HOUSEHOLD BEHAVIOR ON SOLID WASTE MANAGEMENT A …



HOUSEHOLD BEHAVIOR ON SOLID WASTE MANAGEMENT: A CASE OF KATHMANDU METROPOLITAN CITY

Abstract

This paper tries to show the household behavior of Kathmandu residents towards solid waste management. The paper is the outcome of a primary survey of 432 households covering different parts of the city of Kathmandu. The daily per capita waste generation in Kathmandu is 0.29 kg and is lower in the core zone than in the outer and middle zones. This indicates that as there is more open space to throw the waste people usually generate more waste. Household size and income are the major determining factors for the total quantity of wastes generated in all the zones.

About 80% of the households are willing to pay for better management of waste. This comes to about Rs. 72 per household per month. The willingness to pay is highest in the outer zone and lower in the core zone. The main factor determining the “Willingness to Pay” is income.

1. INTRODUCTION

Prior to 1950, there was hardly any problem of solid waste management in Nepal. The solid waste was locally managed in all the urban areas of Nepal including Kathmandu Valley. Almost all the wastes was organic in nature and was used as manure (Tuladhar 1996). Traditionally, only a special caste (i.e. Pode or Chyame) was involved in waste management activities. In the past, these people collected the waste from settlements using primitive tools such as buffalo ribs to lift the waste and shoulder baskets (Kharpan) to carry the wastes (Tuladhar 1996). The wastes collected were dumped on nearby river banks or in open fields. In those days, the flow of water in nearby rivers was capable in degrading the dumped organic wastes which were small in quantity. But these traditional practices could not continue due to the increasing population densities in urban areas. Increase in population density has lead to the increase in the volume of waste. This has created a massive threat to public health due to the lack of proper solid waste management.

Thus after the mid-1960s initiation started in the diagnosis of the problem and some short-term as well as long term suggestions were given by different studies (Flinthoff[1], 1970; Tabasaran, 1976 and 1981; Croll 1978). These studies were basically meant for the smooth functioning of the Solid Waste Management Project and quick collection and disposal of the waste. Some other studies were on the possibility of pricing for garbage services (Agrawal et al. 1982; Flinthoff, 1970; GTZ 1996; SWMB GTZ 1985).

1.2 Rational

Even with all these research and studies, the problem of solid waste management in Kathmandu has been increasing over the years. Presently, the task of solid waste management comes under the auspices of concerned municipalities. The service is provided almost free of charge using funds available at the disposal of the municipalities. Nearly 20-25% of the total budget of the Metropolis goes for solid waste management (KMC, Department of Solid Waste Management, 1998).

One of the studies conducted by the Central Bureau of Statistics shows that unmanaged waste disposal was considered the main cause of environmental problems in Kathmandu followed by unmanaged sewage (CBS 1996, in CBS 1998 a). Thus solid waste management is a growing issue in the context of urban environmental degradation of Kathmandu. The rate of growth of population of the Kathmandu Valley is more than 6%, which is the highest among the cities of Nepal. Due to the rapid increase in population and increase in the consumption of packed goods, the amount as well as the quantum of non-biodegradable waste is increasing over time. Among the total waste generated in Nepal, 80% is generated only from Kathmandu and only 30% of the total urban refuse is being collected in containers and transferred to the landfill site (Thapa et al. 1999).

1.2. Studies on the Economics of Solid Waste Management

Solid waste management is also a non-excludable good as it is difficult to be protected by the general market forces. One way of managing non-excludable goods or services is either by the internalization of costs (by levying charges for the use of the services) or by following a command and control policy or a combination of both. Government intervention is necessary for this. The rationality of the government’s intervention can be judged when the costs of producing the good or service decline as more of the good or service is produced and when production or use of the good or service results in "externalities" such as environmental pollution (Macauley and Walls, 1995; Jenkins, 1993). Thus, the major problem for solid waste management is the internalization of costs of waste disposal.

