Photo-acoustic Imaging to Detect Tumors - How We Can Help



Photo-acoustic Imaging to Detect TumorsReport -2Shiva Subhashini Pakalapati, Vu Tran, Haifeng Wang4/5/2011sAbstract:Imaging modalities play an important role in the clinical management of cancer, including screening, diagnosis, treatment planning and therapy monitoring. Owing to increased research efforts during the past two decades, photoacoustic imaging (a non-ionizing, noninvasive technique capable of visualizing optical absorption properties of tissue at reasonable depth, with the spatial resolution of ultrasound) has emerged. Ultrasound-guided photoacoustics is noted for its ability to provide in vivo morphological and functional information about the tumor within the surrounding tissue. With the recent advent of targeted contrast agents, photoacoustics is now also capable of in vivo molecular imaging, thus facilitating further molecular and cellular characterization of cancer. This report introduces the role of photoacoustics and photoacoustic augmented imaging in comprehensive cancer detection, diagnosis and treatment guidance. It will briefly discuss the experimental setups with more focus on specific techniques for the diagnosis of cancer using PAI including the current research such as photo acoustic probe. IntroductionCancer is a vicious disease that killed approximately 570 000 people in 2010 in the USA alone ADDIN EN.CITE <EndNote><Cite><Author>Jemal</Author><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jemal, Ahmedin</author><author>Siegel, Rebecca</author><author>Xu, Jiaquan</author><author>Ward, Elizabeth</author></authors></contributors><titles><title>Cancer Statistics, 2010</title><secondary-title>CA Cancer J Clin</secondary-title></titles><periodical><full-title>CA Cancer J Clin</full-title></periodical><pages>277-300</pages><volume>60</volume><number>5</number><dates><pub-dates><date>September 1, 2010</date></pub-dates></dates><urls><related-urls><url>;[1]. To develop successful therapeutic strategies and prevent recurrence of the disease, its structural, functional and metabolic properties need to be well characterized. Research efforts are focused not only on developing new treatments and discovering the root cause for the disease, but also on developing imaging technologies that can aid in early detection of cancer and can provide comprehensive real-time information on the tumor properties. Currently, ultrasound imaging (USI), magnetic resonance imaging (MRI), X-ray computed tomography (CT) and nuclear imaging techniques, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), are being used to detect tumors in patients ADDIN EN.CITE <EndNote><Cite><Author>Fass</Author><Year>2008</Year><RecNum>2</RecNum><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fass, Leonard</author></authors></contributors><titles><title>Imaging and cancer: A review</title><secondary-title>Molecular oncology</secondary-title></titles><periodical><full-title>Molecular oncology</full-title></periodical><pages>115-152</pages><volume>2</volume><number>2</number><keywords><keyword>Imaging</keyword><keyword>Cancer</keyword><keyword>Diagnosis</keyword><keyword>Staging</keyword><keyword>Therapy</keyword><keyword>Tracers</keyword><keyword>Contrast</keyword></keywords><dates><year>2008</year></dates><publisher>Elsevier</publisher><isbn>1574-7891</isbn><accession-num>S1574-7891(08)00059-8</accession-num><urls><related-urls><url>;[2]. With the development of various targeted contrast agents, these imaging techniques are also able to provide molecular information about the malignant tumor tissue. However, microscopic optical imaging techniques have higher resolution (0.1–100 mm) compared with USI (50–500 mm), MRI (10–100 mm), CT (50–200 mm), PET (1–2 mm) and SPECT (1–2 mm), and can detect a lower number of cancer cells per imaging voxel ADDIN EN.CITE <EndNote><Cite><Author>Frangioni</Author><Year>2008</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frangioni, John V.</author></authors></contributors><titles><title>New Technologies for Human Cancer Imaging</title><secondary-title>Journal of Clinical Oncology</secondary-title></titles><periodical><full-title>Journal of Clinical Oncology</full-title></periodical><pages>4012-4021</pages><volume>26</volume><number>24</number><dates><year>2008</year><pub-dates><date>August 20, 2008</date></pub-dates></dates><urls><related-urls><url>;[3]. Traditional diffusive regime optical imaging techniques, such as diffuse optical tomography (DOT), have high detection sensitivity; however, their resolution is limited to approximately 5 mm. The need for an imaging technique that can provide high optical contrast images at a microscale resolution and at a reasonable penetration depth has now been filled by photoacoustic imaging (PAI). When combined, PAI and USI can simultaneously provide anatomical and functional information of tumors. For example, an in vivo study on human breast tissue has shown that an ultrasound image can depict the structure of ductal carcinoma, whereas photoacoustic (PA) images show the associated scattered distribution of vascularization. With the availability of various targeted contrast agents, such as gold nanoparticles (AuNPs) nano rods and photoacoustic probe several new avenues have opened for in vivo molecular PAI. This has facilitated highly sensitive and specific detection of tumors. Though a lot of work is published on the application of photoacoustics to different areas of medicine, an accurate review on the usage of photoacoustic Imaging to detect cancer using above technology is unavailable. A speedy advent of technology in this field is one of the reasons. Principle of PAI Introduction of UltrasoundBased on the frequency of sound, we can divide sound into three categories. The first one is Infrasound. The second one is acoustic. The last one is Ultrasound. The ultrasound with the frequency range from 20 kHz to 2MHz can be used for medical and destructive usage. The ultrasound with higher frequency can be used for diagnostic and nondestructive testing. Ultrasound in optical fibers Optical fiber ultrasound generatorOptical fiber ultrasound detector125?mLaser induced optical fiber ultrasound generator-receiverAdvantage of all optical fiber ultrasonic generator-receivers is its compact size. They can be used in a limited space such as artery.Principle of photo acoustic imaging by endogenous cells or tissuesWhen a laser shines on biological cells like endogenous chromophores in the body, the light energy is converted into thermal energy via energy absorption layer. This thermal energy converts into mechanical wave and because of thermal expansion an acoustic wave is generated. The optical absorption of these endogenous chromospheres is wavelength dependent; therefore, the PA signal intensity at different optical wavelengths can be used to characterize optical properties of tissue [5].Principle of photo acoustic imaging by exogenous contrast agents like gold nano particlesWhen a laser shine on pahotoacoustic structure (on the tip of fiber, the light energy is converted into thermal energy via energy absorption layer;The thermal energy converts into mechanical wave because of thermal expansion; An acoustic wave is generatedOptical fiberEnergy absorption layerLaser excitationAcoustic signalsPhotoacoustic molecular imagingThe picture illustrates the experimental setup for photoacoustic molecular imaging [8]. Pulsed Laser pumps an optical parametric oscillator to generate 5 ns pulses at 10 Hz. The range of wavelength was tuned from 680 nm to 950 nm. The laser beam of OPO output was directed to illuminate on the surface of cells in the gelatin coated well. The slide was held by a sample holder connected to X-Y-Z manual translational stage for positioning. A focused single element ultrasonic transducer was used to detect the PA signal. A motorized X-Y translational stage was used to move the transducer to scan horizontally the samples. The PA signal was averaged three times at each scanning grid point to minimize the pulse-to-pulse energy variation. The ultrasonic transducer output was, digitized, and recorded by a digital oscilloscope synchronized to the laser. The boundary along the circumference and center of each individual well (2 mm in diameter) was identified by eye and used as a global marker to guide for both fluorescence and PA scanning area. Three sets of PA images were obtained at three different locations within this microscopy imaging.Scanning photoacoustic probe – An upcoming technologyA scanning photoacoustic probe contains an angled photoacoustic source for ultrasound wave generation and a fiber-optic ultrasonic receiver. A fiber-optic interferometer based on Fabry-Perot cavity on the tip of the fiber is used as the receiver.PAI system using Photoacoustic ProbePhotoacoustic probe is an optical fibre which is used to propagate the wave from a laser source to the target organ. The target tissue expands due to Thermo-Elastic expansion and thus transmits ultrasound waves which are then detected by an ultrasonic detector at the receiving end. The signal is then processed to image the target tissue.Tumor Detection Using PAIMalignant tumors have dense and unorganized vasculature compared with normal tissue. The high density of blood vessels in tumors enhances PA image contrast, thereby enabling tumor detection. Sequential PA images can be obtained safely and noninvasively at different stages of tumor progression to monitor angiogenesis and to determine whether a tumor has progressed to malignancy ADDIN EN.CITE <EndNote><Cite><Author>Siphanto</Author><Year>2005</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Siphanto, R. I.</author><author>Thumma, K. K.</author><author>Kolkman, R. G.</author><author>van Leeuwen, T. G.</author><author>de Mul, F. F.</author><author>van Neck, J. W.</author><author>van Adrichem, L. N.</author><author>Steenbergen, W.</author></authors></contributors><titles><title>Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis</title><secondary-title>Opt Express</secondary-title></titles><periodical><full-title>Opt Express</full-title></periodical><pages>89-95</pages><volume>13</volume><number>1</number><edition>2005/01/10</edition><dates><year>2005</year><pub-dates><date>Jan 10</date></pub-dates></dates><isbn>1094-4087 (Electronic)&#xD;1094-4087 (Linking)</isbn><accession-num>19488331</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[4]. Compared with other vascular imaging techniques, including dynamic-enhanced MRI, CT perfusion and functional PET, PAI detects tumor vasculature at a better or comparable resolution.Metastatic spread of the primary tumor often leads to death in patients with cancer. Highly sensitive detection of circulating tumor cells (CTCs) would greatly enhance overall patient survival, if treated. PAI has been used to detect CTC in the blood stream, with the goal of detecting metastasis. The label free detection of CTCs in-vivo in a blood vessel using PAI could provide higher detection sensitivity (100-fold) compared with existing ex-vivo CTC detection assays that use a small amount of blood.Tumor Detection using Endogenous ContrastEndogenous meaning from within the body, as the name suggests these contrasting agents are present within the tissue such as melanin, water, hemoglobin, fat e.t.c. In vivo PAT and US dual-modality imaging of a canine prostate with a subsurface lesion suggested that PAT, with its high optical contrast and good spatial resolution, may not only visualize local prostate lesions in a noninvasive manner but also characterize the functional parameters in lesions such as total hemoglobin concentration. It also deciphered that the ability to achieve high image quality including good spatial resolution and less artifacts is strongly dependent on the total view angle [6].In vivo PAT and US dual-modality imaging of a canine prostate with a subsurface lesion induced. Gray scale US images of the prostate acquired (A) before and (B) after the generation of the lesion (0.1 mL of injected blood). The red arrow indicates the plastic canula inserted into the prostate for the injection of blood. The yellow indicates the urethra. (C) Anatomical photograph of the imaged cross-section in the prostate with the lesion marked. PAT images ofthe prostate right lobe acquired (D) before and (E) after the generation of the lesion (0.1 mL of injected blood), where the image intensities are demonstrated with an image color bar. The PAT imaging plane is the same as that in US images, where the reconstructed area is indicated with the dashed rectangles in the US images in (A) and (B). In (F)-(I), PAT images are superimposed on the US image in (B). (F) was acquired before the generation of the lesion; (G), (H) and (I) were acquired after three injections of blood, where the total blood volumes in the lesion were 0.025 mL, 0.05 mL and 0.1 mL, respectively. The area of the lesion is marked with a dotted rectangle in each image.Another technique based on the compressed sensing (CS) theory, a new mathematical framework for data acquisition and signal recovery, and inspired by the idea of “single-pixel”camera using the CS theory proposes an artifact free photo acoustic imaging. By employing spatially and temporally varying random illuminations for PAT acquisition and CS for image reconstruction, the image can be reconstructed free of artifacts using limited-view acquisition[7]. The high density of blood vessels in tumors enhances PA image contrast, thereby enabling tumor detection. For example, the Twente Photoacoustic Mammoscope, developed to detect breast carcinoma, was based on this principle .Figure (a) depicts a melanoma and surrounding vasculature obtained by spectroscopic PAI[5].In the figure below an X-ray mammogram (figure b-i) and a sonogram (figure b-ii) are compared with a PA image (figure b-iii) obtained with a 1064 nm optical source. PAI can also provide information on angiogenesis or changes in vasculature. As shown in figure c sequential PA images can be obtained safely and noninvasively at different stages of tumor progression to monitor angiogenesis and to determine whether a tumor has progressed to malignancy.Besides imaging melanin and blood vessels, PAI systems have been used for measuring the oxygen content of blood to study hypoxia in tumors. Hypoxia is often linked to malignancy and resistance to therapy. The amount of oxygen saturation in blood (SO2 ) can be estimated by comparing the PA signal strength of HbO2 and Hb obtained from spectroscopic PA images. Figure d shows in vivo functional imaging of a mouse brain with a glioblastoma. The blue hypoxic region (circled) indicates the location of the tumor in the brain. The results clearly depict that the tumor has a lower percentage SO2 than the surrounding normal tissue[5].PAI of tumors using endogenous contrast (a) Overlaid maximum amplitude projections of PA images at 764 nm and 584 nm showing a tumor and its surroundingvasculature, respectively. The image clearly shows the vessel branching and structure around the tumor. (b) Images of the breast of a 57-year-old woman with invasiveductal carcinoma: (i) X-ray mammogram; (ii) sonogram; and (iii) PA image at 1064 nm. The X-ray mammogram and the sonogram depict the gross anatomical features ofthe tumor, but do not provide functional information. The high PA amplitude corresponds with abundant vasculature associated with malignant tumors. The PA imageclearly depicts higher vascular densities in the tumor periphery, whereas the core of the tumor has minimum vasculature. (c) Pancreatic tumor cells were inoculated on a rathind leg on day 1. PAI was used to monitor angiogenesis associated with the tumor growth.PA images obtained from the tumor region on days 3, 7, 8 and 10 are maximumintensity projections of the PA source strength in the xy-plane (i.e., top view on the tumor tissue). (d) In vivo functional imaging of a mouse brain with a glioblastomaxenograft obtained using PAI. Spectroscopic PAI (wavelengths from 764 nm to 824 nm) was used to detect hypoxia in a brain tumor. The heat map represents thepercentage SO 2 in the blood vessels (blue = hypoxic; red = hyperoxic). The area indicated by the red arrow is the tumor. (e) A comparison of normal (red bars) and braintumor (blue bars) vasculature SO 2 in three mice. Three normal vessels and three tumor vessels were chosen from each SO 2 image that had been processed fromspectroscopic PA images, such as the one shown in (d). The results clearly indicate that the percentage SO 2 in tumors is lower than in the surrounding normal tissue, thusindicating hypoxia.Metastatic spread of the primary tumor often leads to death in patients with cancer. Highly sensitive detection of circulating tumor cells (CTCs) would greatly enhance overall patient survival, if treated. PAI has been used to detect CTCs in the blood stream, with the goal of detecting metastasis.2. Tumor Detection using Exogenous ContrastThe sensitivity of the PAI technique to image deeply situated tumors can be increased dramatically by utilizing exogenous contrast agents. The NIR-absorbing dyes, such as IRDye 800CW ADDIN EN.CITE <EndNote><Cite><Author>Mallidi</Author><RecNum>5</RecNum><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mallidi, Srivalleesha</author><author>Luke, Geoffrey P.</author><author>Emelianov, Stanislav</author></authors></contributors><titles><title>Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance</title><secondary-title>Trends in Biotechnology</secondary-title></titles><periodical><full-title>Trends in Biotechnology</full-title></periodical><volume>In Press, Corrected Proof</volume><dates></dates><isbn>0167-7799</isbn><urls><related-urls><url>;[5], Alexa Fluor 750 ADDIN EN.CITE <EndNote><Cite><Author>Mallidi</Author><RecNum>5</RecNum><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mallidi, Srivalleesha</author><author>Luke, Geoffrey P.</author><author>Emelianov, Stanislav</author></authors></contributors><titles><title>Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance</title><secondary-title>Trends in Biotechnology</secondary-title></titles><periodical><full-title>Trends in Biotechnology</full-title></periodical><volume>In Press, Corrected Proof</volume><dates></dates><isbn>0167-7799</isbn><urls><related-urls><url>;[5] and indocyanine green (ICG) ADDIN EN.CITE <EndNote><Cite><Author>Mallidi</Author><RecNum>5</RecNum><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mallidi, Srivalleesha</author><author>Luke, Geoffrey P.</author><author>Emelianov, Stanislav</author></authors></contributors><titles><title>Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance</title><secondary-title>Trends in Biotechnology</secondary-title></titles><periodical><full-title>Trends in Biotechnology</full-title></periodical><volume>In Press, Corrected Proof</volume><dates></dates><isbn>0167-7799</isbn><urls><related-urls><url>;[5], have been used to enhance PA contrast. However, among the exogenous contrast agents, AuNPs have attracted attention in nanoparticle based PAI owing to their unique optical properties from the surface plasmon resonance (SPR) effect. Because of the SPR effect absorbance of these particles is higher than any dyes.Initially, a 3-D photoacoustic imaging with a resolution of 10 ?m was proposed. The PA signals produced at 532-nm wavelength were used. Evans Blue acted as an absorber including the blood tissue. The sample material was either a 10% dilution of Intralipid-10% or real tissue in the form of a block of chicken breast tissue. The lateral resolution was determined mainly by the detector diameter (200 ?m).Deep lying blood vessels in real tissue samples were imaged at depths of 5 mm and at 9 mm from the plane of detection in Intralipid. The sensitivity of the technique was proven by photoacoustic detection of single red blood cells upon a glass plate. Lateral resolution, penetration depth and transducer size had to be improved. Transient illumination of light-absorbing nanoparticles using pulsed laser sources produces rapid and highly localized heating. If a particle absorbs a sufficient amount of laser energy, vaporization of a layer of liquid blanketing the particle follows and the bubble goes through an expansion phase followed by cooling and collapse, a process known as inertial cavitation. Laser-induced cavitation is accompanied by an intense acoustic emission potentially enabling improvements in the sensitivity of photoacoustic imaging of nanoparticles or the depth within scattering media at which they can be detected [8].TEM picture of ~50nm gold nanoparticles (scale bar -50nm)The ability of the gold nanoparticles to serve as contrast agents for in-vivo tumor imaging with PAT was tested by administering PEGylated gold nanoparticles (200μl, 10mg/mL) via tail vein in breast cancer tumor model. The ultrasound transducer was placed in contact with the tumor concurrent with exposure of the tumor to pulsed laser light. These experiments were designed to more directly characterize intratumoral changes in photoacoustic signaling following intravenous administration of nanoparticles to tumor bearing mice. An increase in photoacoustic signaling in gold nanoparticles treated tumor bearing mice compared to control saline injected mice proved the efficiency of GNP’s as a contrast agent[9].PAT images of tumor at 5 minutes (a) and 5 hours (b) following tail vein injection of gold nanoparticles. (c) and (d) are the subtraction PAT images of tumor following tail vein injection of gold nanoparticles demonstrating increased accumulation of nanoparticles in tumor at 5 hours. The color scale (right) represents optical absorption of tissue (arbitrary units). (e) is gross picture of tumor in mouse and (f) is the fusion image of gross photo and subtraction PAT image, 5 hours following tail vein injection.The real time and contrast enhanced photoacoustic imaging and spectroscopy of a mature prostate tumor in a mouse window chamber model using a clinical ultrasound system and 14 MHz linear array proved that it is approximately 120 times faster and provided new opportunities for 3D spectroscopic PA imaging in live mice. A clinical ultrasound scanner and linear array enabled real time PA imaging during the injection of GNR’s into a mature prostate tumor. It also provided the additional information related to the origin of the PA signal and spectral content of the GNR’s near the tumor[10].Comparison of PAI with other Imaging techniquesThere are some methods which are used to detect tumors in patients: ultrasound imaging (USI), magnetic resonance imaging (MRI), X-ray/computed tomography (CT) and nuclear imaging techniques, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) ADDIN EN.CITE <EndNote><Cite><Author>Fass</Author><Year>2008</Year><RecNum>5</RecNum><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fass, Leonard</author></authors></contributors><titles><title>Imaging and cancer: A review</title><secondary-title>Molecular oncology</secondary-title></titles><periodical><full-title>Molecular oncology</full-title></periodical><pages>115-152</pages><volume>2</volume><number>2</number><keywords><keyword>Imaging</keyword><keyword>Cancer</keyword><keyword>Diagnosis</keyword><keyword>Staging</keyword><keyword>Therapy</keyword><keyword>Tracers</keyword><keyword>Contrast</keyword></keywords><dates><year>2008</year></dates><publisher>Elsevier</publisher><isbn>1574-7891</isbn><accession-num>S1574-7891(08)00059-8</accession-num><urls><related-urls><url>;[2]. X-rayX-rays is used to view a non uniformly composed material such as the human body. A beam of X-rays is produced by an X-ray source and then projected toward an object. Due to the different areas of the object have different density and composition, a different proportion of X-rays are absorbed by the object depend on these areas. The X-rays that pass through the object are then captured by a detector (film sensitive to X-rays or a digital detector) which gives a 2D representation of all of the superimposed structures. Because using radiation of X-ray during exam, it is not good for health of patient. ADDIN EN.CITE <EndNote><Cite><Author>Hall</Author><Year>2008</Year><RecNum>7</RecNum><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hall, E. J.</author><author>Brenner, D. J.</author></authors></contributors><titles><title>Cancer risks from diagnostic radiology</title><secondary-title>Br J Radiol</secondary-title></titles><periodical><full-title>Br J Radiol</full-title></periodical><pages>362-378</pages><volume>81</volume><number>965</number><dates><year>2008</year><pub-dates><date>May 1, 2008</date></pub-dates></dates><urls><related-urls><url>;[6]Computed Tomography (CT)CT imaging uses X-rays to collect the data and then processes by using the computing algorithms to image the object/patient. An X-ray source tube opposite an X-ray detector (or detectors) in a ring shaped rotate around a patient producing a cross-sectional image (tomogram). Each voxel in different part of the patient has a different absorption factor depend on the component of voxel, such as bone, fat, tissue, etc. Each detector collects the sum of these absorption factors in one direction. By rotating the source, and/or the detectors, the sums of these factors in different direction will be collected. By using the computing algorithms, the factor of each voxel will be calculated. The 3D image will be constructed based on these factors. Some contrast agents are often used with CT for enhancement. CT exposes the patient to more ionizing radiation than a radiograph. Spiral Multi-detector CT utilizes 8, 16, 64 or more detectors during continuous motion of the patient through the radiation beam to obtain much finer detail images in a shorter exam time. The same as X-ray method, using X-Ray increase the risk of developmental problems and cancer in those exposed. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZSBTYW50aXM8L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFy

