LEP Model presentation



The Big Gamble:

The Transmission of Recessive Genes

[pic]

A LEP Model of Instruction

By Jennifer Iverach-Brereton and Audrey Kehler

132.127 Teaching Science in Senior Years

December 5, 2005

The Big Gamble: The Transmission of Recessive Genes

Description

The following lesson utilises the Logical, Experiential, and Psychological planes of scientific learning (Stinner, _____) to explore the concept of recessive genes, genotype, and phenotype. Through the activity, students will engage in the Psychological level of learning, enabling them to gain a deeper understanding of the subject matter than they would gain through lectures and exercise sheets alone.

The lesson is most appropriate for Senior 1 Science, although it can also be applied to the Senior 4 Biology curriculum.

Curriculum Connections:

• Senior 1 -- This lesson is applicable to the following Senior 1 SLOs (from Manitoba Education and Training, 2000):

-SLO S1-1-11: Observe, collect, and analyze class data of single trait inheritance.

-SLO S1-1-12: Differentiate between dominant and recessive genes. Include: genotype, phenotype.

-SLO S1-1-13: Describe the relationship among DNA, chromosomes, and the expression of traits.

• Senior 4* – With an appropriate emphasis and the addition of more complex terms, the lesson can be applied to the following Senior 4 Biology SLOs:

-S4B-0-P2 Demonstrate a continuing, more informed interest in biology and biology-related careers and issues.

-Part 1 – Genetics:

Unit 1: Understanding Biological Inheritance.

-SLO 2 Explain what is meant by the terms heterozygous and homozygous.

-SLO 3 Distinguish between genotype and phenotype and use these terms appropriately when discussing the outcomes of genetic crosses.

-SLO 4 Use Punnett squares to solve a variety of autosomal inheritance problems and justify the results by using appropriate terminology. Include: monohybrid cross, P generation, F1 generation, F2 generation, phenotypic ration, genotypic ratio, dominant alleles, recessive alleles, purebred, hybrid, carrier.

-SLO 8: Use pedigree charts to illustrate the inheritance of genetically determined traits in a family tree and to determine the probability of certain offspring having particular traits. Include: symbols and notation used.

Unit 2: Mechanisms of Inheritance

-SLO 7: Relate the consequences of gene mutation to the final protein product.

-SLO 8: Discuss implications of gene mutation to genetic variation.

-SLO 9: Investigate an issue related to the application of gene technology in bioresources.

-SLO 10: Investigate an issue related to the application of gene technology in humans. Include: understanding the technology/processes involved, ethical and legal implications, a variety of perspectives, personal, societal/global implications.

*Please note that the S4 Biology curriculum document is currently available only in draft form (Manitoba Education, Citizenship, and Youth, 2005) and is therefore subject to change.

Materials::

-Minimum of 20 poker chips: 10 red, 10 green (or any other two colours).

Note: if the activity is to be expanded to include the entire class, there must be enough poker chips in total for each student to have two chips. It is recommended that there be extra poker chips of each colour in order to represent many homozygous individuals.

-Minimum of 2 dice.

Note: if the activity is to be expanded to include the entire class, in order to allow the activity to progress at a faster pace, more than two dice may be necessary.

Safety Concerns

There are no safety concerns associated with this activity.

Procedure:

Note: This procedure activity has been designed for the Senior 1 level, although some vocabulary included may be beyond this level. It is best for the teacher to determine which vocabulary to use depending on the students’ level of comprehension and previously taught lessons.

Before beginning this activity, students should be familiar with the terms and concepts meiosisof sexual reproduction, meiosis, chromosomes, and genes. OTHERS????

Experiential Level

Students’ experience with genetics and alleles come from their observations of the human variation and diversity around them. Although they may not realize that human variation is largely due to differences in genes, students are already familiar with the end product of genetic variation and alleles.

Students may also have heard of genes from science fiction films or television, but may not have any understanding of the significance of the terms. It is interesting to note that half of adults know that genes are responsible for the similarities between parents and their children, but cannot explain why (Driver et al, 2002). Please see the section “Learner Difficulties” for further information regarding student preconceptions in the field of inheritance.

