3 4 4
Chuy?n : PHNG TR?NH LNG GI?C
3
1/ Gii phng tr?nh: 2 2 cos2x sin2x cos x 4sin x 0 .
4
4
Gii:
(sin x cos x) 4(cos x sin x) sin 2x 4 0
3
x k ; x k2 ; x k2
4
2
2/ Gii phng tr?nh: sin2 3x cos2 4x sin2 5x cos2 6x
k
Gii:
cos x(cos7x
cos11x)
0
x x
2 k
9
3/ T?m nghim tr?n khong 0; ca phng tr?nh:
2
4 sin2
x
3 sin
2x
1 2 cos2
x
3
2
2
4
5 2
Gii:
sin 2x
3
sin
2
x
x x
18 5
k 3
l2
(k Z) (l Z)
(a) (b)
6
5
V? x 0; n?n x= .
2
18
1
1
4/ Gii phng tr?nh: sin 2x sin x
2 cot 2x (1)
2sin x sin 2x
Gii :
(1)
cos2 2x cos x cos 2x 2 cos 2x
cos2x = 0
x
k
sin 2x 0
42
3sin 2x 2sin x
5/ Gii phng tr?nh:
2
(1)
sin 2x.cos x
2(1 cos x)sin x(2cos x 1) 0
Gii :
2cosx ? 1 = 0 x k 2
sin x 0, cos x 0
3
6/ Gii phng tr?nh: cos 2x 5 2(2 cos x)(sin x cos x) (1)
Gii: (cos x ? sin x)2 4(cos x ? sin x) ? 5 0
x
k2
x k2
2
7/ T?m c?c nghim thc ca phng tr?nh sau tho m?n 1 log1 x 0 :
3
sin x.tan 2x 3(sin x 3 tan 2x) 3 3 (2)
Gii: (2) (sin x 3)(tan 2x 3) 0 x k ; k Z
62
5 Kt hp vi iu kin ta c k = 1; 2 n?n x ; x
36
8/ Gii phng tr?nh: cos3x cos3 x sin 3x sin3 x 2 3 2
8
2
Gii: cos4x = x k
2
16 2
1
Chuy?n : PHNG TR?NH LNG GI?C
9/ Gii phng tr?nh: 9sinx + 6cosx ? 3sin2x + cos2x = 8
Gii: PT (1? sinx)(6cosx + 2sinx ? 7) = 0 1? sinx = 0 x k 2
2 10/ T?m nghim ca phng tr?nh: cos x cos2x sin3 x 2 tho m?n : x 1 3
Gii: PT (cos x 1)(cos x sin x sin x.cos x 2) 0 x k 2 . V? x 1 3 2 x 4
n?n nghim l?: x = 0
(sin 2x sin x 4) cos x 2
11/ Gii phng tr?nh:
0
2sin x 3
Gii:
PT
(2 cos x 1)(sin x cos x 2)
0
x
k2
2sin x 3 0
3
12/ Gii phng tr?nh: sin x cos x 4sin 2x 1 .
Gii: t
t
sin x cos x ,
t 0.
PT
4t2 t 3 0
xk
.
2
13/ Gii phng tr?nh: cos23x.cos2x ? cos2x = 0.
Gii: D?ng c?ng thc h bc. S: x k (k Z )
2
14/ Gii phng tr?nh:
4cos4x
?
cos2x
1
3x
cos 4x cos
7 =
2
42
cos 2x 1 x k
3x
Gii: PT cos2x + cos = 2 3x
m8 (k;m ) x = 8n
4
cos 4 1
x 3
cos2 x.cos x 1
15/ Gii phng tr?nh:
21 sin x
sin x cos x
Gii: PT (1 sin x)(1 sin x)(cos x 1) 2(1 sin x)(sin x cos x)
1 sin
sin x 0 x cos x
sin
x
cos
x
1
0
1 sin x 0
1 sin xcos
x
1
0
x x
2
k2 k 2
16/ Gii phng tr?nh:
1
sin
x 2
sin
x
cos
x 2
sin 2
x
2 cos2
4
x 2
Gii: PT
sin
x
sin
x
1
2 sin 2
2
x
x
2
2 sin
2
1
0
x k x k 4
x k
17/ Gii phng tr?nh:
sin3 x.sin 3x cos3 x cos3x 1
8 tan x tan x
6 3
Gii:
iu kin:
sin x
6
sin
x
3
cos x
6
cos
x
3
0
Ta
c?
