PHÖÔNG TRÌNH LÖÔÏNG GIAÙC
1
PH??NG TR?NH L???NG GIA?C
GVBM : ?OA?N NGO?C DU?NG
BA?I 1 : Gia?i ca?c ph??ng tr?nh sau : (Ph??ng tr?nh l???ng gia?c c? ba?n)
1) sin 2x 7 3 12 2
2) 2 cos x 1 0 12
?S: x k x k (k Z)
8
24
?S: x k2 x k2 (k Z)
3
6
3) tan5x 3 10 3
4) 3cot 2x 3 0 7
5) sinx + cosx = 0
6) tanx ? cotx = 0
7) sin x 1 2
8) sin2x = 1 2
9) sin3x sin x 5 10
10) cos 2x cos5x 2 3 5
11) tan7x tan x 5 10
12) cot3x cot 2 x 5 3 10
13) cos2(x ?30o) ? sin2(x ?30o) = sin(x + 60o) 14) tan5x.tan3x = 1
15) 4cos2x 1 6 2 0
?S: x k (k Z) 75 5
?S: x 2 k (k Z) 21 2
S : x 3 k , k Z 4
S : x k , k Z 42
S : x k2 x 5 k2 x 7 k2
6
6
6
S : x k , k Z 42
?S: x 3 k x 11 k (k Z)
20
40 2
?S: x k 2 x 11 k 2 (k Z)
45 3
105 7
?S: x 3 k (k Z) 80 8
?S: x 9 k 3 (k Z) 70 7
S : x = 30o + k.120o, k Z S : x k , k Z
16 8 S : x 1 5 k , k Z
2 24
16) 8sin x 3 1 cos x sin x
S : x k x k , k Z
6
12 2
17) 8cos x.cos 2x.cos 4x sin 6x sin x
S : x k , k Z 14 7
18) cos x 3 sin x 2sin x 2 2 3
?S: x k2 x k2 (k Z)
3
6
19) sinx + cosxsin2x + 3 cos3x = 2(cos4x + sin3x) ?S: x k2 x k 2
6
42 7
20) 2
2 sin x
cos
x
1
12
?S: x = k ; x = k (k Z)
4
3
?H B 2009 DB?H 2007
21) cos3xcos3x ? sin3xsin3x = 2 3 2 8
22) sin2x ? 2 2 (sinx + cosx) ? 5 = 0
?S: x = k (k Z) 16 2
?S: x = ?3/4 + k2 (k Z)
DB?H 2006 DB?H 2004
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TA?I LIE?U LUYE?N THI THPT QG ? ?A?I HO?C ........................................................................................................... GVBM : ?OA?N NGO?C DU?NG
2
23) (1 2sin x)cos x 3 (1 2sin x)(1 sin x)
?S: x k2 , k Z 18 3
?H A 2009
24) 2 2 cos 3 x 3cos x sin x 0 4
25) tan4x + 1 = (2 sin 2 2x) sin 3x cos 4 x
26) cotx + sinx 1 tan x.tan x = 4
2
?S: x = k x = + k (k Z)
2
4
?S: x = + k2 x = 5 + k2
18 3
18 3
?S: x = + k x = 5 + k (k Z)
12
12
DB?H 2005 B?H 2002 ?H B 2006
(2 3) cos x 2sin 2 x
27)
2 4 1
2 cos x 1
28)
sin
x 2
cos
x 2
2
3 cos x 2
?S: x = 4 k2 (k Z) 3
?S: x k2 ; x k2 (k Z)
2
6
DB?H 2003 ?H D 2007
29) 3 cos5x 2sin 3x cos 2x sin x 0
?S: x k x k
18 3
62
?H D 2009
30)
tan 2
x 3tan2 x
cos 2x 1 cos2 x
?S: x = ? + k (k Z) 4
DB?H 2005
31) (2sin2x ? 1)tan22x + 3(2cos2x ? 1 ) = 0
?S: x = k (k Z) 62
DB?H 2006
32) sin 5x 2cos2 x 1
?S: x k 2 x k 2
63
14 7
?H B 2013
33) T?m nghie?m tre?n khoa?ng (0 ; ) cu?a ph??ng tr?nh 4sin2 x 2
3
cos
2x
1
2
cos
2
x
3 4
DB?H
2005
