COMPLEX NUMBERS EXAMPLES & SOLUTIONS
[Pages:12]COMPLEX NUMBERS EXAMPLES & SOLUTIONS
Department of Mathematics & Philosophy
The Open University of Sri Lanka
Produced by The Open University of Sri Lanka
2015
0
Examples for Complex numbers
COMPLEX NUMBERS:EXAMPLES & SOLUTIONS
Question (01)
(i) Find the real values of x and y such that (1- i)x + 2i + (2 + 3i) y + i = - i
3-i
3+i
(ii) Find the real values of x and y are the complex numbers 3 - ix2 y and -x2 - y - 4i conjugate of each other.
(iii) Find the square roots of 4 + 4i
(iv) Find the complex number Z satisfying the equation Z -12 = 5 and Z - 4 = 1
Z - 8i 3
Z -8
(v) Find real such that 3 + 2i sin is 1- 2i sin
(a) real
(b) imaginary
Solution
(i) (1- i)x + 2i + (2 + 3i) y + i = - i
3-i
3+i
{(1- i)x + 2i}(3 + i) + {(2 + 3i) y + i}(3 - i) = - i
(3 - i)(3 + i)
(3 + i)(1- i)x + 6i + 2i2 + (2 + 3i)(3 - i) y + 3i - i2 9 -i2
=
-i
(3 + i - 3i - i2 )x + 6i + (6 + 9i - 2i - 3i2 ) y + 3i + i2 = - i 9 +1
(4 - 2i)x + (9 - 7i) y + 9i -1 = -10i
Produced by The Open University of Sri Lanka
2015
1
[4x + 9 y -1] + i(19 - 2x - 7 y) = 0
4x + 9 y -1 = 0......................(1)
19 - 2x - 7 y = 0.....................(2)
By solving equations (1) and (2)
x = -82 y = 37
5
5
(ii) 3 - ix2 y = -x2 - y - 4i
3 - ix2 y = -(x2 + y) + 4i
-(x2 + y) = 3
-x2 y = 4
x2 = - 4 y
4y-y=3
y2 +3y - 4 = 0
( y + 4)( y -1) = 0 y = - 4 or y = 1
when y = - 4
x2 = - 4 = 1 x = ?1 -4
y =1
x2
=
-4 1
= -4
(Not real)
x = ?1 and y = - 4
(iii) Let z2 = 4 + 4i and z = (x + iy)
z = 4 + 4i z2 = (x + iy)(x + iy)
= x 2 +2ixy + i2 y2
z2 = (x2 - y2 ) + i2xy
Produced by The Open University of Sri Lanka
2015
2
(x2 - y 2 ) + i2xy = 4 + 4i
x2 - y2 = 4 2xy = 4
y = 2x
{ } x2 -
2 x
2
=4
x 4 -4x2 + 4 = 0 (x 2 -2)2 = 0
x2 = 2
x=? 2
y =
2 ?
=? 2
2
z = 2 + 2 i or z = - 2 - 2 i
(iv) z -12 = 5 .................(1) z - 8i 3 z - 4 = 1 ....................(2) z -8
Let z = x + iy
z -12 = (x -12) + iy
z -12 = (x -12)2 + y2
z - 8i = x + i( y - 8)
z - 8i = x2 + ( y - 8)2
z - 4 = (x - 4) + iy
z - 4 = (x - 4)2 + y2
z - 8 = (x - 8) + iy
z - 8 = (x - 8)2 + y2
From (1); z -12 = 5 3 (x -12)2 + y2 = 5 x2 + ( y - 8)2 z - 8i 3
{ } 9 (x -12)2 + y2 = 25 x2 + ( y - 8)2
..............(1)
Produced by The Open University of Sri Lanka
2015
3
From (2) z - 4 = 1 z -8
(x - 4)2 + y2 = (x - 8)2 + y2
(x - 4)2 + y2 = (x - 8)2 + y2
x2 - 8x +16 + y2 = x2 -16x + 64 + y2
8x = 48
x =6
form (1); 9 (6 -12)2 + y2 = 25 62 + ( y - 8)2
9 (36 + y2 ) = 25 36 + ( y - 8)2 16 y2 - 400 y + (2500 - 324) = 0
16 y2 - 400 y + 2176 = 0
y2 - 25y +136 = 0
( y -17) ( y - 8) = 0
y = 17 or y = 8
z = 6 +17i or z = 6 + 8i
(v)
z
=
3 + 2i sin 1- 2i sin
=
(3 + 2i sin )(1+ 2i sin ) (1- 2isin )(1+ 2i sin )
=
(3 - 1+
4sin2 4sin2
)
+
8i sin 1+ 4sin2
If
z
is
real
1
8 sin + 4sin2
=0
= 2
= n + (-1)n 2 n
If
z
is imaginary
3 - 4 sin2 1+ 4sin2
=0
Produced by The Open University of Sri Lanka