Students can be encouraged to use their observations of human diversity before the activity begins. An open-ended question such as “What are some of the physical differences that you have seen between people?” can get students to list many sources areas of genetic variation. Some anticipated results include hair colour, eye colour, skin colour, sex, and height (although this is not entirely genetically determined, as health and nutrition play a large role in one’s height).

Once students have created a list of physical traits, they can be told that some or most of the variations they have listed are because of differences in our genes, and not only is it the combination of the genes that we have, but what types of genes we have, that make us each unique. This concept segues into the Logical level of science comprehension.

Logical Level

Note: Throughout this explanation, it will be important to refer back to information presented in prior lessons to aid in student comprehension. Only the information needed for this activity is provided below. It is recommended that students are told that they will participate in an activity to explore these concepts, but they need to be familiar with the terms and concepts before doing the activity is done, as this may enhance student attentiveness. As well, because all classes are different, it is recommended that this information be presented or elicited in a way that is most engaging for the students.

The information to produce most of our physical traits is found in our genes. Each gene carries information for a certain trait like eye colour, blood type, and different genetic diseases. Many different forms of each gene that are possible, and each form is called an allele. The classic example of alleles in humans is s eye colour. Many textbooks discuss the inheritance of blue and brown eyes; . The gene for eye colour could be coded for blue eyes or brown eyes. Aa child will have brown or blue eyes depending on the combination of genes he or she receives from his or her parents.

Genes are found on chromosomes. Each person has two copies of each chromosome, one from the mother, and one from the father. Because each person has two of each chromosome, they have two versions of each gene. Depending on the genetic makeup of the parents, and which parental genes are contained within the sperm and egg that unite to form the child, some people have alleles that code for the same form of the trait or alleles that code for different forms of the trait.

Because the activity utilises the gene for cystic fibrosis as its principal example, it is best to use cystic fibrosis during the following explanation so that students do not need to grapple with understanding several traits as they learn these concepts. (See the “Additional Information” section below for further information on cystic fibrosis that could be included in this section of the lesson.)

This explanation works best with diagrams of chromosome pairs drawn on a board or overhead to appeal to different learning styles.

Explain to the students that the disease cystic fibrosis is a genetic disease that can be found on a particular chromosome. Many students may be familiar with cystic fibrosis, as the Cystic Fibrosis Foundation often has advertisements on television or on buses. (Students can be asked if they have heard of the disease before and what they know about it.) Nevertheless, it is important to explain at minimum that the disease causes t a thick mucus to develop within the lungs, causing lung infections, and eventual death.

Continue to explain that there is a spot on a particular chromosome is where the cystic fibrosis gene can be found. If a person has one “regular” gene and one gene for cystic fibrosis they will not develop the disease. If a person has two genes for cystic fibrosis they will develop the disease. Even though both of these peoplecombinations contain have the cystic fibrosis gene, only the person with two copies of the cystic fibrosis gene (a homozygous individual) is said to havehas cystic fibrosis. The person with one copy of the gene (a heterozygous individual) is healthy. This is an example of dominant and recessive genes. If someone has both types of genes (cystic fibrosis and “regular”), the “regular” gene is the only one whose code will be read and the one that we will see. (THE RECESSIVE GENE STILL PROVIDES A DEGREE OF THICK MUCUS) We say that the regular gene is dominant over the cystic fibrosis gene because only one copy of the gene is needed for the trait to be expressed. The cystic fibrosis gene is recessive because two copies of the gene are needed for the trait to be expressed. In some cases, such as the cystic fibrosis gene, having two copies of the allele areis lethal. This type of allele is called a lethal allele.

What we see, likesuch as the presence or absence of cystic fibrosis or the colour of an individual’s eyes is called a phenotype. The genetic combination is called a genotype. A person can have a recessive gene and not know it because all that can be seen is the phenotype: the action of the dominant gene. However, with today's technology it is possible to test and discover whether or not one has a copy of theseveral recessive genes, including cystic fibrosis. People with one copy of an unexpressed, the recessive gene are called carriers of that gene. Sometimes, a recessive gene can be transmitted over many generations without appearing. The activity the students will now be doingtrying is designed to show how a recessive gene is passed from one generation to the next.