In the early days economists discussed about the socio-economic factors influencing waste generation by the households. Wertz (1976) discussed about the economic aspects of household's decisions to produce more or less refuse. He mainly analyzed the theoretical concept about household behavior on waste generation due to the changes in income, price of refuse service, frequency of service, site of refuse collection and packaging. He also discussed on resource implications of the local government policy, which refrains from the pricing of public refuse service to households.

Economists also compared the composition and quantity of waste in terms of income level, household size and age structure of the household. The household size, household income and population were important factors affecting the quantity and composition of solid waste. The study shows that grass, yard wastes and newspaper were positively correlated to the level of income (Richardson et al. 1978). The present paper attempts to apply these models in the context of developing country like Nepal with some modification.

1.3 Objectives:

The objectives of this paper are to discuss household behavior regarding waste generation and management of waste; the relationship of the waste component in different zones within the city; and the “willingness to pay” for changes in the provision of waste management services.

1.4 Methodology:

The study was conducted using primary information. Information from households was collected using a structured questionnaire. The Kathmandu Metropolis is divided into 35 wards. Wards are not homogenous but heterogeneous in terms of population density and land use patterns.

1.4.1 Selection of Areas and size of the Sample:

All the wards can be categorized into three main groups i.e. Core, Middle and Outer depending on population density, settlement and land use pattern. 5 wards (15%) out of the 35 were selected for field study. To make the sample more representative, wards were selected in such a way that they covered all the zones i.e. Core, Middle and Outer. Thus, 3 wards from the core, 1 from the outer and 1 from the middle zone were selected. Table 1 shows the detail regarding the selected wards and size of the sample.

Table 1 Sample Households

|Ward |Total households |Sample households |Total Households |Area Covered by sample |Total Population |Population Density |

| |(Nos.) |(Nos.) |(%) |(Sq. km.) | |per sq. Km |

|14 |3460 |173 |05 |3.03 |18425 |6080.9 |

|18 |775 |41 |05 |0.19 |8081 |42531.6 |

|19 |1122 |57 |05 |0.16 |7588 |47425.0 |

|28 |385 |31 |08 |0.07 |5077 |72528.6 |

|35 |2486 |130 |05 |3.95 |12000 | 3038.0 |

|Total |8228 |432 |05.25 |7.4 |51171 |6915 |

Total population data is as per the census of 1991.

About 5% of the households were selected from among the households of the selected wards. Thus in total 432 households were selected from the selected 5 wards. The households were selected randomly with the help of the voters’ list. Attempts were made to cover the entire locality within the ward.

1.4.2 Justification of the Sample Size:

To depict the reliability of the overall situation of the population, the selected sample should contain a sufficient number of households. Therefore, to reduce costs, simplify management and control of the quality of the interviews, the sample size was kept within reasonable limits. In order to ensure representative views, each household was provided an equal opportunity to be selected in the sample.

Sampling Error (SE): SE is the error inherent in making inferences for the whole population from observing only some of its members. It is considered as a guideline as to what the sample size should be, in order to guarantee a maximum given error when estimating a proportion from the sample.

For a pure random sample drawn from an infinite population, the following formula has been taken as the basis for computing the sample size;

n = k(2 p (1-p)/e2

Where, p is the value of the proportion in the population, e is the acceptable error and k( is a coefficient dependent on the confidence level for ( = 0.95 ( i.e. " 95 % confidence level”) k( = 1.96. The term p(1-p) is maximum for p = 0.5. Then the formula becomes:

n = 0.9604/e2

Thus, to achieve a maximum error of 0.05 (5%) in the estimation of proportion, n = 0.9604/052 = 384. Therefore, a minimum sample size of 384 households is required.