PjxSZWNOdW0+OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+OTwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIy

dHc5ZXdkcjlmdyc+OTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdKb3VybmFs

IEFydGljbGUnPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RGUg

U2FudGlzLCBNLjwvYXV0aG9yPjxhdXRob3I+Q2VzYXJpLCBFLjwvYXV0aG9yPjxhdXRob3I+Tm9i

aWxpLCBFLjwvYXV0aG9yPjxhdXRob3I+U3RyYWZhY2UsIEcuPC9hdXRob3I+PGF1dGhvcj5DYXZh

bGllcmUsIEEuIEYuPC9hdXRob3I+PGF1dGhvcj5DYXJ1c28sIEEuPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+VGVsZWZvbm8gUm9zc28tVGVyYXRvbG9neSBJ

bmZvcm1hdGlvbiBTZXJ2aWNlLCBEZXBhcnRtZW50IG9mIE9ic3RldHJpY3MgYW5kIEd5bmVjb2xv

Z3ksIENhdGhvbGljIFVuaXZlcnNpdHksIExhcmdvIEFnb3N0aW5vIEdlbWVsbGkgMSwgUm9tZSwg

SXRhbHkuIG1hcmNvZGVzYW50aXNAcm0udW5pY2F0dC5pdDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+

PHRpdGxlPlJhZGlhdGlvbiBlZmZlY3RzIG9uIGRldmVsb3BtZW50PC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJpcnRoIERlZmVjdHMgUmVzIEMgRW1icnlvIFRvZGF5PC9zZWNvbmRhcnktdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QmlydGggRGVmZWN0cyBSZXMgQyBFbWJy

eW8gVG9kYXk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNzctODI8L3BhZ2VzPjx2

b2x1bWU+ODE8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlvbj4yMDA3LzEwLzMwPC9l

ZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BYm5vcm1hbGl0aWVzLCBSYWRpYXRpb24tSW5kdWNl