tan x
6
tan
x
3
tan
x
6
cot
6
x
1
PT sin3 x.sin 3x cos3 x cos3x 1 8
1 cos 2x cos 2x cos 4x 1 cos 2x cos 2x cos 4x 1
2
2
2
2
8
2
Chuy?n : PHNG TR?NH LNG GI?C
2(cos 2x cos 2x cos 4x) 1 cos3 2x 1 cos 2x 1
x
6
k
(loa?i)
2
8
2
x
k
6
Vy phng tr?nh c? nghim x k , (k )
6
18/ Gii phng tr?nh: sin3 x.(1 cot x) cos3 x(1 tan x) 2sin 2x .
k Gii: KX: x sao cho sin 2x 0 .
2
Khi ?, VT = sin3 x cos3 x sin2 x cos x cos2 x sin x
= (sin x cos x)(sin2 x sin x cos x cos2 x) sin x cos x(sin x cos x) = sin x cos x
sin x cos x 0
PT sin x cos x
2 sin
2x
(sin
x
cos
x)2
2 sin
2x
(1)
(1) 1 sin 2x 2sin 2x sin 2x 1( 0) 2x 2k x k
2
4
tho m?n iu kin sin x cos x 0 , c?c nghim ch c? th l?: x 2k
4
19/ Gii phng tr?nh:
sin
3x
4
sin
2x
sin
x
4
.
Gii : PT sin 3x cos3x sin 2x(sin x cos x)
sin x cos x 0 tan x 1
(sinx + cosx)(sin2x 1) = 0 sin 2x 1 0
sin 2x 1
x 4
k
20/ Gii phng tr?nh: cos2x + cosx + sin3x = 0
Gii: PT cosx(1 + cosx) + 8 sin3 x cos3 x = 0 2cos2 x cos x (1 cos x)sin x 0
22
2
x cos 2 0
sin x cos x sin x.cos x 0
1 21/ Gii phng tr?nh: cos3x cos 2x cos x
2
x Gii: Nu cos 0 x k 2 , k Z , phng tr?nh v? nghim.
2
x
x
Nu cos 0 x k 2 , k Z , nh?n hai v phng tr?nh cho 2cos ta c:
2
2
x
x
x
x
2cos cos3x 2cos cos 2x 2cos cos x cos
t?chth?nh t?ng
7x cos 0
2
2
2
2
2
2 x k , k , i chiu iu kin: k 3 + 7m, mZ .
77
22/ T?m tng tt c c?c nghim x thuc [ 2; 40] ca phng tr?nh: sinx ? cos2x = 0.
Gii: Ta c?:
sinx ? cos2x = 0 2sin2x + sinx ?1 = 0
x
2 k
,k
.
63
2
3
3
V? x [ 2; 40]
n?n
2 k 6
3
40
2
2
6
k
2
40
6
0,7 k 18,8 k 1,2,3,...,18 .
3
Chuy?n : PHNG TR?NH LNG GI?C
2 Gi S l? tng c?c nghim tho YCBT: S = 18. (1 2 3 ... 18) 117 .
63
23/ Gii phng tr?nh:
tan x
6
tan
x
3
.sin 3x
sin
x sin 2x
Gii:
iu kin:
cos
x
6
. cos
x
3
0
PT
sin
x
6
sin
x
3
sin 3x
sin
x
sin
2x
? sin3x = sinx + sin2x
cos
x
6
cos
x
3
sin2x(2cosx
+
1)
=
0
sin 2x 0
cos x
1 2
x x
k
2 2 3
k 2
k
Kt hp iu kin, nghim ca phng tr?nh
x l?:
2
x 2 2k
3
24/ Gii phng tr?nh:
2 cos
x
1
cos2
x
3
8
sin
2( x
)
3cos
x
21
1
s in2x
.