Psychological Level

This activity can be done as an entire class or in smaller groups, and with the production of as many “generations” as desired. The following description is designed to be used as a whole class activity.

Begin with -We need two volunteers….

-They are representing two people who lived in 1895, before treatment for cystic fibrosis was available. (They wouldn't have known their genetic makeup, but we do!.) With modern medicine and technology, patients with cystic fibrosis are living longer. Until fairly recently, there was no treatment for cystic fibrosis and most people with the disease died before the age of 20. However, with modern medicine and technology, patients with cystic fibrosis are living longer.

Present each volunteer with two different coloured poker chips. -Each of these poker chips represents one allele. The red poker chip is the dominant allele, or (the “regular” gene). The green poker chip is the recessive allele (the c, or cystic fibrosis gene).

Ask the class, “

-What are the genotype and phenotype for each of these people?” The answer is Cc, or one dominant and one recessive allele. These individuals are the Parental (P) generation.

Then, ask for three more volunteers. Explain that these are the first two volunteers’ “children” (the F1 generation). Because Cc x Cc

-We need three more volunteers. These are _____ and _____'s children.

-Their children have an equal, (50/-50) chance of getting either gene from their parents, each parent gets one die to roll. If We'll roll the dice to see which gene gets passed on. Aan even number is rolled means that the dominant gene is passed on,. If an odd number is rolled means that the recessive gene is passed on.

(Punnett squares can be used here at the S4 level.) Roll the dice to determine which gene is passed on from each parent and provide the appropriate coloured poker chips to the “child.” Ask the class, “What are the genotypes and phenotypes of the children?” If one “child” receives two recessive genes, they “die” and are removed from the activity.

Ask for volunteers to pair with the remaining children. They represent the grown children’s spouses. Assign genes to the spouses. Each “couple” should have at least one recessive gene.

Depending on the remaining class time, determine how many “grandchildren” will be produced. Ask for volunteers to represent the grandchildren (the F2 generation). (This activity may continue for as many generations as desired, or until every individual in the class has participated.) Each member of the F1 generation now rolls the dice to determine the genetic composition of their “children.” Repeat as above.

-Produce children's DNA.

-What are the genotypes and phenotypes of their children?

-Remove any recessive homozygous people as needed.

-Need volunteers to be spouses for the children. Assign genes.

-Each of the children will now have children. (Need _______ volunteers)

-What are the possible gene combinations for the children?

-Roll the dice.

-Repeat until third generation is complete. When the activity is complete, allow students to ask any questions they may have. Then, present them with an exit slip question such as “What would be the phenotype of an individual with a Cc genotype? Explain why the individual would have that phenotype.”

5. Debrief: Any questions?

ASK: (if time) What would happen if _______ (from the third generation) had a child with someone with ________ genetic combination?

Alternate activity/follow upAlternative procedures for the activity and areas of expansion

Depending on the size of the class, it would be possible to begin the activity with two families: one with the recessive gene, and one without the recessive gene. After two or three generations, pair an individual with one family with an individual from the other. Continue producing generations as previously described and observe how the recessive gene is passed on.

An alternate exit slip question, best suited for Senior 4 students, is to provide students with a situation where the genotype of only one parent is known and the phenotypes of the children are known. Ask the students to determine the possible genotypes for the other parent. They may also be asked to draw a Punnett square to support their conclusion. This question can connect with a lesson on genetic counselling and the ethics of genetic screening.

Areas for expansion, suitable in particular for the S4 classroom: gene technology, gene mutation, ethical issuesSpecific genetic. terms such as phenotypic ratio, genotypic ratio, purebred, and hybrids, as well as the transformation of DNA information into proteins can be included with this activity at the Senior 4 level.

Learner Difficulties

The following learner difficulties are intended to help teachers predict where students may struggle with the subject matter. Teachers may wish to emphasize these areas of difficulty during their lessons.

The preconceptions that students may have are that the males genes come from the father and the females genes come from the mother (Driver et al, 2002).