1.4.3 Data Collection Method:

The name and number of the household head was collected from the final voters’ list of 2000 for the 5 selected wards. After preparing the list of the household head sample households were selected randomly using the random Table. The information from the household was collected with the help of a structured questionnaire. The questionnaire was finalized after a pre-test. The pre-test was made in ward no. 14 with 5% (25) of the sample households. The result of the pre-test was presented in a closed door meeting with the team of University Professors. The questionnaire was finalized incorporating all the suggestions provided by the Professors. The questions were on demographic characteristics of the households, information on waste generation by types, waste disposal practices (e.g. throwing in street, river, burning etc.), door-to-door collection systems, monthly fee, and willingness to pay for the better management of waste and causes for not willing to pay. Family income, sources of income, education level, and possession of domestic amenities were also among the questions asked.

The questions were filled by visiting the selected households from August to November 2001. The households were visited twice to complete the questionnaire. On the first day socio-economic information were collected and households requested to deposit the wastes in different plastic bags. On the next day the wastes were weighted. Three research assistants (one from each zone) were employed for the work.

1.4.4 Analytical Method:

The data were entered in the computer and analyzed using different statistical tools. Data were grouped for the Core, Middle and Outer zones. Some of the information was analyzed using simple statistical tools and others analyzed econometrically. The econometric models used for the analysis of household behavior and Willingness to Pay is given in the relevant sections.

2. MAJOR FINDINGS OF THE STUDY

2.1 Waste Generation in the Households:

The table 2 shows that average waste generation by the households is 0.29kg per capita per day (0.26kg in the core zone, 0.32kg in the outer zone and 0.29kg in the middle zone). Waste generation is higher in the outer zone and lower in the core zone. This may be due to the sufficient open spaces available in the surroundings of the outer zone. In the core zone people have no space and so they may be generating less waste.

Table: 2 Per Capita Waste Generation by the households

|Zone |Waste generation |Std. Dev. |Min |Max |Total waste |Per capita |

| |(Kg./ HH /day ) | | | |( Kg.) |waste generation in a |

| | | | | | |day (Kg.) |

|All zone |1.91 |1.27 |0.33 |9.15 |824.14 |0.29 |

|Core Zone |1.98 |1.26 |0.53 |9.15 |255.63 |0.26 |

|Middle Zone |1.85 |1.28 |0.33 |6.99 |320.43 |0.29 |

|Outer Zone |1.91 |1.28 |0.51 |7.63 |248.1 |0.32 |

The percentage of people following the separation practice is also very high in the core zone as compared to other zones (Table 4). This may also be responsible for the low waste generation in the core zone.

Table 3 shows about the types and proportion of solid waste. Kitchen waste is the major waste in terms of volume and quantity of the selected households. It accounts for nearly 85% of the total waste. Packing waste (7%) is next to kitchen waste. Plastic content is 3% whereas paper waste is 2 % only. The remaining 2% are other wastes, which include battery, dust etc.

Table: 3 Types of Waste and their Proportion in all Zones

|Waste types |Average per |Std. Dev |Min |Max |Total waste |Per Capita |

| |HH per day | | | |(Kg) |Waste per day |

| |(Kg.) | | | | |(Kg.) |

|Kitchen waste |1.63 |1.01 |0.30 |8.5 |703.8 (85) |0.24 |

|Packing waste |0.14 |0.26 |0 |3.02 |59.85 (7) |0.02 |

|Plastic |0.14 |0.26 |0 |2.05 |22.71 (3) |0.01 |

|Paper |0.04 |0.13 |0 |2 |16.27 (2) |0.01 |

|Other Waste |0.05 |0.22 |0 |3.02 |21.57 (3) |0.01 |

|Total Waste |1.91 |1.27 |0.33 |9.15 |824.14 (100) |0.29 |

Figure within brackets indicate percentage

2.2 Existing Waste Management Practices

2.2.1 Separation Practice

Table 4 shows about the separation practices of the sample households. Among the sample households, only 31% of the households reported having separate bins for storage of different types of waste and the remaining households do not have any separate bins. Thus the majority of the households leave their mixed wastes at one place or in plastic bags. Though only 31% households have separate bins, about 65% separate the reusable and recyclable wastes. Among the zones the households having separate bins is the highest (49%) in the middle zone, lowest (7%) in the outer zone and moderate (32%) in core zone. The separation practice is the highest (81%) in the core zone, lowest (52%) in outer zone and moderate (62%) in middle zone.

