COMBINING DE MOIVRE’S THEOREM AND BINOMIAL …
COMBINING DE MOIVRE’S THEOREM AND BINOMIAL EXPANSIONS.
1. Let z = cis(θ) = cos(θ) + i sin(θ)
(a) Using De Moivre’s theorem find z3
z3 = cis (3θ) = cos (3θ) + isin (3θ)
(b)Expand ( cos(θ) + isin(θ) )3 using the Binomial theorem
z3 = cos3(θ) + 3 cos2(θ) isin(θ) + 3 cos(θ) (isin(θ))2 + ( isin(θ) )3
= cos3(θ) + i3cos2(θ)sin(θ) – 3cos(θ)sin2(θ) – isin3(θ)
= cos3(θ) – 3cos(θ)sin2(θ) + i(3cos2(θ)sin(θ) – sin3(θ))
(c) Using parts (a) and (b) find expressions for cos(3θ) and sin(3θ)
in terms of sin(θ) and cos(θ)
Equating real and unreal parts we get :
cos(3θ) = cos3(θ) – 3cos(θ)sin2(θ) and sin(3θ) = 3cos2(θ)sin(θ) – sin3(θ)
2. Similarly, find expressions for cos(4θ) and sin(4θ)
Consider ( cos(θ) + isin(θ) )4
(a) using De Moivre’s Theorem = cos(4θ) + isin(4θ)
(b) using Binomial Theorem :
= cos4(θ) + 4 cos3(θ) (isin(θ)) + 6 cos2(θ) (isin(θ) )2 + 4 cos(θ) (isin(θ) )3 + (isin(θ) )4
= cos4(θ) – 6cos2(θ)sin2(θ) +sin4(θ) + i( 4cos3(θ) sin(θ) – 4cos(θ) sin3(θ) )
(c) Equating real and unreal parts we get :
cos(4θ) = cos4(θ) – 6cos2(θ)sin2(θ) + sin4(θ)
sin(4θ) = 4cos3(θ) sin(θ) – 4cos(θ) sin3(θ)
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- hyland s cough and cold
- hyland s cough and cold ingredients
- hyland s cold and cough ingredients
- hyland s cough and cold recall
- hylands children s cough and cold
- hyland children s cold and cough
- hyland s cold and cough
- hyland s cough and cold kids
- hyland s cough and cold reviews
- hyland s cough and cold dosage
- 1 s complement and 2 s complement converter
- piaget s theory and erikson s theories