Only 50% of students understand that inheritance and reproduction occur together, and that offspring obtain a mixture of their parents’ traits (Driver et al, 2002). Many students believe that the genes of male offspring come morestly from the father and the genes of female offspring come morestly from the mother, rather than recognizing a mixture of the two (Driver et al, 2002). Although students realize that there is a degree of randomness in inheritance, chance and probability are often not recognized by students as having an effect on inheritance (Driver et al, 2002). With the use of dice in the above activity it is hoped that students will understand the role of chance in inheritance. It is interesting to note that wWhen given a pencil and paper exercise involving probability, students are generally able to succeed at the exercise, but they are often unable to apply their knowledge of probability to real life situations, such as inheritance in human families (Driver et al, 2002).

Other pencil and paper exercises that are often done in class can cause learner difficulties. Students can learn to rely on Punnett squares (charts commonly used to illustrate possible genetic combinations from parents to offspring) instead of understanding what is symbolized by the Punnett squares, namely that one allele comes from each parent (Shirey, 2004).

In addition, many students do not understand the chemical basis of inheritance (Driver et al, 2002). In other words, they do not understand the structure and significance of DNA in inheritance.

-Punnett squares

Finally, soSome students believe that dominant traits are more common than recessive traits (Biology Web, 2005). Although this is true in some cases, it is not always true. The O blood type, although caused by a recessive gene, is the most common blood type, whereas the gene Huntington’s disease is dominant but rare. Some students also assume that the expression of a dominant gene indicates that a recessive gene is not present in the individual’s genotype (Shirey, 2004). The above activity should help to counteract this assumption.

E-level

-If we look around the room or around the halls of the university, there is a lot of variation among people. What are some of the differences between people? (wait for ideas—hair, eyes, skin colour, height, sex, etc)

-Most of these variations are because of differences in our genes. Not only the combination of the genes, but what types of genes we have, make us each unique.

2. L-level, Jennifer:

-There are many different forms of each gene that are possible. Each of these forms is called an allele. In humans, there are alleles for traits like eye colour, blood type, and different genetic diseases.

-Every person has two copies of each gene. Some people have two alleles that are the same, or alleles that are different.

ON BOARD: CHROMOSOME PAIR

-For each pair of chromosomes, 1 chromosome comes from the mother. The other chromosome comes from the father.

-Let’s look at the gene for cystic fibrosis. Cystic fibrosis is a genetic disease that causes thick, sticky mucus to form in the lungs and sometimes in the digestive organs. The build-up of mucus means that it is difficult for the body to get rid of bacteria in the lungs, which leads to severe infections and eventual death.

BOARD: -This spot on this chromosome is where the cystic fibrosis gene can be found. This person has one regular gene and one gene for cystic fibrosis. This person has two genes for cystic fibrosis. Even though both of these people have the cystic fibrosis gene, only the second person suffers from cystic fibrosis. The first person is healthy.

3. Audrey:

-This is an example of dominant and recessive genes. If someone has both types of genes (cystic fibrosis and “regular”), the regular gene is the one that will be used by the body and the one that we will see. We say that the regular gene is dominant over the cystic fibrosis gene. The cystic fibrosis gene is recessive.

-What we see, like the presence or absence of cystic fibrosis is called a phenotype. The genetic combination is called a genotype. A person can have a recessive gene and not know about it because all we can see is the phenotype: the action of the dominant gene. Sometimes, a recessive gene can be transmitted over many generations without appearing. People with an unexpressed, recessive gene are called carriers of that gene.

(VOCAB ON BOARD?)

4. Activity: Genotype, Phenotype, and Recessive Genes

-With modern medicine and technology, patients with cystic fibrosis are living longer. Until fairly recently, there was no treatment for cystic fibrosis and most people with the disease died before the age of 20.

-We need two volunteers…

-They are representing two people who lived in 1895, before treatment for cystic fibrosis was available. (They wouldn’t have known their genetic makeup, but we do.)

-Each of these poker chips represents one allele. The red poker chip is the dominant allele, or regular gene. The green poker chip is the recessive allele, or cystic fibrosis gene.

