m. Applying this length to the momentum balance gives.

[pic]

Solving gives [pic]; so h = yc = 13.8 m.

The depth is less when the gate is hinged at the top because the pressure distribution creates more momentum on the gate then. When the gate is hinged at the bottom, the center of momentum is closer to the greater pressures. When the gate is hinged at the top it is further from these greater pressures so more momentum is exerted by the pressure distribution.

2.58 A gate having the cross section shown in the figure at the right (copied from the text) closes an opening 5 ft wide and 5 ft high in a water reservoir. The gate weighs 500 lbf and its center of gravity is 1 ft to the left of AC and 2 ft above BC. Determine the horizontal reaction that is developed on the gate at C.

The gate is at a different angle than the wall. We are told that the gate is 5 ft high and the diagram shows that the projection of the gate on a vertical surface is 4 ft high. We thus conclude that the length AB is 5 ft; the length AC is 4 ft, and the length BC = [pic]= 3 ft.

If the gate were to continue along a wall that was at the same angle as the gate, the length of the hypothetical wall could be found by the relation for similar triangles. (See the diagram to the left, below.)

The 8 ft height of the vertical wall would be equivalent to a (5/4)(8 ft) = 10 ft slanted distance to the surface of the water. The angle, θ, that the slanted length makes with the surface of the water is sin-1(4 ft/5 ft) = 0.9273 radians. The slanted length to the centroid of the gate would be yc = 10 ft + 2.5 ft = 12.5 ft. The value of yc sinθ would be (12.5 ft)sin(0.9273) = 10 ft. We could have also found this number by looking at the vertical depth of the water at the centroid of the gate AB. From the figure above we see that this is 10 ft below the surface of the water. Regardless of how we find this length, we can now use this hc= ycsinθ = 10 ft in our equation for the resultant force on the side of the gate, Fside. We still use the actual area of the gate (5 ft)2 = 25 ft2.

[pic]

To compute the location of this resultant force we use our usual formula for yCP, and we use the distance along the hypothetical slanted wall with yc = 12.5 ft. The moment of inertia about the centroid, Ixc = ba3/12 = (5 ft)(5 ft)3/12 = 52.08 ft4.

[pic]

To find the reaction force at C we have to use a moment balance of all the moments about the hinge at A. The point, relative to A, where the resultant pressure force acts is found by subtracting the 10 ft distance along the hypothetical slanted wall above the gate. This gives the location of the center of pressure as 2.67 ft. below the start of the gate. There is also a pressure force on the bottom of the triangular gate. The water at this point is 12 ft deep and the area of the lower portion of the triangular gate is (3 ft)(5 ft) = 15 ft2. So the upward force that the water pressure gives on this surface is

[pic]

This force acts at the centroid of the bottom plate which is 1.5 ft to the left of the line AC. We are also told that the center of gravity for the 500-lbf weight of the gate is 1 ft to the left of the line AC. With this information we can form the momentum balance around the hinge at A as follows.

[pic]

Substituting the values for the forces and weight allows us to solve for FC.

[pic]

Fc = 6.33x103 lbf

2.68 Dams can vary from very large structures with curved faces holding back water to great depths, as shown in Video V2.3, to relative small structures with plane faces as shown in the figure at the right copied from the text. Assume that the concrete dam shown in this figure weighs 23.6 kN/m3and rests on a solid foundation. Determine the minimum coefficient of friction between the dam and the foundation required to keep the dam from sliding at the water depth shown. You do not need to consider the possible uplift along the base. Base your analysis on a unit length of the dam.

The angular portion of the dam decreases by 4 m (from 6 m to 2 m) as the dam rises 5 m. Thus, the angle at the base of the dam = tan-1(5 m/4 m) = 0.8961 radians = 51.34o. This is also the angle, θ, that the water makes with the sloping surface of the dam, which is used in our formula for the resultant force. See the sketch at the left for the forces acting on the dam.

The slanted length of the dam, below the surface of the water, is (4 m)/sinθ = (4 m)/sin(0.8961) = 5.122 m. The area of a unit width of the dam is (5.122 m)(1 m)2 = 5.122 m2. The value of yc = (5.122/2 m) = 2.5561 m. With these data we can find the resultant force of the water on a unit length of the dam.

