Lee - en US.ISO8859-1
1. Solve
i) x2y’-2xy-y=0, y(1)=e-1 (2009台大生醫電資所)
(Sol.) [pic], [pic], [pic], y(1)=e-1[pic]A=1, ∴ [pic].
ii) (y2+1)dx=ysec2(x)dy (2002成大電研)
(Sol.) [pic], [pic], [pic].
iii) y’=ytan(2x), y(0)=2 (2003中央光電所)
(Sol.) [pic], ln|y|+c=-[pic]ln|cos(2x)|, [pic]=cos(2x), y(0)=2[pic]A=4,∴ [pic]=cos(2x).
iv) y”=1+(y’)2 (台科大電研)
(Sol.) u=y’, u’=1+u2, [pic], tan-1(u)=x+c, u=y’=tan(x+c), ∴ y=ln[sec(x+c)]=d.
v) tf’-(t+2)f= -2t2-2t (2013台大電研)
(Sol.) It is the first-order linear differential equation. f’-([pic])f=-2t-2, [pic], t-2e-tf’-t-3(t+2)e-tf=(-2).(t-1+t-2)e-t, [t-2e-tf]’=-2(t-1+t-2)e-t, t-2e-tf =2t-1e-t +c, ∴ f=2t +ct2et.
vi) y’=y-y2 (2009台大生醫電資所)
(Sol.) It is Bernouli’s equation, let z=y1-2= y-1, y=z-1, y2=z-2,
[pic],[pic], [pic], [pic],
[zex]’=ex, zex=ex+c, z=1+ce-x, ∴ [pic].
vii) (2y2+3x)dx+2ydy=0 (台大電研)
(Sol.) y’+y=1.5xy -1, it is Bernouli’s equation, let z=y1-(-1)= y2, y=z1/2, y-1= z-1/2,
[pic], z’+2z=[pic], [ze2x]’=[pic],
ze2x=[pic]+c, z=[pic]+ce-2x, ∴ y2=[pic]+ce-2x.
viii) y’+y/x=xy2
(Sol.) It is Bernouli’s equation, let z=y1-2= y-1, y=z -1, y2=z -2,
[pic], [pic], [pic],
[pic], [pic], [pic], z=-x2+cx, ∴ y-1=-x2+cx.
ix) [pic].
(Sol.) y’+y/x=2x-3y-4/3, it is Bernouli’s equation, let z=y1-(-4/3)=y7/3, y=z3/7,
[pic], [pic],
[pic], [pic], [pic], [pic],
[pic], [pic].
x) xy’+2y=xy3 (1991清大電研)
(Sol.) It is Bernouli’s equation, let [pic]
[pic]
[pic],[pic],
[pic], [pic][pic][pic]
xi) x(lny-lnx)dy=(ylny-ylnx-x)dx (2005台大電研)
(Sol.) It is a homogeneous equation. [pic],
[pic]. Let u=y/x, ln(u)[u+xu’]=uln(u)-1,
ln(u)du=-[pic][pic]uln(u)-u=-ln(x)+c, ∴ [pic].
xii) [pic] (1991交大電信所)
(Sol.) Set [pic]
[pic]
xiii) (2y2-9xy)dx+(3xy-6x2)dy=0 (2005台科大電研)
(Sol.) y’=[pic], let u=y/x, [pic], [pic],
[pic], [pic], [pic],
∴ [pic].
xiv) [pic] (1990交大電子所)
(Sol.) [pic]. Let [pic], [pic],
[pic], ue-udu=dx, -ue-u-e-u=x+c, [pic]
xv) (x2+2xy-y2)dx+(y2+2xy-x2)dy=0 (2009台大電研)
xvi) [pic] (2009台灣聯合大學系統碩士班聯招)
(Sol.) [pic]. Let u=y/x,[pic], [pic],
[pic], ∴ [pic].
xvii) [pic] (文化電機轉學考) (Sol.) [pic].
xviii) [pic](2006台科大電研)
(Sol.) It is a Type-2 quasi-homogeneous equation. Let v=2x+y, y=v-2x, y’=v’-2=[pic], v’ =[pic]+2=[pic], [pic]=dx, ([pic])dv=dx, [pic]=x+c,
∴ [pic]=x+c.
xix) y’+[pic]=0 (2005成大電研)
(Sol.) y’ =[pic]. It is a Type-1 quasi-homogeneous equation. Let A and B fulfill -2A+5B+9=0, 4A-B-9=0[pic]A=2, B=-1[pic]x=X+2, y=Y-1, Y’ =[pic]=[pic]. Let u=Y/X, [pic], [pic]=[pic],
[pic]du=[pic], [pic]+[pic]=[pic], -2ln(u+2)+ln(u-1)=ln(X)+c,
ln[[pic]]=ln(AX), AX=[pic], A(x-2)=[pic],
∴ A(x-2)=[pic].
