HANDBOOK OF - Elsevier



HANDBOOK OF

RADIOACTIVITY

ANALYSIS

Second Edition

With a foreword by

Dr. Mohamed ElBaradei

Director General

International Atomic Energy Agency

Edited by

Michael F. L’Annunziata

Elsevier Science

TABLE OF CONTENTS

CONTRIBUTORS

ACRONYMS, ABBREVIATIONS, AND SYMBOLS

FOREWORD

PREFACE

1. Introduction: Nuclear Radiation, Its Interaction with Matter and Radioisotope Decay

MICHAEL F. L’ANNUNZIATA

I. Introduction

II. Particulate Radiation

1 Alpha Particles

A. Negatrons

B. Positrons

1. N/Z Ratios and Nuclear Stability

2. Positron Emission versus Electron Capture

D. Beta-particle Absorption and Transmission

E. Internal Conversion Electrons

F. Auger Electrons

G. Neutron Radiation

1. Neutron Classification

2. Sources of Neutrons

a. Alpha Particle-Induced Nuclear Reactions

b. Spontaneous Fission

c. Neutron-Induced Fission

d. Photoneutron (γ,n) Sources

e. Accelerator Sources

f. Nuclear Fusion

3. Interaction of Neutrons with Matter

a. Elastic Scattering

b. Inelastic Scattering

c. Neutron Capture

d. Nonelastic Reactions

e. Nuclear Fission

4. Neutron Attenuation and Cross Sections

5. Neutron Decay

III. Electromagnetic Radiation

A. Dual Nature: Wave and Particle

B. Gamma Radiation

C. Annihilation Radiation

D. Cherenkov Radiation

E. X-Radiation

F. Bremsstrahlung

IV. Interaction of Electromagnetic Radiation with Matter

A. Photoelectric Effect

B. Compton Effect

C. Pair Production

D. Combined Photon Interactions

V. Stopping Power and Linear Energy Transfer

A. Stopping Power

B. Linear Energy Transfer

VI. Radioisotope Decay

Half-life

A. General Decay Equations

B. Secular Equilibrium

C. Transient Equilibrium

D. No Equilibrium

E. More Complex Decay Schemes

VII. Radioactivity Units and Radionuclide Mass

Units of Radioactivity

A. Correlation of Radioactivity and Radionuclide Mass

B. Carrier-Free Radionuclides

References

2. Gas Ionization Detectors

KARL BUCHTELA

I. Introduction: Principles of Radiation Detection by Gas Ionization

II. Characteristics of gas Ionization Detectors

A. Ion Chambers

B. Proportional Counters

C. Geiger-Mueller Counters

III. Definition of Operating Characteristics of Gas Ionization Detectors

A. Counting Efficiency

B. Energy Resolution

C. Resolving Time

D. Localization

IV. Ion Chambers

Operating Mode of Ion Chambers

1. Ion Chambers Operating in the Current Mode

2. Charge Integration Ionization Chambers

3. Pulse Mode Ion Chambers

A. Examples and Applications of Ion Chambers

1. Calibration of Radioactive Sources

2. Measurement of Gases

3. Frisch Grid Ion Chambers

4. Radiation Spectroscopy with Ion Chambers

5. Electret Detectors

6. Fission Chambers

V. Proportional Gas Ionization Detectors

Examples and Applications of Proportional Counters

1. Gross Alpha-Beta Counting, Alpha-Beta Discrimination and Radiation Spectroscopy

2. Position-Sensitive Proportional Counters

a. Single-Wire Proportional Counters

b. Multiwire Proportional Counters

c. Microstrip and Micropattern Ionization Counters

d. Low-Level Counting Techniques Using Proportional Gas Ionization Detectors

3. Applications in Environmental Monitoring, and Health Physics

a. Radon in Water

b. Measurement of Plutonium-241

c. Measurement of Iron-55

d. Tritium in Air

e. Radiostrontium

f. Health Physics

VI. Geiger-Mueller Counters

Designs and Properties of Geiger-Mueller Counters

1. Fill Gas

2. Quenching

3. Plateau

4. Applications

a. Environmental Radioassay

VII. Special Types of Ionization Detectors

A. Neutron Detectors

1. BF3 Tube Construction

2. Detectors for Fast Neutrons

a. Long Counter

3. Neutron Counting in Nuclear Analysis of Fissile Materials and Radioactive Waste

4. Moisture Measurements

B. Multiple Sample Reading Systems

C. Self-Powered Detectors

D. Self-Quenched Streamer

E. Long-Range Alpha Detectors

F. Liquid Ionization and Proportional Detectors

G. Dynamic Random Access Memory Devices (DRAMs)

References

3. Solid State Nuclear Track Detectors

RADOMIR ILIĆ and SAEED A. DURRANI

I. Introduction

II. Fundamental Principles and Methods of Solid State Nuclear Track Detection

Physics and Chemistry of Nuclear Tracks

1. Formation of Latent Tracks

a. Factors Determining the Production of ‘Stable’/Etchable Tracks

2. Visualization of Tracks by Chemical and Electrochemical Etching

a. Chemical Etching (CE)

b. Electrochemical Etching (ECE)

Track Detector Types and Properties

1. General Properties

2. Ageing and Environmental Effects

A. Track Evaluation Methods

1. Manual/Ocular Counting

2. Spark Counting

3. Advanced Systems for Automatic Track Evaluation

Basics of Measurement Procedures

4. Revelation Efficiency

5. Sensitivity

6. Statistical Errors

7. Background Measurement

8. Calibration and Standardization

III. Measurements and Applications

A. Earth and Planetary Sciences

1. Radon Measurements

a. Response of Detectors to Radon and Radon Daughters

b. Types of Measurement

2. Fission Track Dating

3. Planetary Science

a. Lunar Samples

b. Meteoritic Samples

4. Cosmic Ray Measurements: Particle Identification

B. Physical Sciences

1. Particle Spectrometry

2. Heavy Ion Measurements

3. Neutron Measurements

a. Thermal Neutrons

b. Fast Neutrons

4. Nuclear and Reactor Physics

5. Radiography

6. Elemental Analysis and Mapping

C. Biological and Medical Sciences

1. Radiation Protection Dosimetry/Health Physics

a. Radon Dosimetry

b. Neutron Dosimetry

c. Heavy Ion Dosimetry

2. Environmental Sciences

a. Measurement of Uranium and Radium Concentrations in Water, Milk, Soil, and Plants, etc.

b. Plutonium in the Environment

c. ‘Hot Particle’ Measurements

3. Cancer Diagnostics and Therapy

IV. Conclusion

Acknowledgements

References

4. Semiconductor Detectors

PAUL F. FETTWEIS, JAN VERPLANCKE, RAMKUMAR VENKATARAMAN,

BRIAN YOUNG and HAROLD SCHWENN

I. Introduction

A. The Gas-Filled Ionization Chamber

B. The Semiconductor Detector

C. Fundamental Differences between Ge and Si Detectors

1. The Energy Gap

2. The Atomic Number

3. The Purity or Resistivity of the Semiconductor Material

4. Charge Carrier Lifetime τ

II. Ge Detectors

High-Purity Ge Detectors

A. Analysis of Typical γ Spectra

1. Spectrum of a Source Emitting a Single γ Ray with Eγ ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download