ZC9ldGlvbG9neS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5BYm9ydGlvbiwgU3BvbnRhbmVv

dXMvZXRpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5D

ZW50cmFsIE5lcnZvdXMgU3lzdGVtL3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3Jk

PkNoaWxkIERldmVsb3BtZW50L3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3JkPkNo

aWxkLCBQcmVzY2hvb2w8L2tleXdvcmQ+PGtleXdvcmQ+RG9zZS1SZXNwb25zZSBSZWxhdGlvbnNo

aXAsIFJhZGlhdGlvbjwva2V5d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+

RmV0dXMvKnJhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3JkPkdlc3RhdGlvbmFsIEFn

ZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+SW5mYW50PC9rZXl3

b3JkPjxrZXl3b3JkPkluZmFudCwgTmV3Ym9ybjwva2V5d29yZD48a2V5d29yZD5NaWNlPC9rZXl3

b3JkPjxrZXl3b3JkPlByZWduYW5jeTwva2V5d29yZD48a2V5d29yZD4qUHJlbmF0YWwgRXhwb3N1

cmUgRGVsYXllZCBFZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3JkPlJhZGlhdGlvbiBJbmp1cmllcy9l

bWJyeW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlJhZGlhdGlvbiBJbmp1cmllcywgRXhwZXJpbWVu

dGFsL2VtYnJ5b2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVh

cj48cHViLWRhdGVzPjxkYXRlPlNlcDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE1

NDItOTc1WCAoUHJpbnQpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3OTYzMjc0PC9hY2Nlc3Npb24t

bnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3Yv

ZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0

YXRpb24mYW1wO2xpc3RfdWlkcz0xNzk2MzI3NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48

ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAwMi9iZHJjLjIwMDk5PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5CcmVubmVyPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjg8L1JlY051

bT48cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ2ZnhmMnp4emdzZXBmdWUweHoyeDV6dG1wc3gwcmF6MjllZnYiPjg8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRKLiBCcmVubmVyPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNob3VsZCB3ZSBiZSBjb25j

ZXJuZWQgYWJvdXQgdGhlIHJhcGlkIGluY3JlYXNlIGluIENUIHVzYWdlPzwvdGl0bGU+PHNlY29u

ZGFyeS10aXRsZT5SZXZpZXdzIG9uIGVudmlyb25tZW50YWwgaGVhbHRoPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UmV2aWV3cyBvbiBlbnZpcm9ubWVu

dGFsIGhlYWx0aDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjYzLTY4PC9wYWdlcz48

dm9sdW1lPjI1PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PHNlY3Rpb24+NjM8L3NlY3Rpb24+

PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9D

aXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZSBTYW50aXM8L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFy

PjxSZWNOdW0+OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+OTwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIy

dHc5ZXdkcjlmdyc+OTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdKb3VybmFs

IEFydGljbGUnPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RGUg

U2FudGlzLCBNLjwvYXV0aG9yPjxhdXRob3I+Q2VzYXJpLCBFLjwvYXV0aG9yPjxhdXRob3I+Tm9i

aWxpLCBFLjwvYXV0aG9yPjxhdXRob3I+U3RyYWZhY2UsIEcuPC9hdXRob3I+PGF1dGhvcj5DYXZh

bGllcmUsIEEuIEYuPC9hdXRob3I+PGF1dGhvcj5DYXJ1c28sIEEuPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+VGVsZWZvbm8gUm9zc28tVGVyYXRvbG9neSBJ

bmZvcm1hdGlvbiBTZXJ2aWNlLCBEZXBhcnRtZW50IG9mIE9ic3RldHJpY3MgYW5kIEd5bmVjb2xv

Z3ksIENhdGhvbGljIFVuaXZlcnNpdHksIExhcmdvIEFnb3N0aW5vIEdlbWVsbGkgMSwgUm9tZSwg

SXRhbHkuIG1hcmNvZGVzYW50aXNAcm0udW5pY2F0dC5pdDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+

PHRpdGxlPlJhZGlhdGlvbiBlZmZlY3RzIG9uIGRldmVsb3BtZW50PC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJpcnRoIERlZmVjdHMgUmVzIEMgRW1icnlvIFRvZGF5PC9zZWNvbmRhcnktdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QmlydGggRGVmZWN0cyBSZXMgQyBFbWJy

eW8gVG9kYXk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNzctODI8L3BhZ2VzPjx2

b2x1bWU+ODE8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlvbj4yMDA3LzEwLzMwPC9l

ZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BYm5vcm1hbGl0aWVzLCBSYWRpYXRpb24tSW5kdWNl

ZC9ldGlvbG9neS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5BYm9ydGlvbiwgU3BvbnRhbmVv

dXMvZXRpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5D

ZW50cmFsIE5lcnZvdXMgU3lzdGVtL3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3Jk

PkNoaWxkIERldmVsb3BtZW50L3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3JkPkNo

aWxkLCBQcmVzY2hvb2w8L2tleXdvcmQ+PGtleXdvcmQ+RG9zZS1SZXNwb25zZSBSZWxhdGlvbnNo

aXAsIFJhZGlhdGlvbjwva2V5d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+

RmV0dXMvKnJhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3JkPkdlc3RhdGlvbmFsIEFn

ZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+SW5mYW50PC9rZXl3

b3JkPjxrZXl3b3JkPkluZmFudCwgTmV3Ym9ybjwva2V5d29yZD48a2V5d29yZD5NaWNlPC9rZXl3

b3JkPjxrZXl3b3JkPlByZWduYW5jeTwva2V5d29yZD48a2V5d29yZD4qUHJlbmF0YWwgRXhwb3N1

cmUgRGVsYXllZCBFZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3JkPlJhZGlhdGlvbiBJbmp1cmllcy9l

bWJyeW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlJhZGlhdGlvbiBJbmp1cmllcywgRXhwZXJpbWVu

dGFsL2VtYnJ5b2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVh

cj48cHViLWRhdGVzPjxkYXRlPlNlcDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE1

NDItOTc1WCAoUHJpbnQpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3OTYzMjc0PC9hY2Nlc3Npb24t

bnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3Yv

ZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0

YXRpb24mYW1wO2xpc3RfdWlkcz0xNzk2MzI3NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48

ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAwMi9iZHJjLjIwMDk5PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5CcmVubmVyPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjg8L1JlY051

bT48cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ2ZnhmMnp4emdzZXBmdWUweHoyeDV6dG1wc3gwcmF6MjllZnYiPjg8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRKLiBCcmVubmVyPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNob3VsZCB3ZSBiZSBjb25j

ZXJuZWQgYWJvdXQgdGhlIHJhcGlkIGluY3JlYXNlIGluIENUIHVzYWdlPzwvdGl0bGU+PHNlY29u

ZGFyeS10aXRsZT5SZXZpZXdzIG9uIGVudmlyb25tZW50YWwgaGVhbHRoPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UmV2aWV3cyBvbiBlbnZpcm9ubWVu

dGFsIGhlYWx0aDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjYzLTY4PC9wYWdlcz48

dm9sdW1lPjI1PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PHNlY3Rpb24+NjM8L3NlY3Rpb24+

PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9D

aXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [7-8]Magnetic Resonance Imaging (MRI):MRI makes use of the property of Nuclear magnetic resonance (NMR) to image nuclei of atoms inside the body. A powerful magnetic field is used to align the magnetization of some atoms in the body (hydrogen- H atom), and radio frequency fields are used to alter the alignment of this magnetization. This causes the nuclei to produce a rotating magnetic field detectable by the scanner—and this information is recorded to construct an image of the scanned area of the body. Strong magnetic field gradients cause nuclei at different locations to rotate at different speeds. 3-D spatial information can be obtained by providing gradients in each direction.MRI provides good contrast between the different soft tissues of the body, which make it especially useful in imaging the brain, muscles, the heart, and cancers compared with other medical imaging techniques such as computed tomography (CT) or X-rays. Unlike CT scans or traditional X-rays, MRI uses no ionizing radiation. Because MRI uses strong magnetic field, it may effect on some implants in patients. Also, a powerful radio frequency can heat the body to the point of risk of hyperthermia in patients. Another disadvantage is acoustic noise when switching of field gradients, therefore appropriate ear protection is essential for anyone inside the MRI scanner room during the examination.Ultrasound Imaging (USI):Ultrasound differs from other medical imaging methods in the way it is operated by the transmission and receipt sound waves to produce images (2D, 3D, 4D). The high frequency sound waves are sent into the tissue and depending on the composition of the different tissues; the signal will be attenuated and returned at separate intervals of time. A path of reflected sound waves in a multilayered structure can be defined by acoustic impedance and the reflection and transmission coefficients of the relative structures. ADDIN EN.CITE <EndNote><Cite><Author>Rapacholi</Author><Year>1982</Year><RecNum>28</RecNum><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">28</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Rapacholi, M. H. </author></authors></contributors><titles><title>Essentials of Medical Ultrasound: A Practical Introduction to the Principles, Techniques and Biomedical Applications</title></titles><dates><year>1982</year></dates><urls></urls></record></Cite></EndNote>[9] It is very safe to use and does not cause any effects. It is also relatively inexpensive, quick and easy to perform. This is commonly associated with imaging the fetus in pregnant women. Doppler capabilities on modern scanners allow assessing the blood flow in arteries and veins. The real time moving image obtained can be used to guide drainage and biopsy procedures. While it may provide less anatomical detail than techniques such as CT or MRI, it has several advantages in studies the function of moving structures in real-time and emits no ionizing radiation. Positron Emission Tomography (PET):PET is a nuclear medicine imaging technique which produces a three-dimensional image in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Three-dimensional images of tracer concentration within the body are then constructed by computer analysis. In modern scanners, three dimensional imaging is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaGFuPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48UmVj

TnVtPjEyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIydHc5

ZXdkcjlmdyc+MTI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0nSm91cm5hbCBB

cnRpY2xlJz4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktoYW4s

IFQuIFMuPC9hdXRob3I+PGF1dGhvcj5TdW5kaW4sIEEuPC9hdXRob3I+PGF1dGhvcj5KdWhsaW4s

IEMuPC9hdXRob3I+PGF1dGhvcj5MYW5nc3Ryb20sIEIuPC9hdXRob3I+PGF1dGhvcj5CZXJnc3Ry

b20sIE0uPC9hdXRob3I+PGF1dGhvcj5Fcmlrc3NvbiwgQi48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljYWwgU2NpZW5jZXMs

IFVuaXZlcnNpdHkgSG9zcGl0YWwsIFMtNzUxIDg1IFVwcHNhbGEsIFN3ZWRlbi48L2F1dGgtYWRk

cmVzcz48dGl0bGVzPjx0aXRsZT4xMUMtbWV0b21pZGF0ZSBQRVQgaW1hZ2luZyBvZiBhZHJlbm9j

b3J0aWNhbCBjYW5jZXI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RXVyIEogTnVjbCBNZWQgTW9s

IEltYWdpbmc8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FdXIgSiBOdWNsIE1lZCBNb2wgSW1hZ2luZzwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjQwMy0xMDwvcGFnZXM+PHZvbHVtZT4zMDwvdm9sdW1lPjxudW1iZXI+MzwvbnVtYmVyPjxl

ZGl0aW9uPjIwMDMvMDMvMTQ8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFkcmVuYWwgQ29y

dGV4IE5lb3BsYXNtcy9kaWFnbm9zaXMvZHJ1ZyB0aGVyYXB5LyptZXRhYm9saXNtLypyYWRpb251

Y2xpZGU8L2tleXdvcmQ+PGtleXdvcmQ+aW1hZ2luZzwva2V5d29yZD48a2V5d29yZD5BZHVsdDwv

a2V5d29yZD48a2V5d29yZD5BZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPkFudGluZW9wbGFzdGljIEFn

ZW50cy90aGVyYXBldXRpYyB1c2U8L2tleXdvcmQ+PGtleXdvcmQ+Q2FyYm9uIFJhZGlvaXNvdG9w

ZXMvKmRpYWdub3N0aWMgdXNlLypwaGFybWFjb2tpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkV0

b21pZGF0ZS8qYW5hbG9ncyAmYW1wOyBkZXJpdmF0aXZlcy8qZGlhZ25vc3RpYyB1c2UvKnBoYXJt

YWNva2luZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RmVtYWxlPC9rZXl3b3JkPjxrZXl3b3JkPkh1

bWFuczwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3b3JkPk1ldGFib2xpYyBD

bGVhcmFuY2UgUmF0ZTwva2V5d29yZD48a2V5d29yZD5NaWRkbGUgQWdlZDwva2V5d29yZD48a2V5

d29yZD5PcmdhbiBTcGVjaWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5SYWRpb3BoYXJtYWNldXRp