Table 4: Separation Practices of the Households

|Zones |Separate bin |Separation practice |

| |Yes |No |Yes |No |

|All zones |135 (31) |297 (69) |280 (65) |152 (35) |

|Core |41(32) |88 (68) |105 (81) |24 (19) |

|Middle |85 (49) |88 (51) |107 (62) |66 (38) |

|Outer |9 (7) |121 (93) |68 (52) |62 (48) |

Figures within brackets indicate percentage and absolute number indicate the number of households

2.2.2 Door-to-Door Collection:

About 57% of the households are served by the door-to-door collection system. The majority of them receive the service by paying the fee and few are receiving the service not because of the fee but because of the location of their house along the road. Municipal collectors provide the service without receiving any bonus since they are the employees of the municipality.

Table 5: Door-to-Door Collection and Disposal of Waste

|Zones |Satisfied with the present collection system |Environmentally safe disposal of the collected waste |

| |Total No. of HH with Door |Satisfied |Not Satisfied |Yes |No |Don't know |

| |to Door Collection | | | | | |

|All zones |245 (100) |207 (84) |38 (16) |18 (7) |46 (19) |181 (74) |

|Core |87 (100) |77 (88) |10 (12) |13 (15) |7 (8) |67 (77) |

|Middle |116 (100) |103 (89) |13 (11) |4 (3.4) |26 (22.4) |86 (74.2) |

|Outer |42 (100) |27 (64) |15 (36) |1 (2) |13 (31) |28 (67) |

Absolute number indicate the number of households and Figure within bracket indicate percentages

The perception of the households towards the present collection system was also captured through the questionnaire. Table 5 shows that most households (86%) were satisfied with the present door-to-door collection system. Only 14% were not satisfied. However, very few households (25%) know where the collected waste is disposed. Only 7% feel that the disposal of such collected waste is environmentally safe, 19% feel that the disposal of such collected waste is not environmentally safe and the remaining 74% could not explain whether it is environmentally safe or not (Table 5). Table 5 also shows the zone-wise details regarding the knowledge on the disposal of the collected waste. The percentage of unsatisfied households is higher in the outer zone relative to the core and middle zones.

2.2.3 Waste Collection and Collectors

About 56 % households are served by the door-to-door collection system. Among them 35 % use the municipal collection system and the remaining uses the private collectors including community-based organizations. Table 6 shows the detail regarding the waste collection and collectors in the sample households. Among the zones, municipal collectors are collecting wastes in the core area whereas NGOs plays dominant roles in the middle zone and a private firm is working in the outer zone. The majority of the private collectors collect the waste 3 times a week and municipal collectors collect the waste every day.

Table 6: Waste Collectors and Collection Frequency

|Zones |Collectors |Collection Frequency in a week |

| |Municipal collectors |Wage |NGO |CDC |

| | |Workers | | |

|Total No of HH with No door collection system |187 |42 |57 |88 |

|Throwing in the Container |18 (4) |4 (8) |7 (5) |7 (3) |

|Throwing in the road |69 (16) |25 (50) |22 (14) |22 (10) |

|Throwing in open field |55 (13) |8 (16) |23 (15) |24 (11) |

|Burying in own land |92 (22) |4 (8) |36 (24) |52 (24) |

|Prepare the compost from waste |45 (11) |3 (6) |22 (14) |20 (9) |

|Cattle feeding |8 (2) |0 |5 (3) |3 (1) |

|Burn |109 (25) |4 (8) |35 (23) |70 (32) |

|Throw in the river |28 (7) |2 (4) |3 (2) |23 (10) |

|Total no of HH with different practices |424 (100) |50 (100) |153 (100) |221 (100) |

Absolute number indicate the number of households and Figure within brackets indicate percentage

2.3. Waste Generation and its Relationship with Socio-Economic Variables

This section, mainly discusses the empirical analysis of the relationships of quantity and composition of household solid waste to selected social and economic variables. The analysis is based on data for components of household wastes, by type of material judged having recycling potential.