?S: x = 5 x = 17 x = 5
18
18
6
34) T?m x thuo?c ?oa?n [0 ; 14] nghie?m ?u?ng ph??ng tr?nh : cos3x ? 4cos2x + 3cosx ? 4 = 0 ?H D 2002
?S: x = , x = 3 , x = 5 , x = 7
2
2
2
2
BA?I 2 : Gia?i ca?c ph??ng tr?nh sau : (Gia?i ph??ng tr?nh l???ng gia?c ba?ng ca?ch bie?n ?o?i t?ch tha?nh to?ng)
1) sin4x.sin7x = cos3x.cos6x
S : x k x k , k Z
20 10
2
DB?H 2004
2) cosx.cos7x = cos3x.cos5x
S : x k x k , k Z
2
4
3) cos11x.cos3x = cos17x.cos9x
S : x k x k , k Z
20
6
4) sin18x.cos13x = sin9x.cos4x
S : x k x k , k Z
9
44 22
5) 4cos x.sin x sin x cos 2x 6 6
6) cos x cos x cos 3x sin x sin x sin 3x 1
22
2 22
S : x k2 , k Z 5
S : x k ; x k2 ; x k2 ; x 5 k2
4
2
6
6
BA?I 3 : Gia?i ca?c ph??ng tr?nh sau : (Gia?i ph??ng tr?nh l???ng gia?c ba?ng ca?ch bie?n ?o?i to?ng tha?nh t?ch)
1) cosx + cos2x + cos3x + cos4x = 0
S : x k x k2 x k2 , k Z
2
55
2) 1 + cosx + cos2x + cos3x = 0
S : x k x k2 , k Z
2
33
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TA?I LIE?U LUYE?N THI THPT QG ? ?A?I HO?C ........................................................................................................... GVBM : ?OA?N NGO?C DU?NG
3
3) sin2x + sin4x = sin6x 4) cosx + cos2x + cos3x + cos4x = 0 5) sin3x ? sinx + sin2x = 0 6) 1 + sinx + cos3x = cosx + sin2x + cos2x
S : x k x k x k , k Z
2
3
S : x k x k2 , k Z
2
55
S : x k2 x k2 x k , k Z 3
S : x k2 x k2 x k x 7 k2
3
6
6
BA?I 4 : Gia?i ca?c ph??ng tr?nh sau : (Gia?i ph??ng tr?nh l???ng gia?c ba?ng co?ng th??c ha? ba?c)
1) sin23x ? cos24x = sin25x ? cos26x 2) cos2 x cos2 2x cos2 3x cos2 4x 3
2 3) sin24x + sin23x = sin22x + sin2x
4) sin2 x sin2 3x 2cos2 2x 0 5) cos2 x cos2 2x cos2 3x 3
2 6) cos2 x cos2 2x cos2 3x cos2 4x 2
S : x k x k , k Z
2
9
S : x k2 x k
5
84
S : x = k x = k x = k , k Z
2
5
2
S : x k x k , k Z
2
82
S : x k x k , k Z
3
84
S : x k x k , k Z
42
10 5
BA?I 5 : Gia?i ca?c ph??ng tr?nh sau : (Ph??ng tr?nh l???ng gia?c co? ch??a to?ng cu?a sinx va? cosx)
1) sinx + cosx = 2
2) sin2x ? cos2x + sinx = cosx
S : x k2 , k Z 4
S : x = k2 x = + k2 , k Z 63
3) cos4 x sin4 x 1 4 4
S : x k x k , k Z
2
4
4) (2cosx ? 1)(sinx + cosx) = 1
S : x = k2 x = k2 , k Z 63
5) 1 tan x 2 2 sin x
S : x = /4 + k2, k Z
BA?I 6 : Gia?i ca?c ph??ng tr?nh sau : (Ph??ng tr?nh ba?c nha?t ?o?i v??i sinx, cosx)
1) 5 sinx + 2cosx = 4
S : x
2) 3 cos x sin x 2