Y2Fscy9kaWFnbm9zdGljIHVzZS9waGFybWFjb2tpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJl

cHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFu

ZCBTcGVjaWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaXNzdWUgRGlzdHJpYnV0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPlRvbW9ncmFwaHksIEVtaXNzaW9uLUNvbXB1dGVkLyptZXRob2RzPC9rZXl3

b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDM8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5N

YXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNjE5LTcwNzAgKFByaW50KSYjeEQ7

MTYxOS03MDcwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMjYzNDk2OTwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTI2MzQ5Njk8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMDcvczAwMjU5LTAwMi0xMDI1LTk8L2Vs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPk1pbm48L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFyPjxSZWNOdW0+

MTE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjExPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idmZ4ZjJ6eHpnc2VwZnVlMHh6Mng1enRtcHN4MHJhejI5

ZWZ2Ij4xMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TWlubiwgSGVp

a2tpPC9hdXRob3I+PGF1dGhvcj5TYWxvbmVuLCBBbm5hPC9hdXRob3I+PGF1dGhvcj5GcmliZXJn

LCBKb2hhbjwvYXV0aG9yPjxhdXRob3I+Um9pdmFpbmVuLCBBbm5lPC9hdXRob3I+PGF1dGhvcj5W

aWxqYW5lbiwgVGFwaW88L2F1dGhvcj48YXV0aG9yPkxhbmdzam8sIEphYWtrbzwvYXV0aG9yPjxh

dXRob3I+U2FsbWksIEpvcm1hPC9hdXRob3I+PGF1dGhvcj5WYWxpbWFraSwgTWF0dGk8L2F1dGhv

cj48YXV0aG9yPk5hZ3JlbiwgS2plbGw8L2F1dGhvcj48YXV0aG9yPk51dXRpbGEsIFBpcmpvPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkltYWdpbmcgb2Yg

QWRyZW5hbCBJbmNpZGVudGFsb21hcyB3aXRoIFBFVCBVc2luZyAxMUMtTWV0b21pZGF0ZSBhbmQg

MThGLUZERzwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE51Y2wgTWVkPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBOdWNsIE1lZDwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjk3Mi05Nzk8L3BhZ2VzPjx2b2x1bWU+NDU8L3ZvbHVtZT48

bnVtYmVyPjY8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNDwveWVhcj48cHViLWRhdGVzPjxkYXRl

Pkp1bmUgMSwgMjAwNDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vam5tLnNubWpvdXJuYWxzLm9yZy9jZ2kvY29udGVudC9hYnN0cmFjdC80

NS82Lzk3MjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5Zb3VuZzwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJlY051bT4xMDwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0nRU4nIGRiLWlkPSd6NXN6cjlhZWI1OTV2eGUycnBheGV2cG4yMnR3OWV3ZHI5ZncnPjEwPC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0aWNsZSc+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ILiBZb3VuZzwvYXV0aG9yPjxh

dXRob3I+Ui4gQmF1bTwvYXV0aG9yPjxhdXRob3I+VS4gQ3JlbWVyaXVzPC9hdXRob3I+PGF1dGhv

cj5LLiBIZXJob2x6PC9hdXRob3I+PGF1dGhvcj5PLiBIb2Vrc3RyYTwvYXV0aG9yPjxhdXRob3I+

QS4gTGFtbWVydHNtYTwvYXV0aG9yPjxhdXRob3I+Si4gUHJ1aW08L2F1dGhvcj48YXV0aG9yPlAu

IFByaWNlPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1l

YXN1cmVtZW50IG9mIGNsaW5pY2FsIGFuZCBzdWJjbGluaWNhbCB0dW1vdXIgcmVzcG9uc2UgdXNp

bmcgWzE4Rl0tZmx1b3JvZGVveHlnbHVjb3NlIGFuZCBwb3NpdHJvbiBlbWlzc2lvbiB0b21vZ3Jh

cGh5OiByZXZpZXcgYW5kIDE5OTkgRU9SVEMgcmVjb21tZW5kYXRpb25zLiBFdXJvcGVhbiBPcmdh

bml6YXRpb24gZm9yIFJlc2VhcmNoIGFuZCBUcmVhdG1lbnQgb2YgQ2FuY2VyIChFT1JUQykgUEVU

IFN0dWR5IEdyb3VwPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm9wZWFuIGpvdXJuYWwgb2Yg

Q2FuY2VyPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

RXVyb3BlYW4gam91cm5hbCBvZiBDYW5jZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl

cz4xNzczLTE3ODI8L3BhZ2VzPjx2b2x1bWU+MzU8L3ZvbHVtZT48bnVtYmVyPjEzPC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjE5OTk8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9D

aXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaGFuPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48UmVj

TnVtPjEyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIydHc5

ZXdkcjlmdyc+MTI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0nSm91cm5hbCBB

cnRpY2xlJz4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktoYW4s

IFQuIFMuPC9hdXRob3I+PGF1dGhvcj5TdW5kaW4sIEEuPC9hdXRob3I+PGF1dGhvcj5KdWhsaW4s

IEMuPC9hdXRob3I+PGF1dGhvcj5MYW5nc3Ryb20sIEIuPC9hdXRob3I+PGF1dGhvcj5CZXJnc3Ry

b20sIE0uPC9hdXRob3I+PGF1dGhvcj5Fcmlrc3NvbiwgQi48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljYWwgU2NpZW5jZXMs

IFVuaXZlcnNpdHkgSG9zcGl0YWwsIFMtNzUxIDg1IFVwcHNhbGEsIFN3ZWRlbi48L2F1dGgtYWRk

cmVzcz48dGl0bGVzPjx0aXRsZT4xMUMtbWV0b21pZGF0ZSBQRVQgaW1hZ2luZyBvZiBhZHJlbm9j

b3J0aWNhbCBjYW5jZXI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RXVyIEogTnVjbCBNZWQgTW9s

IEltYWdpbmc8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FdXIgSiBOdWNsIE1lZCBNb2wgSW1hZ2luZzwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjQwMy0xMDwvcGFnZXM+PHZvbHVtZT4zMDwvdm9sdW1lPjxudW1iZXI+MzwvbnVtYmVyPjxl

ZGl0aW9uPjIwMDMvMDMvMTQ8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFkcmVuYWwgQ29y

dGV4IE5lb3BsYXNtcy9kaWFnbm9zaXMvZHJ1ZyB0aGVyYXB5LyptZXRhYm9saXNtLypyYWRpb251

Y2xpZGU8L2tleXdvcmQ+PGtleXdvcmQ+aW1hZ2luZzwva2V5d29yZD48a2V5d29yZD5BZHVsdDwv

a2V5d29yZD48a2V5d29yZD5BZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPkFudGluZW9wbGFzdGljIEFn

ZW50cy90aGVyYXBldXRpYyB1c2U8L2tleXdvcmQ+PGtleXdvcmQ+Q2FyYm9uIFJhZGlvaXNvdG9w

ZXMvKmRpYWdub3N0aWMgdXNlLypwaGFybWFjb2tpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkV0

b21pZGF0ZS8qYW5hbG9ncyAmYW1wOyBkZXJpdmF0aXZlcy8qZGlhZ25vc3RpYyB1c2UvKnBoYXJt

YWNva2luZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RmVtYWxlPC9rZXl3b3JkPjxrZXl3b3JkPkh1

bWFuczwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3b3JkPk1ldGFib2xpYyBD

bGVhcmFuY2UgUmF0ZTwva2V5d29yZD48a2V5d29yZD5NaWRkbGUgQWdlZDwva2V5d29yZD48a2V5

d29yZD5PcmdhbiBTcGVjaWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5SYWRpb3BoYXJtYWNldXRp

Y2Fscy9kaWFnbm9zdGljIHVzZS9waGFybWFjb2tpbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJl

cHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFu

ZCBTcGVjaWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaXNzdWUgRGlzdHJpYnV0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPlRvbW9ncmFwaHksIEVtaXNzaW9uLUNvbXB1dGVkLyptZXRob2RzPC9rZXl3

b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDM8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5N

YXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNjE5LTcwNzAgKFByaW50KSYjeEQ7

MTYxOS03MDcwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMjYzNDk2OTwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTI2MzQ5Njk8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMDcvczAwMjU5LTAwMi0xMDI1LTk8L2Vs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPk1pbm48L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFyPjxSZWNOdW0+

MTE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjExPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idmZ4ZjJ6eHpnc2VwZnVlMHh6Mng1enRtcHN4MHJhejI5

ZWZ2Ij4xMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TWlubiwgSGVp

a2tpPC9hdXRob3I+PGF1dGhvcj5TYWxvbmVuLCBBbm5hPC9hdXRob3I+PGF1dGhvcj5GcmliZXJn

LCBKb2hhbjwvYXV0aG9yPjxhdXRob3I+Um9pdmFpbmVuLCBBbm5lPC9hdXRob3I+PGF1dGhvcj5W

aWxqYW5lbiwgVGFwaW88L2F1dGhvcj48YXV0aG9yPkxhbmdzam8sIEphYWtrbzwvYXV0aG9yPjxh

dXRob3I+U2FsbWksIEpvcm1hPC9hdXRob3I+PGF1dGhvcj5WYWxpbWFraSwgTWF0dGk8L2F1dGhv

cj48YXV0aG9yPk5hZ3JlbiwgS2plbGw8L2F1dGhvcj48YXV0aG9yPk51dXRpbGEsIFBpcmpvPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkltYWdpbmcgb2Yg

QWRyZW5hbCBJbmNpZGVudGFsb21hcyB3aXRoIFBFVCBVc2luZyAxMUMtTWV0b21pZGF0ZSBhbmQg

MThGLUZERzwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE51Y2wgTWVkPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBOdWNsIE1lZDwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjk3Mi05Nzk8L3BhZ2VzPjx2b2x1bWU+NDU8L3ZvbHVtZT48

bnVtYmVyPjY8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNDwveWVhcj48cHViLWRhdGVzPjxkYXRl

Pkp1bmUgMSwgMjAwNDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vam5tLnNubWpvdXJuYWxzLm9yZy9jZ2kvY29udGVudC9hYnN0cmFjdC80

NS82Lzk3MjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5Zb3VuZzwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJlY051bT4xMDwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0nRU4nIGRiLWlkPSd6NXN6cjlhZWI1OTV2eGUycnBheGV2cG4yMnR3OWV3ZHI5ZncnPjEwPC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0aWNsZSc+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ILiBZb3VuZzwvYXV0aG9yPjxh

dXRob3I+Ui4gQmF1bTwvYXV0aG9yPjxhdXRob3I+VS4gQ3JlbWVyaXVzPC9hdXRob3I+PGF1dGhv

cj5LLiBIZXJob2x6PC9hdXRob3I+PGF1dGhvcj5PLiBIb2Vrc3RyYTwvYXV0aG9yPjxhdXRob3I+

QS4gTGFtbWVydHNtYTwvYXV0aG9yPjxhdXRob3I+Si4gUHJ1aW08L2F1dGhvcj48YXV0aG9yPlAu

IFByaWNlPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1l

YXN1cmVtZW50IG9mIGNsaW5pY2FsIGFuZCBzdWJjbGluaWNhbCB0dW1vdXIgcmVzcG9uc2UgdXNp

bmcgWzE4Rl0tZmx1b3JvZGVveHlnbHVjb3NlIGFuZCBwb3NpdHJvbiBlbWlzc2lvbiB0b21vZ3Jh

cGh5OiByZXZpZXcgYW5kIDE5OTkgRU9SVEMgcmVjb21tZW5kYXRpb25zLiBFdXJvcGVhbiBPcmdh

bml6YXRpb24gZm9yIFJlc2VhcmNoIGFuZCBUcmVhdG1lbnQgb2YgQ2FuY2VyIChFT1JUQykgUEVU

IFN0dWR5IEdyb3VwPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm9wZWFuIGpvdXJuYWwgb2Yg