2.3.1 Model, Hypothesis and Data

Normally waste is a function of consumption. The relationship between waste and consumption activities may be expressed as (Richardson et al. 1978):

W=(C

Where,

W = vector of components of solid waste

( = Vector of technical waste transformation coefficients relating the types and quantities of solid waste to each consumption activity

C = is a vector of consumption activities selected by the household.

Any particular waste may be generated by the consumption of more than one commodity. Here no attempt is made to identify the technical waste transformation coefficients associated with the individual products. It mainly tries to compare the relationship between different types of waste generation and socio-economic variables affecting the quantity of waste.

The major determinants of household consumption activities are assumed to be household monthly income (TOTI), size of the household (TOTPOP), educational status of the household (GRAD) and extra land area in the house compound (EXTLA). The model for the waste component is:

TOTW = (0 + (1TOTI + (2TOTPOP + (3 GRAD + (4 EXTLA+(5 CS+e

Where:

TOTW = quantity of waste per household per day (Kg)

TOTI= Monthly income of the household (Rs.)

TOTPOP= Household size (numbers of persons)

GRAD= Educational status, (number of college graduates)

EXTLA = Extra land area within the compound of the selected household (ha.)

Here household is assumed as a production unit producing solid wastes.

The hypothesis is as follows:

1. Increase in income is expected to increase the demand for convenience factors and services embodied in commodities. The sign of the coefficient is expected to be positive for all types of waste.

2. A larger household size is expected to generate higher quantity of waste since more households are included in the unit; thus, the sign is also expected to be positive.

3. Educated household members work in the office and stay outside of the house for a long time. So the waste generation will be low. However, the generation of packing waste may be higher in case of a fully employed family as they have less time to prepare food. As such, they consume more packed food.

4. It is assumed that higher the extra land area within the compound (EXTLA) less the waste generated by the household. It is also assumed that the household with extra land area may dispose some of the waste in their land, which may not be counted in the total volume of waste generated. Thus extra land area and the total quantity of waste are inversely related and the sign of the coefficient of extra land area will be negative.

Data for the analysis were collected from the 432 households in 2001. Attempt has been made to cover all the area within the city i.e. the data will represent the core, middle and outer settlements. To calculate the quantity of waste sample households were given plastic bags and requested for the collection of waste in these bags and the waste was weighed the next day.

2.3.2 Equation Results:

The estimated coefficients, coefficients of determination (R2), adjusted for degrees of freedom (R¯2) and t and F values are shown in Table 8.

Table 8: Relationship of Waste and Socio-Economic Variables by Zones

|Waste Component |Intercept |Household Income|HH size (TOTPOP)|Extra land |Education (GRAD)|DW |R¯2 |F |

| | |(TOTI) | |(EXTLA) | | | | |

|TOTW (all zones) |-2.70 (7.6) |0.26 (6.24) |0.49 (8.5) |0.08 (1.58) |-0.14(2.7) |1.8 |0.25 |38 |

|TOTW (Core) |-2.19 |0.19 (2.79) |0.52 (5.8) |-0.84 |-0.03 |2.0 |0.38 |18 |

| |(-3.8) | | |(-1.9) |(-0.37) | | | |

|TOTW (Middle) |-2.7 |0.26 (3.04) |0.50 (5.5) |0.04 (0.47) |-0.32 |1.7 |0.27 |16 |

| |(-3.6) | | | |(-3.72) | | | |

|TOTW (Outer) |-3.87 |0.41 (6.08) |0.38 (2.79) |0.09 (1.04) |0.05 |2.0 |0.27 |13 |

| |(-6.2) | | | |(0.58) | | | |

Figure within bracket indicate 't' value

Table 8 shows that generation of waste is related to the total income and total population of the household. The elasticity of the household size is higher relative to the elasticity of the total income in all the zones except outer zone. However, the elasticity of income is higher than the elasticity of the household size in the outer zone. Extra land area has positive but insignificant effect in all the zones except the core zone. In the core zone as there are very few households with extra land area, the result will not be useful in the analysis.