3
3
2 3
1 sin x 0 Gii: PT (1 sin x)(6 cos x sin x 8) 0 6 cos x sin x 8 0 1 sin x 0
1
1
25/ Gii phng tr?nh: sin 2x sin x
2cot 2x
2sin x sin 2x
Gii: PT cos22x cosxcos2x = 2cos2x v? sin2x 0
cos 2x 0
2 cos2
x cos x 1 0(VN )
cos2x
=
0
2x
k
x
k
2
42
26/ Gii phng tr?nh:
2 sin x
4 (1 sin 2x) 1 tan x cos x
Gii: iu kin cos x 0 x k , k .
2
Ta c? PT cos x sin x cos x sin x2 cos x sin x (cos x sin x)(cos 2x 1) 0
cos x
cos x
cos cos
x sin x 2x 1 0
0
x x
4
m
m
,
m
.
27/ Gii phng tr?nh: tan2 x tan2 x.sin3 x cos3 x 1 0
Gii: K: x k . PT tan2 x(1 sin3 x) (1 cos3 x) 0 2
(1 cos x)(1 sin x)(sin x cos x)(sin x cos x sin x cos x) 0
x k2 ; x k ; x k2 ; x k2
4
4
4
4
Chuy?n : PHNG TR?NH LNG GI?C
28/ Gii phng tr?nh: 2cos3x + 3 sinx + cosx = 0
Gii:
PT
cos
x
3
cos 3x
cos
x
3
cos(
3x)
x
3
k
2
sin6 x cos6 x 1
29/ Gii phng tr?nh:
tan 2x
cos2 x sin2 x 4
k Gii: iu kin: cos2x 0 x (k )
42
PT
1
3 sin2 2x
1 sin 2x
3sin22x
+
sin2x ? 4
=
0
4
4
sin2x = 1 x k ( kh?ng tho). Vy phng tr?nh v? nghim.
4
30/ Gii phng tr?nh: cos3 x cos 3x sin 3 x sin 3 x 2 4
1
Gii: PT cos 2x= x= k (k )
2
8
31/ Gii phng tr?nh: cot x 3 tan x 2cot 2x 3 .
Gii: iu kin: sin x cos x 0 x k .
2
cos 2x cos2 x sin2 x
Ta c?: 2cot 2x 2
2
cot x tan x .
sin 2x 2sin x cos x
cot x 3
PT
3
cot
x
3 cot
x
cot
2
x
7 cot
x
6
0
cot
x
1
x
4
k ,k
32/
Gii phng tr?nh:
2
cos2
3x 4 cos 4x 15sin 2x 21
4
Gii: PT
sin3 2x 2 sin2 2x 3sin 2x 6
0
sin 2x
1
x
k
4
33/ Gii phng tr?nh: (1 4 sin2 x)sin 3x 1 2
Gii: Nhn x?t: cosx = 0 kh?ng phi l? nghim ca PT. Nh?n 2 v ca PT vi cosx, ta c:
PT 2 sin 3x(4 cos3 x 3 cos x) cos x 2 sin 3x.cos3x cos x
sin 6x sin x
2
k2
k2
x
x
14 7
10 5
34/
Gii phng tr?nh:
1 sin x sin 2x
1 cos x cos2
x
2
Gii: PT (sin x 1)(sin x cos x 2) 0 sin x 1 x k2 .
2
5
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- phẦn i ĐỀ bÀi phƯƠng trÌnh bẬc nhẤt vỚi sin vÀ cosin
- 英進舎予備校・進学センター英進舎 英進舎
- ricard peiró i estruch
- 1 compléments de trigonométrie
- c x y x cot y x 2 x c
- tÀi liỆu hỌc tẬp miỄn phÍ 0 1 3 2 4
- trigonometric identities miami
- الأستاذ بنموسى محمد ثانوية عمر بن عبد العزيز المستوى 2
- harder trigonometry problems q
- harder trigonometry problems
Related searches
- biology 3.4 answers
- 3.4 assessment biology answers
- 3 4 time signature examples
- 3 4 music time signature
- practice 3.4 answer key
- ny lottery 3 4 daily numbers
- ny lottery pick 3 and 4 results
- 3 or 4 word quotes
- 3 4 assessment biology answers
- new york lottery 3 and 4 digit
- toyota 3 4 v6 crate motor
- pick 3 pick 4 new york