Q2FuY2VyPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

RXVyb3BlYW4gam91cm5hbCBvZiBDYW5jZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl

cz4xNzczLTE3ODI8L3BhZ2VzPjx2b2x1bWU+MzU8L3ZvbHVtZT48bnVtYmVyPjEzPC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjE5OTk8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9D

aXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [10-12]Single Photon Emission Computed Tomography (SPECT):Single photon emission computed tomography (SPECT) is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera. However, it is able to provide true 3D information. The basic technique requires injection of a gamma-emitting radioisotope into the bloodstream of the patient. A marker radioisotope has been attached to a special radioligand, which is of interest for its chemical binding properties to certain types of tissues. This allows the combination of ligand and radioisotope to be carried and bound to a place of interest in the body, which then (due to the gamma-emission of the isotope) allows the ligand concentration to be detected by a gamma-camera. SPECT imaging is performed by using a gamma camera to acquire multiple 2-D images from multiple angles. A computer is then used to apply a tomographic reconstruction algorithm to the multiple projections, creating a 3-D image. SPECT is similar to PET in its use of radioactive tracer material and detection of gamma rays. In contrast with PET, however, the tracer used in SPECT emits gamma radiation that is measured directly, whereas PET tracer emits positrons which annihilate with electrons up to a few millimeters away, causing two gamma photons to be emitted in opposite directions. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BbWVuPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48UmVj

TnVtPjEzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMzwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InZmeGYyenh6Z3NlcGZ1ZTB4ejJ4NXp0bXBzeDBy

YXoyOWVmdiI+MTM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBB

cnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFtZW4s

IERhbmllbCBHLjwvYXV0aG9yPjxhdXRob3I+Q2FybWljaGFlbCwgQmxha2UgRC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SGlnaC1SZXNvbHV0aW9uIEJy

YWluIFNQRUNUIEltYWdpbmcgaW4gQURIRDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm5hbHMg

b2YgQ2xpbmljYWwgUHN5Y2hpYXRyeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBDbGluaWNhbCBQc3ljaGlhdHJ5PC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+ODEtODY8L3BhZ2VzPjx2b2x1bWU+OTwvdm9sdW1lPjxudW1i

ZXI+MjwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5CZWhhdmlvcmFsIFNjaWVuY2U8L2tleXdv

cmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk5NzwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+

U3ByaW5nZXIgTmV0aGVybGFuZHM8L3B1Ymxpc2hlcj48aXNibj4xMDQwLTEyMzc8L2lzYm4+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjMvQToxMDI2MjAx

MjE4Mjk2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDIzL2E6MTAyNjIwMTIxODI5NjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNv

cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QW1lbjwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJl

Y051bT4xNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTU8L3JlYy1udW1iZXI+PGZvcmVp

Z24ta2V5cz48a2V5IGFwcD0nRU4nIGRiLWlkPSd6NXN6cjlhZWI1OTV2eGUycnBheGV2cG4yMnR3

OWV3ZHI5ZncnPjE1PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwg

QXJ0aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5BbWVu

LCBELiBHLjwvYXV0aG9yPjxhdXRob3I+SGFua3MsIEMuPC9hdXRob3I+PGF1dGhvcj5QcnVuZWxs

YSwgSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBh

cnRtZW50IG9mIFBzeWNoaWF0cmljIE1lZGljaW5lLCBBbWVuIENsaW5pY3MsIEluYy4sIE5ld3Bv

cnQgQmVhY2gsIENBLCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UHJlZGljdGlu

ZyBwb3NpdGl2ZSBhbmQgbmVnYXRpdmUgdHJlYXRtZW50IHJlc3BvbnNlcyB0byBzdGltdWxhbnRz

IHdpdGggYnJhaW4gU1BFQ1QgaW1hZ2luZzwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIFBzeWNo

b2FjdGl2ZSBEcnVnczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPkogUHN5Y2hvYWN0aXZlIERydWdzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+MTMxLTg8L3BhZ2VzPjx2b2x1bWU+NDA8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZWRp

dGlvbj4yMDA4LzA4LzMwPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BZG9sZXNjZW50PC9r

ZXl3b3JkPjxrZXl3b3JkPkFkdWx0PC9rZXl3b3JkPjxrZXl3b3JkPkF0dGVudGlvbi9kcnVnIGVm

ZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+QXR0ZW50aW9uIERlZmljaXQgRGlzb3JkZXIgd2l0aCBI

eXBlcmFjdGl2aXR5LypkcnVnIHRoZXJhcHkvKnJhZGlvbnVjbGlkZTwva2V5d29yZD48a2V5d29y

ZD5pbWFnaW5nPC9rZXl3b3JkPjxrZXl3b3JkPkNlbnRyYWwgTmVydm91cyBTeXN0ZW0gU3RpbXVs

YW50cy9hZHZlcnNlIGVmZmVjdHMvKnRoZXJhcGV1dGljIHVzZTwva2V5d29yZD48a2V5d29yZD5D

aGlsZDwva2V5d29yZD48a2V5d29yZD5Eb21pbmFuY2UsIENlcmVicmFsL2RydWcgZWZmZWN0cy9w

aHlzaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5Gcm9u

dGFsIExvYmUvYmxvb2Qgc3VwcGx5LypkcnVnIGVmZmVjdHMvKnJhZGlvbnVjbGlkZSBpbWFnaW5n

PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD4qSW1hZ2UgUHJvY2Vz

c2luZywgQ29tcHV0ZXItQXNzaXN0ZWQ8L2tleXdvcmQ+PGtleXdvcmQ+KkltYWdpbmcsIFRocmVl

LURpbWVuc2lvbmFsPC9rZXl3b3JkPjxrZXl3b3JkPk1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+TmV1

cm9wc3ljaG9sb2dpY2FsIFRlc3RzPC9rZXl3b3JkPjxrZXl3b3JkPlByZWZyb250YWwgQ29ydGV4

L2Jsb29kIHN1cHBseS8qZHJ1ZyBlZmZlY3RzLypyYWRpb251Y2xpZGUgaW1hZ2luZzwva2V5d29y

ZD48a2V5d29yZD5Qc3ljaG9tb3RvciBQZXJmb3JtYW5jZS9kcnVnIGVmZmVjdHM8L2tleXdvcmQ+

PGtleXdvcmQ+UmVnaW9uYWwgQmxvb2QgRmxvdy9kcnVnIGVmZmVjdHM8L2tleXdvcmQ+PGtleXdv

cmQ+UmV0cm9zcGVjdGl2ZSBTdHVkaWVzPC9rZXl3b3JkPjxrZXl3b3JkPlRlY2huZXRpdW0gVGMg

OTltIEV4YW1ldGF6aW1lL2RpYWdub3N0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPipUb21vZ3Jh

cGh5LCBFbWlzc2lvbi1Db21wdXRlZCwgU2luZ2xlLVBob3Rvbjwva2V5d29yZD48a2V5d29yZD5Z

b3VuZyBBZHVsdDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+SnVuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDI3OS0x

MDcyIChQcmludCkmI3hEOzAyNzktMTA3MiAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+

MTg3MjA2NjE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93

d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2Ri

PVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE4NzIwNjYxPC91cmw+PC9y

ZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkJvbnRlPC9BdXRob3I+PFllYXI+MjAwNjwvWWVhcj48UmVjTnVtPjE2

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz

PjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIydHc5ZXdkcjlm

dyc+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0nSm91cm5hbCBBcnRpY2xl

Jz4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJvbnRlLCBGLiBK

LjwvYXV0aG9yPjxhdXRob3I+SGFycmlzLCBULiBTLjwvYXV0aG9yPjxhdXRob3I+SHluYW4sIEwu

IFMuPC9hdXRob3I+PGF1dGhvcj5CaWdpbywgRS4gSC48L2F1dGhvcj48YXV0aG9yPldoaXRlLCBD

LiBMLiwgM3JkPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+

TnVjbGVhciBNZWRpY2luZSBDZW50ZXIsIFRoZSBVbml2ZXJzaXR5IG9mIFRleGFzIFNvdXRod2Vz

dGVybiBNZWRpY2FsIENlbnRlciBhdCBEYWxsYXMsIERhbGxhcywgVGV4YXMgNzUzOTAtOTA2MSwg

VVNBLiBGcmVkZXJpY2suQm9udGVAVVRTb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRp

dGxlcz48dGl0bGU+VGMtOTltIEhNUEFPIFNQRUNUIGluIHRoZSBkaWZmZXJlbnRpYWwgZGlhZ25v

c2lzIG9mIHRoZSBkZW1lbnRpYXMgd2l0aCBoaXN0b3BhdGhvbG9naWMgY29uZmlybWF0aW9uPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNsaW4gTnVjbCBNZWQ8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DbGluIE51Y2wgTWVkPC9mdWxsLXRpdGxlPjwv

cGVyaW9kaWNhbD48cGFnZXM+Mzc2LTg8L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVy

Pjc8L251bWJlcj48ZWRpdGlvbj4yMDA2LzA2LzIxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPkFnZWQsIDgwIGFuZCBvdmVyPC9rZXl3b3JkPjxrZXl3

b3JkPkFsemhlaW1lciBEaXNlYXNlL3JhZGlvbnVjbGlkZSBpbWFnaW5nPC9rZXl3b3JkPjxrZXl3

b3JkPipDZXJlYnJvdmFzY3VsYXIgQ2lyY3VsYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RGVtZW50

aWEvcGF0aG9sb2d5LypyYWRpb251Y2xpZGUgaW1hZ2luZzwva2V5d29yZD48a2V5d29yZD5EaWFn

bm9zaXMsIERpZmZlcmVudGlhbDwva2V5d29yZD48a2V5d29yZD5GYWxzZSBOZWdhdGl2ZSBSZWFj

dGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+RmFsc2UgUG9zaXRpdmUgUmVhY3Rpb25zPC9rZXl3b3Jk

PjxrZXl3b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdv

cmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5QcmVkaWN0aXZlIFZhbHVlIG9mIFRlc3RzPC9rZXl3

b3JkPjxrZXl3b3JkPlJhZGlvcGhhcm1hY2V1dGljYWxzLypkaWFnbm9zdGljIHVzZTwva2V5d29y

ZD48a2V5d29yZD5SZXByb2R1Y2liaWxpdHkgb2YgUmVzdWx0czwva2V5d29yZD48a2V5d29yZD5T

ZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VGVjaG5ldGl1bSBU

YyA5OW0gRXhhbWV0YXppbWUvKmRpYWdub3N0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPipUb21v

Z3JhcGh5LCBFbWlzc2lvbi1Db21wdXRlZCwgU2luZ2xlLVBob3Rvbi9pbnN0cnVtZW50YXRpb24v

bWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA2PC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+SnVsPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM2My05NzYy

IChQcmludCkmI3hEOzAzNjMtOTc2MiAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY3

ODU4MDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cu

bmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1

Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE2Nzg1ODAxPC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDk3LzAxLnJsdS4w

MDAwMjIyNzM2LjgxMzY1LjYzJiN4RDswMDAwMzA3Mi0yMDA2MDcwMDAtMDAwMDIgW3BpaV08L2Vs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwv

Q2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BbWVuPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48UmVj

TnVtPjEzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMzwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InZmeGYyenh6Z3NlcGZ1ZTB4ejJ4NXp0bXBzeDBy

YXoyOWVmdiI+MTM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBB

cnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFtZW4s

IERhbmllbCBHLjwvYXV0aG9yPjxhdXRob3I+Q2FybWljaGFlbCwgQmxha2UgRC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SGlnaC1SZXNvbHV0aW9uIEJy

YWluIFNQRUNUIEltYWdpbmcgaW4gQURIRDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm5hbHMg

b2YgQ2xpbmljYWwgUHN5Y2hpYXRyeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBDbGluaWNhbCBQc3ljaGlhdHJ5PC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+ODEtODY8L3BhZ2VzPjx2b2x1bWU+OTwvdm9sdW1lPjxudW1i

ZXI+MjwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5CZWhhdmlvcmFsIFNjaWVuY2U8L2tleXdv

cmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk5NzwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+

U3ByaW5nZXIgTmV0aGVybGFuZHM8L3B1Ymxpc2hlcj48aXNibj4xMDQwLTEyMzc8L2lzYm4+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjMvQToxMDI2MjAx