-What are the genotype and phenotype for each of these people?

Cc x Cc

-We need three more volunteers. These are _____ and _____’s children.

-Their children have an equal, 50-50 chance of getting either gene from their parents. We’ll roll the dice to see which gene gets passed on. An even number means that the dominant gene is passed on, an odd number means that the recessive gene is passed on.

-Produce children’s DNA.

-What are the genotypes and phenotypes of their children?

-Remove any recessive homozygous people as needed.

-Need volunteers to be spouses for the children. Assign genes.

-Each of the children will now have children. (Need _______ volunteers)

-What are the possible gene combinations for the children?

-Roll the dice.

-Repeat until third generation is complete.

5. Debrief: Any questions?

ASK: (if time) What would happen if _______ (from the third generation) had a child with someone with ________ genetic combination?

Areas for expansion, suitable in particular for the S4 classroom: gene technology, gene mutation, ethical issues

Additional Information

Although it is unlikely that all of the following information would be presented to the class during this activity, this information can be useful to address questions that the students may have about the topics discussed during the activity, or to plan for previous and future lessonsor to create connections to other lessons. For example, the historical information would likely have been presented during a previous class, and cystic fibrosis may be revisited during future lessons.

Background Historical iInformation

The transmission of Rrecessive genes wereas first noted by monk Gregor(?) Mendel induring the 1860s (although he did not use the term “gene”). Mendel experimented with yellow and green pea plants, and noted how traits such as flower colour, pea colour, the texture of the pea seeds, and the texture of the pods were passed from generation to generation in different ratios depending on the parental generation’s features. He was experimenting with traits for which there were two alleles (different forms of a gene) and for which the genes do not interact, meaning that he could deduce the presence of discreet genes for different traits that were passed, sometimes invisibly, from one generation to the next.

It was not until ____ when ____ was discovered that the nature of recessive genes was known. _____. During his experiments with yellow and green pea plants, Mendel noted that the yellow pea plants did not appear as frequently as green pea plants. He also noted that two green pea plants could produce a yellow pea plant.

Why called recessive???

Definitions: monohybrid cross, P generation, F1 generation, F2 generation, phenotypic ration, genotypic ratio, dominant alleles, recessive alleles, purebred, hybrid, carrier.

symbols and notations

Cystic Fibrosis (CF)

Cystic fibrosis is a n autosomal (non-sex chromosome) recessive disease affecting approximately 1 in every 36,000 children born in Canada (Canadian Cystic Fibrosis Foundation, 2003). The gene for CF was first identified in 1989 (Lewis, 1997). It is located on the long arm of chromosome number 7 (Gene Gateway, 2003), an autosomal chromosome (non-sex chromosome). In the United States, it is estimated that 10 million citizens are carriers for the disease (Cystic Fibrosis Foundation, 2005), meaning that they show no symptoms. ICFt is a condition that is carried found almost exclusively in Caucasian populations (Cystic Fibrosis Foundation, 2005). and it is estimated that one in twenty Caucasians carries the CF gene (Johnson, 1999).

The lungs of those with two copies of the cystic fibrosis gene (homozygous recessive individuals) become clogged with aby thick, sticky mucus that clogs the lungs. It is therefore difficult to clear the lungs of this mucus and bacteria become trapped in the mucusit, leading to of bacteria, which leads to lung infections and damage of the lung tissues (Canadian Cystic Fibrosis Foundation, 20032005). In addition, many people with CF also suffer from difficulties with the digestive tract;; t. The mucus secreted can also obstruct the pancreas, preventing digestive enzymes from being released into the intestines and breaking down food for the absorption of nutrients (Canadian Cystic Fibrosis Foundation, 2005). Liver damage is also possible as a result of CF, as bile ducts in the liver can be blocked by the mucus (Cystic Fibrosis Foundation, 2005).

