Advanced Physics Laboratory Manual Department of …

Advanced Physics Laboratory Manual

Department of Physics University of Notre Dame 2008

Edited by J.W. Hammer

Contents

I.

GENERAL INFORMATION

3

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II . A. GENERAL EXPERIMENTS

17

1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Speed of Light ? Experiment using positron annihilation and ultrafast timing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II . B. ATOMIC PHYSICS EXPERIMENTS

35

3 Optical Diffraction and Interference using Single Photon Counting . . . . . . . . . . . . 35

4 Saturation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 X-Ray-Spectroscopy and Moseley's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II . C. NUCLEAR PHYSICS EXPERIMENTS

65

6 Alpha Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Beta Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Gamma Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Compton Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10 Rutherford Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11 Lifetime of Excited Nuclear States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2

CONTENTS

12 Gamma?Gamma?Angular Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

13 Multidimensional Coincidences ? Determination of a Nuclear Level Scheme . . . 144

14 Neutron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

II . D. ELEMENTARY PARTICLES EXPERIMENTS

159

15 Cosmic Ray Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

16 Muon Lifetime Experiment ? Determination of the Fundamental Weak Coupling Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

II . E. CONDENSED MATTER EXPERIMENTS

177

17 X-Ray Diffraction and Crystal Structure (XRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

18 Material Analysis using X-ray Fluorescence (XRFA) . . . . . . . . . . . . . . . . . . . . . . . . . . 188

19 Electron Spin Resonance (ESR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

20 Nuclear Magnetic Resonance (NMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

21 M??bauer Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

22 Angular Correlation of Annihilation Radiation (ACAR) . . . . . . . . . . . . . . . . . . . . . . . 219

23 Positron Annihilation Lifetime Spectroscopy (PALS) . . . . . . . . . . . . . . . . . . . . . . . . . . 226

24 Perturbed Angular Correlation (PAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

III. APPENDIX

239

25 Tables of Important Constants, Units and Conversion Factors . . . . . . . . . . . . . . . . . 239

26 Units, Abbreviations, and Conversion Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

I. GENERAL INFORMATION

A. Introduction

This Lab Manual will provide the necessary information to perform the experiments in a reasonable time. It cannot substitute reading of relevant literature nor will it work as a "cookbook" ? experimental expertise has to be aquired through your own exercise and careful thoughts about the experiments. However, if well prepared and applying very careful experimental skills the student can expect results which can compare with the best in literature.

B. General Remarks

. The aim of a lab course in the Advanced Physics Teaching Lab is:

? Learn physics by proper preparation for the experiments and by doing.

? Learn experimental techniques. All theories have to be proven by experiments and new discoveries mostly come from very advanced measurements.

? Working in experimental research requires techniques at the technical limits and the knowledge can be acquired by training.

? The fight for better experimental results can only be won "in the field". The subsequent treatment of data on a computer cannot serve as a substitute for good experimental procedures but it should complement them.

? Training with established classical experiments should give the students confidence that physics "works" and enables them later to explore new fields. Training of experimental techniques promotes interest and ones own creativity.

? Learn how to review the results critically and to get a realistic estimate of uncertainties

4

GENERAL INFORMATION

? Learn some practical experiences in applied fields: electronics and signals, data processing with computers, experience with large data banks over the internet, vacuum technique, safe handling of radioactive material and measurement of radiation, appropriate presentation of results, just to mention a few.

C. Homework

Time is required for appropriate preparation of the lab (homework). Use the precious lab time for measurement and learning.

? The final evaluation of the measurements and the writing of the reports is mainly homework ! But some diagrams and preliminary results should be obtained in the lab immediately after the measurement, to get an idea whether the measurement was right.

? Of course questions about the evaluation and the writing of the reports should be discussed with the teaching personnel/staff.

? All measures are taken in international standards, the SI-system (95% of the world's population and all scientists are using it).

D. Organisational Remarks

? The experiments are performed by the students in groups of two.

? Schedule the experiments (new or extension) one week in advance with the TA's.

? Each group has to come prepared about the theory of the experiment before the lab starts. The students should understand the experiment before they start with setup and measuring. There may be questioning by the TA's before starting the experiment.

? Each group writes down all important information in a bound logbook, which is a document and a lab diary. All information which can be plotted should be shown graphically already during the lab.

? Finishing of an experiment needs to be approved either by the prof or the TA's.

? After the lab an experimental report has to be written and handed in within 14 days after completion of the experimentm as a first draft. This draft will be corrected by the teaching staff and returned promptly for a second draft which should be final. The final report version needs to be approved.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download