MjE4Mjk2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDIzL2E6MTAyNjIwMTIxODI5NjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNv

cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QW1lbjwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJl

Y051bT4xNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTU8L3JlYy1udW1iZXI+PGZvcmVp

Z24ta2V5cz48a2V5IGFwcD0nRU4nIGRiLWlkPSd6NXN6cjlhZWI1OTV2eGUycnBheGV2cG4yMnR3

OWV3ZHI5ZncnPjE1PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwg

QXJ0aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5BbWVu

LCBELiBHLjwvYXV0aG9yPjxhdXRob3I+SGFua3MsIEMuPC9hdXRob3I+PGF1dGhvcj5QcnVuZWxs

YSwgSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBh

cnRtZW50IG9mIFBzeWNoaWF0cmljIE1lZGljaW5lLCBBbWVuIENsaW5pY3MsIEluYy4sIE5ld3Bv

cnQgQmVhY2gsIENBLCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UHJlZGljdGlu

ZyBwb3NpdGl2ZSBhbmQgbmVnYXRpdmUgdHJlYXRtZW50IHJlc3BvbnNlcyB0byBzdGltdWxhbnRz

IHdpdGggYnJhaW4gU1BFQ1QgaW1hZ2luZzwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIFBzeWNo

b2FjdGl2ZSBEcnVnczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPkogUHN5Y2hvYWN0aXZlIERydWdzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+MTMxLTg8L3BhZ2VzPjx2b2x1bWU+NDA8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZWRp

dGlvbj4yMDA4LzA4LzMwPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BZG9sZXNjZW50PC9r

ZXl3b3JkPjxrZXl3b3JkPkFkdWx0PC9rZXl3b3JkPjxrZXl3b3JkPkF0dGVudGlvbi9kcnVnIGVm

ZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+QXR0ZW50aW9uIERlZmljaXQgRGlzb3JkZXIgd2l0aCBI

eXBlcmFjdGl2aXR5LypkcnVnIHRoZXJhcHkvKnJhZGlvbnVjbGlkZTwva2V5d29yZD48a2V5d29y

ZD5pbWFnaW5nPC9rZXl3b3JkPjxrZXl3b3JkPkNlbnRyYWwgTmVydm91cyBTeXN0ZW0gU3RpbXVs

YW50cy9hZHZlcnNlIGVmZmVjdHMvKnRoZXJhcGV1dGljIHVzZTwva2V5d29yZD48a2V5d29yZD5D

aGlsZDwva2V5d29yZD48a2V5d29yZD5Eb21pbmFuY2UsIENlcmVicmFsL2RydWcgZWZmZWN0cy9w

aHlzaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5Gcm9u

dGFsIExvYmUvYmxvb2Qgc3VwcGx5LypkcnVnIGVmZmVjdHMvKnJhZGlvbnVjbGlkZSBpbWFnaW5n

PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD4qSW1hZ2UgUHJvY2Vz

c2luZywgQ29tcHV0ZXItQXNzaXN0ZWQ8L2tleXdvcmQ+PGtleXdvcmQ+KkltYWdpbmcsIFRocmVl

LURpbWVuc2lvbmFsPC9rZXl3b3JkPjxrZXl3b3JkPk1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+TmV1

cm9wc3ljaG9sb2dpY2FsIFRlc3RzPC9rZXl3b3JkPjxrZXl3b3JkPlByZWZyb250YWwgQ29ydGV4

L2Jsb29kIHN1cHBseS8qZHJ1ZyBlZmZlY3RzLypyYWRpb251Y2xpZGUgaW1hZ2luZzwva2V5d29y

ZD48a2V5d29yZD5Qc3ljaG9tb3RvciBQZXJmb3JtYW5jZS9kcnVnIGVmZmVjdHM8L2tleXdvcmQ+

PGtleXdvcmQ+UmVnaW9uYWwgQmxvb2QgRmxvdy9kcnVnIGVmZmVjdHM8L2tleXdvcmQ+PGtleXdv

cmQ+UmV0cm9zcGVjdGl2ZSBTdHVkaWVzPC9rZXl3b3JkPjxrZXl3b3JkPlRlY2huZXRpdW0gVGMg

OTltIEV4YW1ldGF6aW1lL2RpYWdub3N0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPipUb21vZ3Jh

cGh5LCBFbWlzc2lvbi1Db21wdXRlZCwgU2luZ2xlLVBob3Rvbjwva2V5d29yZD48a2V5d29yZD5Z

b3VuZyBBZHVsdDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+SnVuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDI3OS0x

MDcyIChQcmludCkmI3hEOzAyNzktMTA3MiAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+

MTg3MjA2NjE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93

d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2Ri

PVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE4NzIwNjYxPC91cmw+PC9y

ZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkJvbnRlPC9BdXRob3I+PFllYXI+MjAwNjwvWWVhcj48UmVjTnVtPjE2

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz

PjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIydHc5ZXdkcjlm

dyc+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0nSm91cm5hbCBBcnRpY2xl

Jz4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJvbnRlLCBGLiBK

LjwvYXV0aG9yPjxhdXRob3I+SGFycmlzLCBULiBTLjwvYXV0aG9yPjxhdXRob3I+SHluYW4sIEwu

IFMuPC9hdXRob3I+PGF1dGhvcj5CaWdpbywgRS4gSC48L2F1dGhvcj48YXV0aG9yPldoaXRlLCBD

LiBMLiwgM3JkPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+

TnVjbGVhciBNZWRpY2luZSBDZW50ZXIsIFRoZSBVbml2ZXJzaXR5IG9mIFRleGFzIFNvdXRod2Vz

dGVybiBNZWRpY2FsIENlbnRlciBhdCBEYWxsYXMsIERhbGxhcywgVGV4YXMgNzUzOTAtOTA2MSwg

VVNBLiBGcmVkZXJpY2suQm9udGVAVVRTb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRp

dGxlcz48dGl0bGU+VGMtOTltIEhNUEFPIFNQRUNUIGluIHRoZSBkaWZmZXJlbnRpYWwgZGlhZ25v

c2lzIG9mIHRoZSBkZW1lbnRpYXMgd2l0aCBoaXN0b3BhdGhvbG9naWMgY29uZmlybWF0aW9uPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNsaW4gTnVjbCBNZWQ8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DbGluIE51Y2wgTWVkPC9mdWxsLXRpdGxlPjwv

cGVyaW9kaWNhbD48cGFnZXM+Mzc2LTg8L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVy

Pjc8L251bWJlcj48ZWRpdGlvbj4yMDA2LzA2LzIxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPkFnZWQsIDgwIGFuZCBvdmVyPC9rZXl3b3JkPjxrZXl3

b3JkPkFsemhlaW1lciBEaXNlYXNlL3JhZGlvbnVjbGlkZSBpbWFnaW5nPC9rZXl3b3JkPjxrZXl3

b3JkPipDZXJlYnJvdmFzY3VsYXIgQ2lyY3VsYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RGVtZW50

aWEvcGF0aG9sb2d5LypyYWRpb251Y2xpZGUgaW1hZ2luZzwva2V5d29yZD48a2V5d29yZD5EaWFn

bm9zaXMsIERpZmZlcmVudGlhbDwva2V5d29yZD48a2V5d29yZD5GYWxzZSBOZWdhdGl2ZSBSZWFj

dGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+RmFsc2UgUG9zaXRpdmUgUmVhY3Rpb25zPC9rZXl3b3Jk

PjxrZXl3b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdv

cmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5QcmVkaWN0aXZlIFZhbHVlIG9mIFRlc3RzPC9rZXl3

b3JkPjxrZXl3b3JkPlJhZGlvcGhhcm1hY2V1dGljYWxzLypkaWFnbm9zdGljIHVzZTwva2V5d29y

ZD48a2V5d29yZD5SZXByb2R1Y2liaWxpdHkgb2YgUmVzdWx0czwva2V5d29yZD48a2V5d29yZD5T

ZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VGVjaG5ldGl1bSBU

YyA5OW0gRXhhbWV0YXppbWUvKmRpYWdub3N0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPipUb21v

Z3JhcGh5LCBFbWlzc2lvbi1Db21wdXRlZCwgU2luZ2xlLVBob3Rvbi9pbnN0cnVtZW50YXRpb24v

bWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA2PC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+SnVsPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM2My05NzYy

IChQcmludCkmI3hEOzAzNjMtOTc2MiAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY3

ODU4MDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cu

bmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1

Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE2Nzg1ODAxPC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDk3LzAxLnJsdS4w

MDAwMjIyNzM2LjgxMzY1LjYzJiN4RDswMDAwMzA3Mi0yMDA2MDcwMDAtMDAwMDIgW3BpaV08L2Vs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwv

Q2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [13-15]Optical ImagingWhen a photon of light interacts with living tissue, it can be absorbed or it can be scattered. Thus the two major types of optical imaging are absorption-based and scattering-based. Most optical methods use relatively simple instrumentation to image-reflected excitation light, or fluorescence emission light, from a surface. Tissue reflectance imaging is high resolution and fast, but because of multiple light scattering, sensitivity is limited. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYXNzb3VkPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48

UmVjTnVtPjE3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNzwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIy

dHc5ZXdkcjlmdyc+MTc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0nSm91cm5h

bCBBcnRpY2xlJz4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1h

c3NvdWQsIFQuIEYuPC9hdXRob3I+PGF1dGhvcj5HYW1iaGlyLCBTLiBTLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlRoZSBDcnVtcCBJbnN0aXR1dGUgZm9y

IE1vbGVjdWxhciBJbWFnaW5nLCBEYXZpZCBHZWZmZW4gU2Nob29sIG9mIE1lZGljaW5lIGF0IFVu

aXZlcnNpdHkgb2YgQ2FsaWZvcm5pYSBhdCBMb3MgQW5nZWxlcywgTG9zIEFuZ2VsZXMsIENhbGlm

b3JuaWEgOTAwOTUsIFVTQS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Nb2xlY3VsYXIg

aW1hZ2luZyBpbiBsaXZpbmcgc3ViamVjdHM6IHNlZWluZyBmdW5kYW1lbnRhbCBiaW9sb2dpY2Fs

IHByb2Nlc3NlcyBpbiBhIG5ldyBsaWdodDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5HZW5lcyBE

ZXY8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5HZW5l

cyBEZXY8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz41NDUtODA8L3BhZ2VzPjx2b2x1

bWU+MTc8L3ZvbHVtZT48bnVtYmVyPjU8L251bWJlcj48ZWRpdGlvbj4yMDAzLzAzLzEyPC9lZGl0

aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkZvcmVjYXN0

aW5nPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmUgVGhlcmFweTwva2V5d29yZD48a2V5d29yZD5HZW5l

cywgUmVwb3J0ZXI8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1h

Z25ldGljIFJlc29uYW5jZSBJbWFnaW5nLyppbnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdv

cmQ+PGtleXdvcmQ+TWljZTwva2V5d29yZD48a2V5d29yZD5NaWNyb3Njb3B5LCBGbHVvcmVzY2Vu

Y2UvKmluc3RydW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIg

QmlvbG9neS8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgUHJvYmUgVGVjaG5p

cXVlczwva2V5d29yZD48a2V5d29yZD5SYWRpb2lzb3RvcGVzPC9rZXl3b3JkPjxrZXl3b3JkPlJh

dHM8L2tleXdvcmQ+PGtleXdvcmQ+VG9tb2dyYXBoeSwgRW1pc3Npb24tQ29tcHV0ZWQvKmluc3Ry

dW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Ub21vZ3JhcGh5LCBYLVJheSBD

b21wdXRlZC9pbnN0cnVtZW50YXRpb24vbWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRl

cz48eWVhcj4yMDAzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+TWFyIDE8L2RhdGU+PC9wdWItZGF0

ZXM+PC9kYXRlcz48aXNibj4wODkwLTkzNjkgKFByaW50KSYjeEQ7MDg5MC05MzY5IChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4xMjYyOTAzODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5m

Y2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0

X3VpZHM9MTI2MjkwMzg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVz

b3VyY2UtbnVtPjEwLjExMDEvZ2FkLjEwNDc0MDM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYnNv

bjwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJlY051bT4xOTwvUmVjTnVtPjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0nRU4nIGRiLWlk