2.4 Economics of Solid Waste Management

2.4.1 Willingness to Pay

One of the features of the questionnaire was to find out the "willingness to pay (WTP)" of the residents for the management of waste. The majority of them do not care on the final disposal of the waste. Table 9 shows about the participation in fee collection system and their willingness to pay. About 49 % households participate in the fee based collection system and are paying an average of Rs. 60 per month for collection of their wastes. However, the participation rate is different for different zones. About 67 % are participating in middle and core zone, while in the outer zone the participation is only 32 %. Forty seven percent households are ready to pay for the better management of waste and the average amount of WTP is Rs. 57 per month.

Table 9: Participation in Fee collection system and willingness to pay

|Zone |People actually participating the fee |People ready to pay and amount of |Total WTP which includes Willingness |

| |collection system |willingness to pay |to additional pay and the monthly fee |

| |Number of HH |Average fee in Rs. |Tot. Ave |Number|Averag|

| | | | |of HH |e wtp |

| | | | | |in Rs.|

| | |Const |Toti |Grad |Ttr |Extla |

| | | | | |

|It is the duty of the Municipality |14 (5) |1 (2) |6 (4) |7 (8) |

|It is the duty of the government |2 (1) |0 |2 (1) |0 |

|Income is very low and could not afford |35 (12) |6 (12) |7 (4) |22 (25) |

|My house's waste had not made any problem to me |62 (21) |8 (17) |28 (17) |26 (30) |

|Waste collection is continue in one or other way and |158 (53) |31 (65) |103 (64) |24 (28) |

|no other problem | | | | |

|Volume and quantity is very low |7 (2) |2 (4) |1 (1) |4 (4.5) |

|Majority of waste is reusable and applicable to own |19 (6) |0 |15 (9) |4 (4.5) |

|self | | | | |

Absolute number indicate number of households and Figure within bracket indicate percentage

3. SUMMARY AND CONCLUSION

The per capita waste generation is 0.29 kg./person/day in all the zones of the city. It seems to be slightly lower than that of the earlier studies (0.46-0.5 kg./person/day) (Rai, 1990; RESTUC, 2000) and higher than the recent study of the Municipality. Recent study by Kathmandu Metropolitan City also shows the low rate of waste generation (0.225 kg./person/day) (KMC/KVMP 2001). The low per capita waste generation may be due to the increase in household sorting of paper and bottles at the point of generation since they are easily sellable. The per capita waste generation is found to be the lowest in the core zone and highest in the outer zone. It was also found that segregation practices are the highest in the core zone relative to other zones. Thus, the low per capita waste generation in the core zone may be due to the household sorting of waste more intensively in the core zone than in other zones. This may also be true because the core zone people have been facing the waste problem since a long time whereas the outer and middle zone people have open space and have no problem of waste disposal. Thus, as there is more open space people usually generate more and vice versa.

About 57 % households are participating in the door-to-door collection by paying certain fee. However, people are not much aware of the environmental problems and safe disposal of the waste. It still shows that the households of Kathamndu have the feeling of NIMBAY (i.e. not in my backyard). About 75 % of the city people do not know where the collected waste is disposed. In terms of zones, people living in the core zone seem to be less aware than in other zones. This shows that people are conscious regarding the waste problem within their compound but they do not care where and how the waste is disposed. Few people know about the disposal place of the collected waste. However, those who know the disposal site do not know whether the disposal practice is environmentally safe or not.

More than 90 % of waste collectors are municipal workers in the core zone where as their proportion in other zone is negligible. In the middle zone it is a NGO (SILT Environment), which covers 78 % of the households practicing door -to-door collection, and a private firm is collecting waste from the outer zone.