2015
4
sin2
=
3 4
sin = ? 3 2
=? 3
= n ? 3
n
Question (02)
(i) Express the following complex numbers in the polar form
(a)
3 2
- +
i i
2
(b) (1- i) (1+ i)(1+ 3 i)
(c) 1+ 7i (2 - i)2
(d) 0 + 0i
(ii) Find the modulus and the principal value of the argument of the following complex numbers
(a) 1- 3i 1- 2i
(b) 1- i - 1+ i 1+i 1-i
(c)1+ cos + i sin (d) 1- (1- i)2
1+ 2i
Produced by The Open University of Sri Lanka
2015
5
(iii)Find the modulus and the principal value of the argument of each of the following complex numbers
(a) (1- 3i)(1- i)
(b) (-3 + 3i) (4 - 4i)
(c) (-3 + 3i)(4 - 4i) (iii) Find the square roots of (a) 5 +12i (b)15 + 8i (c) 24 +10i
Solution
(2)(a)
z
=
3-i 2+i
2
=
(3
(2
- i)(2 - i) + i)(2 - i)
2
=
6
+
i2 5
-
5i
2
=
(1- i)2
=
2
1
-i
2
1 2 2
{ }2
= 2(cos(- 4)) + i sin(- 4))
= ( 2)2 {cos(- 4) + i sin (- 4)}{cos(- 4) + i sin(- 4)}
= 2[cos(- 4 - 4) + i sin(- 4 - 4)]
= 2[cos(- 2) + i sin(- 2)]
(b) z =
1-i
= (1- i)(1- i)(1- 3i)
(1+ i)(1+ 3i) (1+ i)(1- i)(1+ 3i)(1- 3i)
=
1+ i2 - 2i (1- 3 (1- i2 )(1- 3i2 )
i)
=
-2i(1 - 2.4
3i)
Produced by The Open University of Sri Lanka
2015
6
= 1 (- 3 - i) 4
=
2 4
-
3 2
-
1 2
i
= 1 {cos(-5 6) + i sin(-5 6)}
2
(c). z
=
1+ 7i (2 - i)2
=
1+ 7i 22 + i2 - 4i
=
1+ 7i (3 - 4i)
=
(1+ 7i)(3 + 4i) (3 - 4i)(3 + 4i)
= 3 + 28i2 + 25i = -25 + 25i = (-1+ i)
25
25
= 2 -1 2 +1 2 i
= 2 [cos 3 4 + i sin 3 4]
(d) z = 0 + 0i is not possible to write in the form z = r {cos + i sin}
Where r > 0 - Since there is no value such that cos = 0 and sin = 0 There is no argument for Zero Complex number.
(iii)(a)
z
=
1- 3i 1+ 2i
=
(1- 3i) (1+ 2i)
(1 - (1 -
2i) 2i)
=
1+ 6i2 - 5i 1- 4i2
=
-5 - 5i 5
{ } = -1- i = 2 -1 2 + (-1 2)i
= 2 [cos(- 3 4) + i sin(-3 4)]
z = 2 and arg(z) = - 3 4
(b) z
= 1-i 1+ i
-
(1+ i) (1- i)
=
(1- i)2 - (1+ i)2 (1+ i)(1- i)
=
[1- i +1+ i][1- i -1- i]
1- i2
= 2(-2i) = -2i = 2[cos(- 2) + i sin(- 2)]
2
Produced by The Open University of Sri Lanka
2015
7
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- report of receipts fec and disbursements form 3x
- complex numbers examples solutions
- math 461 solution to written homework 2
- integration in cylindrical coordinates
- turunan fungsi trigonometri ub
- ws3 graphing linear equations oak park usd
- calculating the derivative
- staar algebra i may 2021 released
- department of mathematics department of mathematics
- graphing rational functions big ideas learning
Related searches
- complex numbers khan academy
- complex numbers operations
- complex numbers calculator
- simplify complex numbers calculator
- adding complex numbers calculator
- multiplying complex numbers calculator
- complex numbers to polar form
- solve complex numbers calculator
- synthetic division complex numbers calculator
- power of complex numbers calculator
- complex numbers calculator with steps
- divide complex numbers calculator