PSd6NXN6cjlhZWI1OTV2eGUycnBheGV2cG4yMnR3OWV3ZHI5ZncnPjE5PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0aWNsZSc+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWJzb24sIEEuIFAuPC9hdXRob3I+PGF1dGhvcj5I

ZWJkZW4sIEouIEMuPC9hdXRob3I+PGF1dGhvcj5BcnJpZGdlLCBTLiBSLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgTWVkaWNhbCBQ

aHlzaWNzIGFuZCBCaW9lbmdpbmVlcmluZywgVW5pdmVyc2l0eSBDb2xsZWdlIExvbmRvbiwgVUsu

PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UmVjZW50IGFkdmFuY2VzIGluIGRpZmZ1c2Ug

b3B0aWNhbCBpbWFnaW5nPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlBoeXMgTWVkIEJpb2w8L3Nl

Y29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5QaHlzIE1lZCBC

aW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+UjEtNDM8L3BhZ2VzPjx2b2x1bWU+

NTA8L3ZvbHVtZT48bnVtYmVyPjQ8L251bWJlcj48ZWRpdGlvbj4yMDA1LzAzLzE5PC9lZGl0aW9u

PjxrZXl3b3Jkcz48a2V5d29yZD5EaWZmdXNpb248L2tleXdvcmQ+PGtleXdvcmQ+RGlmZnVzaW9u

IE1hZ25ldGljIFJlc29uYW5jZSBJbWFnaW5nL2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy90cmVu

ZHM8L2tleXdvcmQ+PGtleXdvcmQ+SW1hZ2UgRW5oYW5jZW1lbnQvaW5zdHJ1bWVudGF0aW9uLypt

ZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPkltYWdlIEludGVycHJldGF0aW9uLCBDb21wdXRlci1B

c3Npc3RlZC9pbnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY3Ry

b3Bob3RvbWV0cnksIEluZnJhcmVkL2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy90cmVuZHM8L2tl

eXdvcmQ+PGtleXdvcmQ+VG9tb2dyYXBoeSwgT3B0aWNhbC9pbnN0cnVtZW50YXRpb24vKm1ldGhv

ZHMvdHJlbmRzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5GZWIgMjE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDMx

LTkxNTUgKFByaW50KSYjeEQ7MDAzMS05MTU1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51

bT4xNTc3MzYxOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7

ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTU3NzM2MTk8L3VybD48

L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+S292YXI8L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNOdW0+

MTg8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE4PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idmZ4ZjJ6eHpnc2VwZnVlMHh6Mng1enRtcHN4MHJhejI5

ZWZ2Ij4xODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S292YXIsIEou

IEwuPC9hdXRob3I+PGF1dGhvcj5TaW1wc29uLCBNLiBBLjwvYXV0aG9yPjxhdXRob3I+U2NodXR6

LUdlc2Nod2VuZGVyLCBBLjwvYXV0aG9yPjxhdXRob3I+T2xpdmUsIEQuIE0uPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TEktQ09SIEJpb3NjaWVuY2VzLCBM

aW5jb2xuLCBORSA2ODUwNCwgVVNBLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkEgc3lz

dGVtYXRpYyBhcHByb2FjaCB0byB0aGUgZGV2ZWxvcG1lbnQgb2YgZmx1b3Jlc2NlbnQgY29udHJh

c3QgYWdlbnRzIGZvciBvcHRpY2FsIGltYWdpbmcgb2YgbW91c2UgY2FuY2VyIG1vZGVsczwvdGl0

bGU+PHNlY29uZGFyeS10aXRsZT5BbmFsIEJpb2NoZW08L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFsIEJpb2NoZW08L2Z1bGwtdGl0bGU+PC9wZXJp

b2RpY2FsPjxwYWdlcz4xLTEyPC9wYWdlcz48dm9sdW1lPjM2Nzwvdm9sdW1lPjxudW1iZXI+MTwv

bnVtYmVyPjxlZGl0aW9uPjIwMDcvMDUvMjU8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFu

aW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+KkNvbnRyYXN0IE1lZGlhPC9rZXl3b3JkPjxrZXl3b3Jk

PkZsdW9yZXNjZW5jZTwva2V5d29yZD48a2V5d29yZD4qRmx1b3Jlc2NlbnQgRHllczwva2V5d29y

ZD48a2V5d29yZD5MaWdhbmRzPC9rZXl3b3JkPjxrZXl3b3JkPk1lbWJyYW5lIFByb3RlaW5zL21l

dGFib2xpc208L2tleXdvcmQ+PGtleXdvcmQ+TWljZTwva2V5d29yZD48a2V5d29yZD5Nb2xlY3Vs

YXIgUHJvYmUgVGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5OZW9wbGFzbSBQcm90ZWlucy9t

ZXRhYm9saXNtPC9rZXl3b3JkPjxrZXl3b3JkPk5lb3BsYXNtcywgRXhwZXJpbWVudGFsLypkaWFn

bm9zaXMvbWV0YWJvbGlzbTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95

ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXVnIDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wMDAzLTI2OTcgKFByaW50KSYjeEQ7MDAwMy0yNjk3IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4xNzUyMTU5ODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2

ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTc1MjE1OTg8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPlMwMDAz

LTI2OTcoMDcpMDAyMzEtWCBbcGlpXSYjeEQ7MTAuMTAxNi9qLmFiLjIwMDcuMDQuMDExPC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0Np

dGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYXNzb3VkPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48

UmVjTnVtPjE3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNzwvcmVjLW51bWJlcj48Zm9y

ZWlnbi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3o1c3pyOWFlYjU5NXZ4ZTJycGF4ZXZwbjIy

dHc5ZXdkcjlmdyc+MTc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0nSm91cm5h

bCBBcnRpY2xlJz4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1h

c3NvdWQsIFQuIEYuPC9hdXRob3I+PGF1dGhvcj5HYW1iaGlyLCBTLiBTLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlRoZSBDcnVtcCBJbnN0aXR1dGUgZm9y

IE1vbGVjdWxhciBJbWFnaW5nLCBEYXZpZCBHZWZmZW4gU2Nob29sIG9mIE1lZGljaW5lIGF0IFVu

aXZlcnNpdHkgb2YgQ2FsaWZvcm5pYSBhdCBMb3MgQW5nZWxlcywgTG9zIEFuZ2VsZXMsIENhbGlm

b3JuaWEgOTAwOTUsIFVTQS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Nb2xlY3VsYXIg

aW1hZ2luZyBpbiBsaXZpbmcgc3ViamVjdHM6IHNlZWluZyBmdW5kYW1lbnRhbCBiaW9sb2dpY2Fs

IHByb2Nlc3NlcyBpbiBhIG5ldyBsaWdodDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5HZW5lcyBE

ZXY8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5HZW5l

cyBEZXY8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz41NDUtODA8L3BhZ2VzPjx2b2x1

bWU+MTc8L3ZvbHVtZT48bnVtYmVyPjU8L251bWJlcj48ZWRpdGlvbj4yMDAzLzAzLzEyPC9lZGl0

aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkZvcmVjYXN0

aW5nPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmUgVGhlcmFweTwva2V5d29yZD48a2V5d29yZD5HZW5l

cywgUmVwb3J0ZXI8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1h

Z25ldGljIFJlc29uYW5jZSBJbWFnaW5nLyppbnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdv

cmQ+PGtleXdvcmQ+TWljZTwva2V5d29yZD48a2V5d29yZD5NaWNyb3Njb3B5LCBGbHVvcmVzY2Vu

Y2UvKmluc3RydW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIg

QmlvbG9neS8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgUHJvYmUgVGVjaG5p

cXVlczwva2V5d29yZD48a2V5d29yZD5SYWRpb2lzb3RvcGVzPC9rZXl3b3JkPjxrZXl3b3JkPlJh

dHM8L2tleXdvcmQ+PGtleXdvcmQ+VG9tb2dyYXBoeSwgRW1pc3Npb24tQ29tcHV0ZWQvKmluc3Ry

dW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Ub21vZ3JhcGh5LCBYLVJheSBD

b21wdXRlZC9pbnN0cnVtZW50YXRpb24vbWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRl

cz48eWVhcj4yMDAzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+TWFyIDE8L2RhdGU+PC9wdWItZGF0

ZXM+PC9kYXRlcz48aXNibj4wODkwLTkzNjkgKFByaW50KSYjeEQ7MDg5MC05MzY5IChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4xMjYyOTAzODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5m

Y2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0

X3VpZHM9MTI2MjkwMzg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVz

b3VyY2UtbnVtPjEwLjExMDEvZ2FkLjEwNDc0MDM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYnNv

bjwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+PFJlY051bT4xOTwvUmVjTnVtPjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0nRU4nIGRiLWlk

PSd6NXN6cjlhZWI1OTV2eGUycnBheGV2cG4yMnR3OWV3ZHI5ZncnPjE5PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0aWNsZSc+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWJzb24sIEEuIFAuPC9hdXRob3I+PGF1dGhvcj5I

ZWJkZW4sIEouIEMuPC9hdXRob3I+PGF1dGhvcj5BcnJpZGdlLCBTLiBSLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgTWVkaWNhbCBQ

aHlzaWNzIGFuZCBCaW9lbmdpbmVlcmluZywgVW5pdmVyc2l0eSBDb2xsZWdlIExvbmRvbiwgVUsu

PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UmVjZW50IGFkdmFuY2VzIGluIGRpZmZ1c2Ug

b3B0aWNhbCBpbWFnaW5nPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlBoeXMgTWVkIEJpb2w8L3Nl

Y29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5QaHlzIE1lZCBC

aW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+UjEtNDM8L3BhZ2VzPjx2b2x1bWU+

NTA8L3ZvbHVtZT48bnVtYmVyPjQ8L251bWJlcj48ZWRpdGlvbj4yMDA1LzAzLzE5PC9lZGl0aW9u

PjxrZXl3b3Jkcz48a2V5d29yZD5EaWZmdXNpb248L2tleXdvcmQ+PGtleXdvcmQ+RGlmZnVzaW9u

IE1hZ25ldGljIFJlc29uYW5jZSBJbWFnaW5nL2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy90cmVu

ZHM8L2tleXdvcmQ+PGtleXdvcmQ+SW1hZ2UgRW5oYW5jZW1lbnQvaW5zdHJ1bWVudGF0aW9uLypt

ZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPkltYWdlIEludGVycHJldGF0aW9uLCBDb21wdXRlci1B

c3Npc3RlZC9pbnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY3Ry

b3Bob3RvbWV0cnksIEluZnJhcmVkL2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy90cmVuZHM8L2tl

eXdvcmQ+PGtleXdvcmQ+VG9tb2dyYXBoeSwgT3B0aWNhbC9pbnN0cnVtZW50YXRpb24vKm1ldGhv

ZHMvdHJlbmRzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5GZWIgMjE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDMx

LTkxNTUgKFByaW50KSYjeEQ7MDAzMS05MTU1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51

bT4xNTc3MzYxOTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7

ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTU3NzM2MTk8L3VybD48

L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+S292YXI8L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNOdW0+

MTg8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE4PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idmZ4ZjJ6eHpnc2VwZnVlMHh6Mng1enRtcHN4MHJhejI5

ZWZ2Ij4xODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S292YXIsIEou

IEwuPC9hdXRob3I+PGF1dGhvcj5TaW1wc29uLCBNLiBBLjwvYXV0aG9yPjxhdXRob3I+U2NodXR6

LUdlc2Nod2VuZGVyLCBBLjwvYXV0aG9yPjxhdXRob3I+T2xpdmUsIEQuIE0uPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TEktQ09SIEJpb3NjaWVuY2VzLCBM

aW5jb2xuLCBORSA2ODUwNCwgVVNBLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkEgc3lz

dGVtYXRpYyBhcHByb2FjaCB0byB0aGUgZGV2ZWxvcG1lbnQgb2YgZmx1b3Jlc2NlbnQgY29udHJh

c3QgYWdlbnRzIGZvciBvcHRpY2FsIGltYWdpbmcgb2YgbW91c2UgY2FuY2VyIG1vZGVsczwvdGl0

bGU+PHNlY29uZGFyeS10aXRsZT5BbmFsIEJpb2NoZW08L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFsIEJpb2NoZW08L2Z1bGwtdGl0bGU+PC9wZXJp

b2RpY2FsPjxwYWdlcz4xLTEyPC9wYWdlcz48dm9sdW1lPjM2Nzwvdm9sdW1lPjxudW1iZXI+MTwv

bnVtYmVyPjxlZGl0aW9uPjIwMDcvMDUvMjU8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFu

aW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+KkNvbnRyYXN0IE1lZGlhPC9rZXl3b3JkPjxrZXl3b3Jk