In the core zone households, which are not participating in the door-to-door collection system, are managing their wastes mostly by throwing it on the streets. Whereas in the middle and outer zones the majority households are managing their wastes either by burying or burning on their land. They also prepare compost within the compound.

The waste component relationship shows that size of the household and income are the major factor determining the total quantity of the waste in all the zones. It was also found that education has a negative effect on waste generation.

About 80 % of the households are willing to pay for the better management of waste. The average amount of only households who are Willingness to Pay is Rs. 72 per month. However, it we take the average of all the households WTP is Rs. 57 per household. The willingness to pay is highest in the outer zone and lowest in the core zone. It may be due to the free[3] collection by the municipality that the core people are not willing to pay. However, in the middle and outer zones the municipality rarely collects the waste. Thus the willingness to pay is higher in outer and middle zones and lower in the core zone. Again the environmental awareness of the households seems to be very low and due to this they are willing to pay for environmentally safe land filling. However, they simply want the waste to be out from their house. They are ready to pay only for this. Thus, the average willingness to pay seems to be lower than that of the cost required for the management of the waste. The Willingness to pay is also positively related to the household income and household size.

Most households feel that the lack of stiff penalty and non-execution of law is the basic problem for the effective management of waste. Thus, provision of strong penalties and effective execution of the law will be the major tool to reduce the problem of solid waste management in Kathmandu. It is found that environmental awareness is very low among the residents of Kathmandu. Thus, stringent regulations with environmental awareness programs for household sorting and composting can reduce the volume and quantity of waste for land filling. It could be suggested that a fee be charged as per the electricity or water bill to the households to cover the costs, since the willingness to pay is positively related to the level of income. At the initial stage only regular direct cost should be covered by the charge and fixed cost as well as environmental costs should be subsidized. Other wise there will be the possibility of illegal dumping. After the successful implementation of this scheme then only full cost pricing of the solid waste generation should be initiated and this will be the only sustainable way for the better management of waste of Kathmandu Metropolis.

References

Agrawal, G. N. et al. ( September, 1982) "Report on Proposal for Solid Waste Disposal Fee for Kathmandu/Lalitpur Town Panchayats" Report Submitted to Nepal Solid Waste Management Project, His Majesty's Government/Nepal, Ministry of Works and Transport, Department of Housing, Building and Physical Planning and Federal Republic of Germany, German Agency for Technical Cooperation (GTZ) LTD.

Beede, D. N.; D. E. Bloom (1995), "The Economics of Municipal Waste" The World Bank research Observer , Vol. 10, No. 2, pp 113-150

Betts, Mitchel et al (1982) Report of an Evaluation of the Project " Solid Waste Management in the Kathmandu Valley" GTX Project No. 76. 2051.1

Beukering, Piter Van et.al., ( 1999) Analysing Urban Solid Waste in Developing Countries: a Perspective on Banglore, India, Working Paper No. 24, Collaborative Research in the Economics of Environment and Development (CREED), London.

Enayetullah, Iftekhar and A. H. Maqsood Sinha (2000) 'Community Based Decentralized Composting: Experience of Waste Concern in Dhaka' in Sinha A. H.Maqsood et al. (Eds.) Community Based Solid Waste Management: The Asian Experience, Waste Concern, Dhaka, Bangladesh

Flinthoff, F. (1970) Assignment Report in the Solid Waste Management in Kathmandu Who-Project Searo. 0150,

GTZ (1996) 'Report on Fact Finding Mission for the Solid Waste Management in Nepal' Prepared on behalf of GTZ.