S : x = 11 k2 x = 7 k2 , k Z
12
12
3) 3sinx + 4cosx = 5
4) sin2x + 6 cosx = 3cos2x + 2 sinx
S : x = k2 , k Z
S : x k x 5 k2 x k2 , k Z
3
12
12
5) sin4x + 3 cos4x = 3 6) 3 cos3x sin 3x 2 7) 3sin 3x 3 cos9x 1 4sin3 3x 8) cos 7x.cos5x 3 sin 2x 1 sin 7x.sin5x 9) 4sin3 x.cos 3x 4cos3 xsin3x 3 3 cos 4x 3
S : x k x k , k Z
2
12 2
S : x k2 x 5 k2 , k Z
36 3
36 3
S : x k2 x 7 k2 , k Z
18 9
54 9
S : x k x = k , k Z 3
S : x k x k , k Z
24 2
82
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TA?I LIE?U LUYE?N THI THPT QG ? ?A?I HO?C ........................................................................................................... GVBM : ?OA?N NGO?C DU?NG
4
10) Cho ph??ng tr?nh : 2sin x cos x 1 a sin x 2cos x 3
(a la? tham so?)
a) Gia?i ph??ng tr?nh khi a 1 3
b) T?m a ?e? ph??ng tr?nh co? nghie?m.
?S : x / 4 k ; 1/2 a 2
BA?I 7 : Gia?i ca?c ph??ng tr?nh sau : (Ph??ng tr?nh ba?c hai theo mo?t ha?m so? l???ng gia?c)
1) 2cos2x + cosx = 1 2) 2cos2(x 90) 5sin(x 90) 4
S : x = + k2 x = k2 , k Z S : x = 1200 + k.3600 x = 2400 + k.3600
3) 2cos2x + 2 cosx ? 2 = 0
4) 4cos2x ? 2 3 1 cosx + 3 = 0 5) tan2x + 1 3 tanx ? 3 = 0
6) cos2x + 9cosx + 5 = 0
7) cos2x + sinx + 1 = 0 8) sin22x ? 2cos2x + 3 = 0
4 9) cos2 3x.cos 2x cos2 x 0
10) sin2x cos 2x 3sin x cos x 2 0
11) cos x(2sin x 3 2) 2cos2 x 1 1 1 sin 2x
12) cos 2x 2 + 4sin x
3
3
=
5 2
13) tanx + 3 cotx ? 1 3 = 0
14) cos3x ? 2cos2x = 2
15) 2sin2x ? cos2x ? 4sinx + 2 = 0
16) 3cos 2x 4cos3 x cos3x 0
17) sin4 2x cos4 2x sin 2x.cos 2x 18) 3 2sin xsin3x 3cos 2x
S : x k2 , k Z 4
S : x k2 x k2 , k Z
3
6
S : x k x k , k Z
4
3
S : x 2 k2 , k Z 3
S : x = ?/2 + k2, k Z
S : x k x k , k Z
6
6
S : x k , k Z 2
S : x k2 ; x k2; x k2 ; x 5 k2
2
6
6
S : x k2 , k Z 4
S : x k2 x k2 , k Z
6
2
S : x k x k , k Z
4
3
S : x k x 2 k2 , k Z
2
3
S : x k2 x k2 x k2 2
S : x k2 x k2 , k Z 3
S : x k , k Z 82
S : x k , k Z
19) tan(7 x) 2 cot 9 x 3 0 2
20) sin 5x 1 5sin x
21) cot x tan x 2 cos 4x sin 2x
22) sin8 x cos8 x 17 cos2 2x 16
23) cot x tan x 4sin 2x 2 sin 2x
S : x k , k Z 4
S : x
S : x k , k Z 3
S : x k , k Z 84
S : x k , k Z 3
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TA?I LIE?U LUYE?N THI THPT QG ? ?A?I HO?C ........................................................................................................... GVBM : ?OA?N NGO?C DU?NG
5