PkZsdW9yZXNjZW5jZTwva2V5d29yZD48a2V5d29yZD4qRmx1b3Jlc2NlbnQgRHllczwva2V5d29y

ZD48a2V5d29yZD5MaWdhbmRzPC9rZXl3b3JkPjxrZXl3b3JkPk1lbWJyYW5lIFByb3RlaW5zL21l

dGFib2xpc208L2tleXdvcmQ+PGtleXdvcmQ+TWljZTwva2V5d29yZD48a2V5d29yZD5Nb2xlY3Vs

YXIgUHJvYmUgVGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5OZW9wbGFzbSBQcm90ZWlucy9t

ZXRhYm9saXNtPC9rZXl3b3JkPjxrZXl3b3JkPk5lb3BsYXNtcywgRXhwZXJpbWVudGFsLypkaWFn

bm9zaXMvbWV0YWJvbGlzbTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95

ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXVnIDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wMDAzLTI2OTcgKFByaW50KSYjeEQ7MDAwMy0yNjk3IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4xNzUyMTU5ODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2

ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTc1MjE1OTg8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPlMwMDAz

LTI2OTcoMDcpMDAyMzEtWCBbcGlpXSYjeEQ7MTAuMTAxNi9qLmFiLjIwMDcuMDQuMDExPC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0Np

dGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA [16-18]With the development of various targeted contrast agents, these imaging techniques are also able to provide molecular information about the malignant tumor tissue. However, microscopic optical imaging techniques have higher resolution (~0.1–100 mm) compared with USI (50–500 mm), MRI (10–100 mm), CT (50–200 mm), PET (1–2 mm) and SPECT (1–2 mm), ADDIN EN.CITE <EndNote><Cite><Author>Frangioni</Author><Year>2008</Year><RecNum>6</RecNum><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frangioni, John V.</author></authors></contributors><titles><title>New Technologies for Human Cancer Imaging</title><secondary-title>Journal of Clinical Oncology</secondary-title></titles><periodical><full-title>Journal of Clinical Oncology</full-title></periodical><pages>4012-4021</pages><volume>26</volume><number>24</number><dates><year>2008</year><pub-dates><date>August 20, 2008</date></pub-dates></dates><urls><related-urls><url>;[3] and can detect a lower number of cancer cells per imaging voxel. By combining the advantages of optical and ultrasound, PAI can provide high optical contrast images at a microscale resolution and at a reasonable penetration depth. PAI can visualize tumor location deep within a tissue, and is also able to provide information on tumor vasculature ADDIN EN.CITE <EndNote><Cite><Author>Zhang</Author><Year>2006</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhang, H. F.</author><author>Maslov, K.</author><author>Stoica, G.</author><author>Wang, L. V.</author></authors></contributors><auth-address>Optical Imaging Laboratory, Department of Biomedical Engineering, Texas A&amp;M University, 3120 TAMU, College Station, Texas 77843-3120, USA.</auth-address><titles><title>Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging</title><secondary-title>Nat Biotechnol</secondary-title></titles><periodical><full-title>Nat Biotechnol</full-title></periodical><pages>848-51</pages><volume>24</volume><number>7</number><edition>2006/07/11</edition><keywords><keyword>Anatomy, Cross-Sectional/*instrumentation</keyword><keyword>Animals</keyword><keyword>Equipment Design</keyword><keyword>Image Enhancement/*instrumentation/methods</keyword><keyword>Imaging, Three-Dimensional/*instrumentation/methods</keyword><keyword>Melanoma/ultrastructure</keyword><keyword>Mice</keyword><keyword>Mice, Nude</keyword><keyword>Microscopy, Acoustic/*methods</keyword><keyword>Venules/ultrastructure</keyword></keywords><dates><year>2006</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>1087-0156 (Print)&#xD;1087-0156 (Linking)</isbn><accession-num>16823374</accession-num><urls><related-urls><url> [pii]&#xD;10.1038/nbt1220</electronic-resource-num><language>eng</language></record></Cite></EndNote>[19] or to monitor angiogenesis ADDIN EN.CITE <EndNote><Cite><Author>Siphanto</Author><Year>2005</Year><RecNum>21</RecNum><record><rec-number>21</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">21</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Siphanto, R. I.</author><author>Thumma, K. K.</author><author>Kolkman, R. G.</author><author>van Leeuwen, T. G.</author><author>de Mul, F. F.</author><author>van Neck, J. W.</author><author>van Adrichem, L. N.</author><author>Steenbergen, W.</author></authors></contributors><titles><title>Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis</title><secondary-title>Opt Express</secondary-title></titles><periodical><full-title>Opt Express</full-title></periodical><pages>89-95</pages><volume>13</volume><number>1</number><edition>2005/01/10</edition><dates><year>2005</year><pub-dates><date>Jan 10</date></pub-dates></dates><isbn>1094-4087 (Electronic)&#xD;1094-4087 (Linking)</isbn><accession-num>19488331</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[4]. PAI can also obtain information on hemoglobin oxygen saturation at high resolution and contrast, without the use of exogenous contrast agents ADDIN EN.CITE <EndNote><Cite><Author>Zhang</Author><Year>2006</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhang, H. F.</author><author>Maslov, K.</author><author>Stoica, G.</author><author>Wang, L. V.</author></authors></contributors><auth-address>Optical Imaging Laboratory, Department of Biomedical Engineering, Texas A&amp;M University, 3120 TAMU, College Station, Texas 77843-3120, USA.</auth-address><titles><title>Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging</title><secondary-title>Nat Biotechnol</secondary-title></titles><periodical><full-title>Nat Biotechnol</full-title></periodical><pages>848-51</pages><volume>24</volume><number>7</number><edition>2006/07/11</edition><keywords><keyword>Anatomy, Cross-Sectional/*instrumentation</keyword><keyword>Animals</keyword><keyword>Equipment Design</keyword><keyword>Image Enhancement/*instrumentation/methods</keyword><keyword>Imaging, Three-Dimensional/*instrumentation/methods</keyword><keyword>Melanoma/ultrastructure</keyword><keyword>Mice</keyword><keyword>Mice, Nude</keyword><keyword>Microscopy, Acoustic/*methods</keyword><keyword>Venules/ultrastructure</keyword></keywords><dates><year>2006</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>1087-0156 (Print)&#xD;1087-0156 (Linking)</isbn><accession-num>16823374</accession-num><urls><related-urls><url> [pii]&#xD;10.1038/nbt1220</electronic-resource-num><language>eng</language></record></Cite></EndNote>[19], which is a significant advantage when compared with other tumor hypoxia imaging techniques (e.g., blood oxygen level-dependent MRI and PET). Another advantage of PAI is its compatibility with widely available USI techniques ADDIN EN.CITE <EndNote><Cite><Author>Emelianov</Author><Year>2006</Year><RecNum>23</RecNum><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="z5szr9aeb595vxe2rpaxevpn22tw9ewdr9fw">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emelianov, S Y </author><author>Aglyamov, S R </author><author>Karpiouk, A B </author><author>Mallidi, S </author><author>Park, S </author><author>Sethuraman, S </author><author>Shah, J </author><author>Smalling, R W </author><author>Rubin, J M </author><author>Scott W G </author></authors></contributors><titles><title>Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging</title><secondary-title>IEEE Ultrasonics Symposium (2006)</secondary-title></titles><periodical><full-title>IEEE Ultrasonics Symposium (2006)</full-title></periodical><pages>405-415</pages><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[20]; when combined, PAI and USI can simultaneously provide anatomical and functional information on tumors ADDIN EN.CITE <EndNote><Cite><Author>Jose</Author><Year>2009</Year><RecNum>22</RecNum><record><rec-number>22</rec-number><foreign-keys><key app="EN" db-id="vfxf2zxzgsepfue0xz2x5ztmpsx0raz29efv">22</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jose, Jithin</author><author>Manohar, Srirang</author><author>Kolkman, Roy G. M.</author><author>Steenbergen, W.</author><author>van Leeuwen, Ton G.</author></authors></contributors><titles><title>Imaging of tumor vasculature using Twente photoacoustic systems</title><secondary-title>Journal of Biophotonics</secondary-title></titles><periodical><full-title>Journal of Biophotonics</full-title></periodical><pages>701-717</pages><volume>2</volume><number>12</number><keywords><keyword>photoacoustic</keyword><keyword>optoacoustic</keyword><keyword>tumor angiogenesis</keyword><keyword>breast imaging</keyword><keyword>small-animal imaging</keyword></keywords><dates><year>2009</year></dates><publisher>WILEY-VCH Verlag</publisher><isbn>1864-0648</isbn><urls><related-urls><url>;[21].Advantages of PAIAbility to detect deeply situated tumor and its vasculatureMonitors angiogenesisHigh resolutionCompatible to Ultra SoundHigh Penetration depthNo radioactiveSmall sizeNo noiseDisadvantages of PAI1. Limited Path length2. Temperature?Dependence3. Weak absorption at short wavelengthsResponsibilitiesThe Whole group will work on refining and improving the Paper.References: ADDIN EN.REFLIST 1.Jemal, A., et al., Cancer Statistics, 2010. CA Cancer J Clin. 60(5): p. 277-300.2.Fass, L., Imaging and cancer: A review. Molecular oncology, 2008. 2(2): p. 115-152.3.Frangioni, J.V., New Technologies for Human Cancer Imaging. Journal of Clinical Oncology, 2008. 26(24): p. 4012-4021.4.Siphanto, R.I., et al., Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt Express, 2005. 13(1): p. 89-95.5.Mallidi, S., G.P. Luke, and S. Emelianov, Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology. In Press, Corrected Proof.6.Hall, E.J. and D.J. Brenner, Cancer risks from diagnostic radiology. Br J Radiol, 2008. 81(965): p. 362-378.7.De Santis, M., et al., Radiation effects on development. Birth Defects Res C Embryo Today, 2007. 81(3): p. 177-82.8.Brenner, D., Should we be concerned about the rapid increase in CT usage? Reviews on environmental health, 2010. 25(1): p. 63-68.9.Rapacholi, M.H., Essentials of Medical Ultrasound: A Practical Introduction to the Principles, Techniques and Biomedical Applications. 1982.10.Khan, T.S., et al., 11C-metomidate PET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging, 2003. 30(3): p. 403-10.11.Minn, H., et al., Imaging of Adrenal Incidentalomas with PET Using 11C-Metomidate and 18F-FDG. J Nucl Med, 2004. 45(6): p. 972-979.12.Young, H., et al., Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. European journal of Cancer, 1999. 35(13): p. 1773-1782.13.Amen, D.G. and B.D. Carmichael, High-Resolution Brain SPECT Imaging in ADHD. Annals of Clinical Psychiatry, 1997. 9(2): p. 81-86.14.Amen, D.G., C. Hanks, and J. Prunella, Predicting positive and negative treatment responses to stimulants with brain SPECT imaging. J Psychoactive Drugs, 2008. 40(2): p. 131-8.15.Bonte, F.J., et al., Tc-99m HMPAO SPECT in the differential diagnosis of the dementias with histopathologic confirmation. Clin Nucl Med, 2006. 31(7): p. 376-8.16.Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev, 2003. 17(5): p. 545-80.17.Gibson, A.P., J.C. Hebden, and S.R. Arridge, Recent advances in diffuse optical imaging. Phys Med Biol, 2005. 50(4): p. R1-43.18.Kovar, J.L., et al., A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal Biochem, 2007. 367(1): p. 1-12.19.Zhang, H.F., et al., Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol, 2006. 24(7): p. 848-51.20.Emelianov, S.Y., et al., Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging. IEEE Ultrasonics Symposium (2006), 2006: p. 405-415.21.Jose, J., et al., Imaging of tumor vasculature using Twente photoacoustic systems. Journal of Biophotonics, 2009. 2(12): p. 701-717. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download