KMC/KVMP (2002) Special Cleaning Program for SAARC Summit, Kathmandu Metropolitan City/ Kathmandu Valley Mapping Project, Kathmandu

Lal, Mewa (2000) 'Profits from Waste: NGO Led Initiative for Solid Waste Management in Lucknow' in Sinha A. H.Maqsood et al. (Eds.) Community Based Solid Waste Management: The Asian Experience, Waste Concern, Dhaka, Bangladesh

Macauley, Molly K.; Margaret A. Walls (1995) Solid Waste Reduction and resource Conservation: Assessment Policy, Resource for the Future Discussion Paper 95-32

Murtaza, Md. Gulam and Mohammad Abdur Rahman (2000) 'Solid Waste Management in Khulana City and a Case Study of a CBO: Amader Paribartan' in Sinha A. H.Maqsood et al. (Eds.) Community Based Solid Waste Management: The Asian Experience, Waste Concern, Dhaka, Bangladesh

Nirmal, M.B. (2000) 'Community Based Solid Waste Management:: Experience of Exnora' in Sinha A. H.Maqsood et al. (Eds.) Community Based Solid Waste Management: The Asian Experience, Waste Concern, Dhaka, Bangladesh

Qureshi, Arjum Parvez (2000) 'Waste Busters: An Experience of Pakistan' in Sinha A. H.Maqsood et al. (Eds.) Community Based Solid Waste Management: The Asian Experience, Waste Concern, Dhaka, Bangladesh

Rai, Y.(1990) Statement on the Prospect of Further Vitalizing the Waste-Recycling concept for Nepal, Report on the Workshop "Recycling of Waste in Nepal", SWMRMC, Kathmandu.

RESTUC (2000) A Study of solid Waste and its Management in Kathmandu, Research and Study Center (RESTUC); Kathmandu Nepal

Richardson, Robert A. (1978) Economic Analysis of the Composition of Household Solid Wastes Journal of Environmental Economics and Mangement 5, 103-111, 1978

Sinha, A.H. Maqsood et al (eds.) (2000) Community Based Solid Waste Management: The Asian Experience, Waste Concern, Dhaka , Bangladesh

Solid Waste Management Board (SWMB) and (GTZ) Gmbh (1984) Solid Waste Collection Fee, SWMB and GTZ

SWMB and GTZ (1985) Report on Service Fee Collection, SWMB and GTZ.

Tabasaran, O (1976) Experts Report on the Reorganization of Solid Waste Disposal in the Kathmandu - Valley especially in the Cities of Kathmandu, Patan and Bhaktapur; Report submitted to German Agency for Technical Cooperation (GTZ) and His Majesty's Government of Nepal.

Tabasaran, O. et al. (1981) Report Regarding the Possibility of Composting of Municipal Refuse in Kathmandu Valley Especially in Kathmandu, Patan and Bhaktapur, Report submitted to the His Majesty's Government of Nepal and GTZ.

Thapa, Gopal B. and Surendra Raj Devkota (1999) " Managing Solid Waste in Metro Kathmandu" Bangkok: Asian Institute of Technology

Timilsina B. P. (2000) 'Reuse and Recycling: Options for Waste Diversion from Landfilling- A Case Analysis in Kathmandu Valley' A Journal of Environment, Ministry of Population and Environment, Nepal

Tuladhar, Bhusan (1996) ' Kathmandu's garbage simple solution going to waste', Studies in Nepali History and Society Vol.1, No. 2, A Mandala Book Point Journal

Wertz L. Kenneth; 1976 Economic Factors Influencing Household’s Production of Refuse’ JEEM 2, 263-272 (1976)

-----------------------

[1] Mr. F. Flinthoff was from WHO Regional Office for South East Asia and stayed as a short-term consultant in Kathmandu about the end of 1970 for a period of two months. He gave a report named Assignment Report in the Solid Waste Management in Kathmandu Who-Project Searo. 0150, 1970.

[2] Chouk is an open space between few houses in the core city area.

[3] In the core zone the area coverage by the ward is very small and the municipality with some subsidy collects the waste by its tractors along the road and majority of the households are covered. Where as in middle and outer zone the area coverage by the ward is high and municipality rarely collects the waste from the door of the households.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download