xx) [pic](2006台科大電研)
xxi) [pic]
(Sol.) [pic], [pic]
[pic][pic]=[pic], ∴ xy+ xy2=C
xxii) (2x+ey)dx+(xey)dy=0 (2003中央光電所)
(Sol.) It is the exact differential equation, ∴ f(x,y)=x2+xey+c=0.
xxiii) (exsiny+3y)dx+(3x+excosy)dy=0 (交大控制所)
(Sol.) It is the exact differential equation, ∴ f(x,y)=exsiny+3xy+c=0.
xxiv) (2x-5y+3)dx-(2x+4y-6)dy=0 (2005成大電研)
xxv) xy’-4x2y+2yln(y)=0 (交大電研)
xxvi) y”+2y’+y=[pic]. (1990台大電研)
(Sol.) r2+2r+1=0, r=-1, -1, yh=c1e-t+c2te-t. Set yp=[pic],
yp’=[pic], yp”=[pic]
[pic][pic]
[pic][pic]
[pic]
xxvii) y”-2y’+y=x2ex (文化電機轉學考、2005台大電研)
xxviii) y”-2y’+y=ex (2009台大電研) (Sol.) y=c1ex+c2xex+[pic].
xxix) y”+y=(x-1)cos(x) (交大控制所)
xxx) y”+3y’+2y=4x2 (2000台大電研)
xxxi) f"-3f’+2f=4t+e3t, f(0)=-f’(0)=1 (2013台大電研) (Sol.) f(t)=[pic]+2t+3.
xxxii) y”-4y’+4y=(x+1)e2x (2006台大電研)
xxxiii) y”+4y’+4y=(x+3)e-2x, y(0)=2, y’(0)=5. (交大電機控制所甲組)
xxxiv) y”+8y’+16y=8sin(2x)+3e4x (2002台科大電研)
xxxv) y”+4y=x2cos(2x) (交大電子研究所)
xxxvi) y”-3y’+2y=x+e2x (交大電研)
xxxvii) y”+3y’+2y=x2(ex+e-x) (交大電研)
xxxviii) x2y”-3xy’+13y=4+3x
(Sol.) It is Euler’s equation. y=[pic].
xxxix) xy”+4y’=[pic](2004台大電研)
(Sol.) x2y”+4xy’=3ln(x). It is Euler’s equation. y(x)=c1+[pic]+[pic].
xl) (x+1)2y”-(x+1)y’+y=0, y(0)=1, y’(0)=0 (交大控制所)
(Sol.) It is similar to Euler’s equation. Let X=(x+1)[pic]X 2y”-Xy’+y=0. And then let z=ln(X)[pic][pic], y=cez+dzez=cX+dXln(X)=c(x+1)+d(x+1)ln(x+1). y(0)=1, y’(0)=0[pic]c=1, d=-1, ∴ y=x+1-(x+1)ln(x+1).
xli) x2y”-xy’+y=√x (交大電子所)
xlii) x3y’”+5x2y”+7xy’+8y=0 (台大電研)
xliii) x3y’”-2x2y”+5xy’-5y=0 (2004台科大電研)
xliv) x2y”+3xy’+y= x2+2x+3 (2005台科大電子所)
xlv) x2y”-xy’+y=ln(x) (2005台科大電研)
2. Find the integrating factor of (2y2-9xy)dx+(3xy-6x2)dy=0 and solve it.
(Sol.) [pic]
Suppose [pic]
[pic][pic][pic][pic]
[pic]
[pic], ∴ [pic]
3. Apply the parameter variation method to obtain the solutions of
i) y”-y=[pic] (1991台大土木所) (Sol.) yp=[pic]-[pic].
ii) y”+3y’+2y=[pic] (交大電信所)
iii) y”+5y’= xe-xsin(3x) (2001成大電研)
iv) y”-y’-12y=2sinh2(x) (2002成大電研)
4. [pic], where x(0)=0 and y(0)=0. Express y(t) in terms of x(t). (2005北科大電通所)
(Sol.) [pic]. Let u=y-x[pic]u’+u=-3x, u=-3x+3+ce-x, ∴ y= -2x+3+ce-x.
5. Find the differential equation associated with the solution y=C1e3x+C2e2x+C3ex. (成大電研)
6. Obtain the orthogonal trajectories of the curves:
i) x2+2y2=K, K>0 (Sol.) y=Ax2.
ii) r=1-sinθ (Sol.) r=k(1+sinθ).
iii) x2+cy2=4 (交大電子研究所).