[pic]

For force equilibrium in the x direction, the x component of the resultant force, FRsinθ = (100.4 kN)sin(0.8931) = 78.40 kN, must equal the friction force, Ff. Force equilibrium in the y direction requires the weight of the dam, which is the product of the specific weight times the volume of the unit length of the dam. The cross sectional area has two parts: (1) a rectangle with an area of (2 m)(5 m) = 10 m2 and (2) a triangle with an area of (4 m)(5 m)/2 = 10 m2. The volume of a unit length of the dam is thus (10 m2 + 10 m2)(1 m) = 20 m3. Thus the weight of concrete in the unit length of he dam is (23.6 kN/m3)(20 m3) = 472 kN. With this weight we have the following force balance in the y direction.

[pic]

The friction coefficient, η, is simply the friction force divided by the normal force.

[pic] η = 0.146

2.83 The homogenous wooden block A shown in the figure at the right copied from the text is 0.7 m by 0.7 m by 1.3 m and weighs 2.4 kN. The concrete block, B, (specific weight = 23.6 kN/m3) is suspended from A by means of the slender cable causing A to float in the position indicated. Determine the volume of B.

We can consider two separate force balances linked by the force in the cable. (We will assume that the weight of the “slender” cable can be ignored in this force balance.) In the first force balance on the wood, we can compute the force in the cable that causes the wood to float in the position shown where half of its volume of (0.7 m)(0.7 m)(1.3 m) = 0.647 m3 is floating. In the second force balance for the concrete, we will use the force in the cable found in the first force balance to obtain the volume of concrete (B).

The vertical force balance for the wood is shown in the figure on the left. The cable force, T = FB – W , the buoyancy force minus the weight. The weight of the wooden block is given as 2.4 kN. The buoyancy force, FB, is the specific weight of water times the volume of water displaced (which is half the volume of the wood = 0.3235 m3 from the computation in the previous paragraph). This gives FB = (9.80 kN/m3)(0.3235 m3) = 3.121 kN. Thus the cable force, T = FB – W = 3.121 kN – 2.4 kN = 0.721 kN

The vertical force balance on the concrete is shown in the figure on the left. (Here the subscript c stands for concrete.) Both the weight and the buoyancy force are proportional to the volume of the concrete. Using this result we can write the vertical force balance as follows.

[pic]

Solving for the unknown concrete volume and substituting the known specific weights gives the desired answer.

[pic]0.0523 m3

2.89 When a hydrometer shown in the figure on the right copied from the text (see video V2.6 to see the operation of a hydrometer) having a stem diameter of 0.30 in is placed in water the stem protrudes 3.15 in above the water surface. If the water is replaced with a liquid having a specific gravity of 1,10, how much of the stem would protrude above the liquid surface? The hydrometer weighs 0.042 lbf.

The hydrometer measures density (or specific weight) by floating in the water. The weight of the hydrometer is balanced by the buoyant force caused by the water it displaces. The hydrometer contains air spaces to give it a specific weight that is lighter than that of water. In actual operation the scale of the hydrometer is calibrated directly in specific weight or specific gravity. This problem illustrates how such a calibration would be done.

For both the initial water and the second fluid with a specific gravity of 1.10, the weight of the hydrometer, W, is balanced by the buoyant force which is the specific gravity of the fluid times the submerged volume of the hydrometer.

[pic]

[pic]

The difference between these two volumes is 6.73x10-4 ft3 – 6.12x10-4 ft3 = 0.61x10-4 ft3. This difference in volume displaced will elevate the hydrometer tip by exactly the same volume. Since the hydrometer tip has a diameter of 0.30 in = 0.025 ft, giving it an area of π(0.025 ft)2/2 = 0.000491 ft2, it will protrude an additional distance of (0.61x10-4 ft3) / (0.000491 ft2) = 0.125 ft = 1.5 in. Since it originally protruded 3.15 in with water, the new height will be 4.65 in.

-----------------------

ž†Ÿ†·†º†½†¾†¿†:‡;‡Ú‡Û‡î‡ï‡ð‡ñ‡`ˆaˆtˆuˆvˆwˆˆöìâìØÊâ½â¯â¤‘¯â¯â†s¯T=hìy*hìy*5?6?CJOJ[?]QJ[?]\?]?^J[?]aJeh

[pic] rÊÿ

[pic] %jˆâhóxhìy*EHÄÿOJ[?]QJ[?]U[pic]^J[?]j’žI[pic]hìy*U[pic]V[pic]%j‹ßhóxhôθ

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download