Some research has suggested that there may be an evolutionary advantage to having one copy of the cystic fibrosis gene (being heterozygous for the gene). The CF gene appears to offer protection from cholera. Cholera bacteria cause salt and water to leave the body’s cells, resulting in diarrhea and death from dehydration. The abnormal proteins produced by the CF gene trap salt and water in cells (causing the thick mucus). Therefore, a person with CF cannot contract cholera (Lewis, 1997). Carriers of the CF gene also cannot contract cholera because the single CF gene does produce some abnormal proteins, although not enough to cause cystic fibrosis (Lewis, 1997). However, it is important to note that cystic fibrosis is a disease that arose in Europe, whereas cholera arose in Africa. It may be that CF is a response to a cholera-like infection (Lewis, 1997).

Because the CF protein causes a retention of salt, CF is commonly diagnosed with a “sweat test.,” which The test that measures the salt content of an individual’s sweat. Individuals with CF have a higher than normal amount of salt in their sweat (Canadian Cystic Fibrosis Foundation, 2005). WHY???

Treatment for CF varies, depending on the progression of the disease and the organs affected. However, it most often includes the consumption of artificial enzyme pills with each meal or snack in order to compensate for the person’s compromised digestive system and allow for the absorption of nutrition (Canadian Cystic Fibrosis Foundation, 2005). The use of inhaled medications to treat lung infections and to reduce the thickness of mucus are also commonly used (Cystic Fibrosis Foundation, 2005).

In addition, individuals with CF must also engage in daily physical therapy in order to help keep their lungs clear. The physiotherapy involves vigorous clapping on the back and chest to loosen and dislodge mucus from the lungs (Cystic Fibrosis Foundation, 2005).

The modern median average age of survival of individuals with CF is in the mid-thirties, although with progressions in medicine and treatment options, CF patients are surviving for longer periods of time (Cystic Fibrosis Foundation, 2005).

Although individuals with CF are living longer than in the past before modern treatments were available, both men and women with CF often encounter infertility. Approximately 95% of male suffers of CF are infertile and because of chronic health problems associated with CF, many women are unable to carry a child to term if they become pregnant (Cystic Fibrosis Foundation, 2005).

Add: LETHAL ALLELE

Conclusion

By utilising all three levels of the LEP model, in particular the Psychological, it is hoped that the concepts of recessive genes and inheritance are made intelligible, plausible, and fruitful for the students (Stinner, 2005). It is hoped that tThrough the above aactivity students will should overcome their preconceptions and come to understand that genes are passed from both parents equally. As well, with the use of one gene as an example, they should come to understand the randomness of genetic inheritance and be able to apply this knowledge to the study of genetics. As well, because this activity can be adapted for different grades and different student capabilities, it should serve as a useful foundation for many lessons on genetics.

ir preconception that

Learner Difficulties

Works Cited

Biology Web (2005). Chapter 14 - Genetics - Part 1 – Genes. . Accessed on December 1, 2005.

Canadian Cystic Fibrosis Foundation (2005). Disease information. . Accessed on November 29, 2005.

Cystic Fibrosis Foundation (2005). Facts About CF.

Accessed on December 2, 2005.

Driver, R., Squires, A., Rushworth, P., and Wood-Robinson, V. (2002). Making Sense of Secondary Science.

Gene Gateway (2003). CFTR: The Gene Associated with Cystic Fibrosis. . Accessed on December 1, 2005.

Johnson, C. (1999). Hominid Evolution, Dental Anthropology, and Human Variation. Notes for Week 4: Text Ch 4: Genes, Culture, and Adaptation. . Accessed on December 1, 2005.

Lewis, Ricki (1997). Human Genetics: Concepts and Applications, second edition. . Accessed on December 1, 2005.

Manitoba Education and Training (2000). Senior 1 Science: Manitoba Curriculum Framework of Outcomes. London: Routledge/Falmer.

Manitoba Education, Citizen, and Youth (2005). Senior 4 Biology 40S: Student Specific Learning Outcomes DRAFT/Unedited Version. . Accessed on November 29, 2005.

Shirey, A.J. (2004). Misconception in Genetics. Science Education 411. October 12, 2004. . Accessed on November 30, 2005.

Stinner, A. (2005). From Logic to Evidence [course handout]. Teaching Science in the Senior Years.

Stinner, A. _____University of Manitoba.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download