7. Solve
i) (x2+1)y”+xy’-y=0 (2006台科大電研)
ii) x2y”+x(0.5+2x)y’+(x-0.5)y=0 (Sol.) [pic].
iii) x2y”+xy+ x2-1=0 (2010台大電研)
iv) (x-1)y”+y’=0 (2007台大電研)
v) y”-(1+x)y=0 (2002台大電研)
vi) x2y”+(6x+x2)y’+xy=x2+2x (台灣聯合大學系統碩士班聯招)
vii) (x-1)y”-xy’+y’=0 (台大機研)
viii) xy”+(x-6)y’-3y=0 (交大資訊研究所)
ix) y”-xy=1 (2005台大電研)
8. (a) Define a function g(t) by g(t)=[pic]. What is the Laplace transform of g’(t)? (b) Let h(t)=[pic], then [pic]=? (2005交大電機群組研).
9. Determine
i) L[2e-3t] and L[t2sinh(t)] (1991交大材料所)
(Sol.) L[2e-3t]=[pic], L[t2sinh(t)]=[pic]=[pic]=[pic]-[pic].
ii) L[e-2tcos(4t)] (Sol.) [pic].
iii) L[t3sin(3t)] (Sol.) [pic].
iv) [pic] (2005台科大電研)
(Sol.) [pic]=[pic]
=e-πs/24.[pic]=e-πs/24.[pic]=[pic].
v) If L[f(t)]=F(s) and k>0, then [pic]=? (2003成大電研)
(Sol.) [pic].
vi) [pic] (1991台大環工所) (Sol.) [pic]=[pic]=e4t+3e-4t.
vii) [pic] (2001台大電研)
(Sol.) [pic]=[pic], ∴[pic]=[pic].
viii) [pic] (1991交大材料所)
(Sol.) [pic]=sin(t), [pic]=[pic]=1-cos(t),
[pic]=[pic]=t-sin(t).
ix) [pic] (2012台大電研)
(Sol.) [pic]=2-[pic]=2-[pic]=2-[pic]-[pic],
[pic]=2δ(t)-cos(√2t)e-t-sin(√2t)e-t.
x) [pic] (2003成大電研)
(Sol.) [pic]=[pic]+[pic],[pic]= cos(2t)e5t-sin(2t)e5t.
xi) [pic] (2006台科大電研)
xii) [pic] (2003成大電研)
(Sol.) [pic]cos(πt)+sin(πt), ∵ [pic],
∴ [pic]={cos[π(t-1)]+sin[π(t-1)]}.u(t-1).
xiii) [pic] (1991清大電研)
(Sol.) [pic]
[pic].
xiv) [pic] (2013台大電研)
(Sol.) [pic]=[pic].([pic]-[pic])
=[pic].[[pic]-[pic]], and
[pic]=[pic],[pic]=[pic]
[pic]=[pic].[pic]=[pic].
xv) [pic] (台大電研)
(Sol.) [pic], ∵ [pic],
∴[pic]=(t-2)e2(t-2)u(t-2).
xvi) [pic] (成大電研)
(Sol.) [pic]=[pic]=[pic], ∴[pic]=δ(t)-3sin(3t).
xvii) [pic] (成大電研)
(Sol.) [pic]=ln(s)+ln(s+1)-2ln(s-2)=[pic]- [pic]+2[pic],
∴ [pic]=[pic].
xviii) [pic] (1991交大材研) (Sol.)[pic]
[pic] [pic][pic][pic]=e0t(0+t)+0+(-1)sin(t)e0t=t-sin(t).
xix) [pic]
(Sol.) [pic],
[pic][pic][pic].
xx) [pic] (台科大電研)
xxi) Find [pic].
(Sol.) According to[pic] and [pic]
[pic][pic][pic]
10. Find [pic].
(Sol.) [pic]
According to [pic] and [pic],
[pic][pic][pic]
Set s=1, [pic].
11. Find [pic].
(Sol.) According to [pic] and [pic],
[pic] , [pic], [pic],
[pic]
According to [pic], ∴ [pic].
12. Find [pic]. (2013中山光電所)
(Sol.) [pic]=[pic]=[pic].
Set s=0, [pic].
13. Eg. Solve y(4)=δ(x-a), y(0)=y”(0)=y(1)=0, y(3)(0)=1, 0 ................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- us history 1 practice test
- lee 1 oz slug mold
- microsoft office 365 en us download
- 1 us dollar to 1 euro
- us amendments 1 27
- us amendments 1 27 simplified
- free microsoft office 365 en us download
- cnn en espanol ultimas noticias en vivo
- noticias en espanol en vivo
- hispantv en espanol en vivo
- futbol en vivo en mexico
- us history 1 quizlet