24) sin4 x cos4 x 1 cot 2x 1
5sin 2x
2
8sin 2x
25) 2 cos6 x sin6 x sin x cos x 0 2 2sin x
26) 3 2sin xcos x 1 cos2 x 1 1 sin 2x
S : x k , k Z 6
S : x 5 2k , k Z 4
S : x k2 , k Z
27) 1 1 2 sin 2x cos x sin 4x
28) sin4 2x cos4 2x cos4 4x
tan
4
x
tan
4
x
S : x k2 x 5 k2 , k Z
6
6
S : x k , k Z 2
29) 2sin2x + 7sinx ? 4 = 0
?S: x k2 x 5 k2 , k Z
6
6
THPTQG 2016
30) cotx tanx 4sin 2x 2 sin2x
31) 2 cos6 x sin6 x sin x cos x 0 2 2sin x
?S: x = + k (k Z) 3
?S: x = 5 + h2 (h Z) 4
?H B 2003 ?H A 2006
32)
(1
sin
x
cos
2x) sin
x
4
1
cos x
1 tan x
2
?S: x k2 x 7 k2
6
6
?H A 2010
33) sin 2x cos 2x tan x cot x cos x sin x
?S: x = k2 (k Z) 3
DB?H 2007
34) cos23x.cos2x ? cos2x = 0
?S: x = k (k Z) 2
?H A 2005
35) 5sinx ? 2 = 3(1 ? sinx)tan2x
?S: x = + k2 ; x = 5 + k2
6
6
?H B 2004
36) cos 4 x sin 4 x cos x sin3x 3 0 ?S: x = + k (k Z)
4 4 2
4
?H D 2005
37) sin4 x cos4 x 1 cot 2x 1
5sin 2x
2
8sin 2x
?S: x = k , k Z 6
DB?H 2002
38) cos2x + cosx(2tan2x ? 1) = 2
?S: x = + k2 x = k2 (k Z) DB?H 2003 3
39) 4(sin3x + cos3x) = cosx + 3sinx
?S: x = + k x = + k (k Z) DB?H 2004
3
4
BA?I 8 : Gia?i ca?c ph??ng tr?nh sau : (Gia?i ph??ng tr?nh l???ng gia?c ba?ng ca?ch ??a ve? ph??ng tr?nh t?ch)
1) 2sin2x ? cos2x = 7sinx + 2cosx ? 4
S : x k2 x 5 k2 , k Z
6
6
2) cos3x 4cos 2x 3cos x 4 0
S : x / 2 k , k Z
3) sin4x ? cos4x = 1 + 2 2 sinxcosx
S : x k x k, k Z 2
4) 1 + tanx = sinx + cosx
S : x k x k2 4
5) sin 2x 2cos 2x 1 sin x 4cos x
S : x = /3 + k2 (k Z)
6) sin3 x cos 3x cos3 xsin3x sin34x
S : x k ; x k , k Z
12 4
12 4
7)
tan
x
cos
x
cos
2
x
sin
x1
tan
x
tan
x 2
S : x k2 , k Z
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TA?I LIE?U LUYE?N THI THPT QG ? ?A?I HO?C ........................................................................................................... GVBM : ?OA?N NGO?C DU?NG
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- cbs sale aer or class 11 maths set byju s
- exercices les équations trigonométriques
- فضاء التلاميذ والأساتذة والطلبة
- phÖÔng trÌnh lÖÔÏng giaÙc
- phƯƠng trÌnh lƯỢng giÁc
- transformaciones trigonomÉtricas colegio premium
- funkcjetrynometrycznekątadowolnego maria małycha
- step support programme 2021 step 2 worked paper
- giải sbt toán 11 bài 3 một số phương trình lượng giác thường gặp vndoc
- extension 1 mathematics exercises and answers university of sydney