Corrosion due to Environmental Exposure Only



GENERAL CORROSION DUE TO ENVIRONMENTAL EXPOSURE.

Uniform Corrosion.

During uniform corrosion the complete exposed surface of the metal corrodes. A good example would be the formation of rust on unprotected steel such as unpainted automobile bodies. This type of corrosion is very general and resulted in a great loss of metal and money.

[pic]

Uniform corrosion was occurring on this tank when the paint system did not provide complete protection. A considerable amount of rust was found on the surface where the paint had broken down and corrosion occurred.

Uniform corrosion is basically thermodynamically controlled, with the Redox potentials and the Nernst equation dictating the process until concentration polarization takes place when the transport of oxygen is limited. As noted previously for the case of iron, the anodic reaction is:-

Fe -> Fe2+ + 2e-

while the cathodic reaction is oxygen reduction to form hydroxyl ions:-

O2 + 2H2O + 4e- -> 4(OH-)

As the whole surface of steel corrodes the anodic sites and cathodic sites are the same surface.

A further example is shown for a steam return pipe. In this case, water condensed in the pipe and uniform corrosion occurred on the inside of the pipe. As the pipe thinned from the inside, enough material was removed until the internal diameter of the threads on the bottom of the pipe was reached. Eventually a drip was found at the joint when the threads were corroded away and a tight seal was no longer possible. This is a long term process.

[pic]

[pic]

Another case of uniform corrosion is zinc dissolving in hydrochloric acid. The zinc dissolves with the formation of hydrogen gas. The oxidation of zinc to zinc ions is the anodic reaction and the cathodic reaction is the reduction of hydrogen ions to hydrogen gas.

Zn + 2HCl = ZnCl2 + H2

Note that this reaction is both chemically and electrochemically balanced.

Anode:- Zn -> Zn2+ + 2e-

Cathode:- 2H+ +2e- -> H2

The rate of reaction is controlled by the slowest anodic or cathodic process. For example, concentration polarization controls the cathodic reduction of oxygen to hydroxyl ions. This rate is a function of velocity and so faster flowing solutions will corrode iron at a faster rate. Temperature is also a factor in activation controlled corrosion. Raising the temperature will also increase the corrosion rate as the activation energy decreases with temperature. Environment is important. Chloride containing solutions will increase the rate of corrosion over non chloride containing solutions. Instead of Fe2+ reacting with only hydroxyl ions it can now react with chloride ions. Most common metals are very soluble in chloride form and so the reaction is increased.

Materials.

Most metals which do not passivate and which have potentials lower than the Redox potential for reduction of oxygen in water will corrode in water. Examples are steels, zinc, and magnesium. Passivators such as stainless steels and nickel containing alloys such as monels and superalloys do not corrode in water.

Environment.

Data on corrosion rates for a variety of metals is readily available. In general a large range of corrosion rates is obtained depending on the specific exposure conditions. For example, corrosion rates from 0.03 mpy in a polar environment to 17.4 mpy at a location at ground level, 60 yards from the ocean at Cape Kennedy for carbon steel were measured. On the beach at Cape Kennedy, the corrosion rate was 42 mpy. In flowing seawater, rates of 15 mpy in the splash zone and 5 to 10 mils just below the surface were reported. From a design aspect, the local conditions of the material must be known to determine thickness to be used for the lifetime of the component. For metals and alloys such as nickel aluminum bronzes, rates of 1 to 2 mpy in quiet seawater were reported.

In designing a piling in a river from unprotected steel, if both sides are exposed to slow flowing water, a 15 mpy rate can be used. For both sides exposed, this becomes 30 mpy of steel lost. For a configuration such as an “I” beam, for a twenty year life expectancy, 600 mils or thousands of an inch of steel will be lost. This does not include the amount of material required for the loading from the decks on the piling which must still be present after twenty years to provide structural stability.

Protection techniques.

1 Exclude the environment.

One of the required components is an electrolyte, which for water also contains the cathodic reactant of oxygen. If this component can be excluded from the surface, then corrosion will not occur. The simplest method is to paint the material. However, this is not always a long lasting solution if the paint is not applied well. The introduction shows a possible problem where the paint will not provide a long term solution.

2. Sacrificial Anodes.

Apply a more active metal. A good example would be zinc on steels. It must be noted that there is a concept called "throwing power" in that the kinetics of the reactions are such that a small piece of zinc cannot protect a large area. Zincs have to be placed at frequent distances with a higher density at increased velocity areas. Cadmium plating on steel was a good choice but it along with chromates are deemed to be environmentally “unfriendly”. These materials are being replaced.

3. Impressed Current techniques

These make the component to be protected a cathode by supplying electrons from an external source.

4. Material selection.

Weathering steels are a steel with 0.5 - 1.0% Cu additions. The copper stabilizes the oxide product on the surface such that after the initial oxidation, the rust formed becomes protective and no further metal penetration occurs. Examples include many light poles throughout the USA. These are form a corrosion perspective, maintenance free structures. The drawback is the only color available is rust!. Other materials which will not corrode can be selected.

[pic]

Weathering steel light pole, no maintenance of the pole is required.

5. Inhibitors.

Examples of inhibitors are the waxy brown paper surrounding tools. In the paper is a vapor phase inhibitor which coats the metal and displaces the moisture necessary for corrosion.

Testing Technology.

Salt Spray Testing.

Salt spray testing in a chamber is a recognized test for uniform corrosion. It follows the ASTM B117 standard. A 5% by weight salt solution at 100% humidiy and 95F is passed into a chamber in which the samples are contained. The equipment is shown below.

An example of results of a test is shown for two steels, one of which is suitable and one which exhibited extensive rust over the same time period.

[pic]

On the left of the figure is a typical untested component, the center one corroded while the one on the right was covered on a white deposit from the salt. There are many variations on the salt spray test with each particular industry setting up exposure limits based on their experience. Some groups use 1000 hours with no corrosion, others 24 hours with no “white rust” for galvanized parts. For painted parts an “X” scratch is often placed through the paint into the substrate and in addition to damage in the scratch, damage spreading away from the scratch monitored. This is known as “undercutting”. Other cycles and combinations are used, such as some time in salt spray, followed by a period at elevated temperature and high ultra violet light exposure, followed by a time below freezing. These conditions were defined on the basis that they reflect accurately an acceleration of the failure mechanisms that lead to failure of the particular component.

Another process to measure uniform corrosion is the Tafel extrapolation shown previously. From this test corrosion rates can be established to put into design calculations for the corrosion life of a component. For example, if a corrosion rate of 15mpy is established, or 15 thousands of an inch of metal thickness will be removed each year, the thickness of metal required for a 30 year corrosion life as a piling in a river would be 0.6 inch as water is on both sides of the component.

A case of uniform corrosion is the corrosion of reinforcing steel in concrete. Steel is placed in concrete to reinforce it as concrete is a brittle material in tension, so the steel reinforces it. If the Pourbaix diagram for iron is examined, Chapter 2, then the conditions of concrete a high pH, are such that a passive film should be present for steel in concrete. However, actions such as salting the roads to prevent ice forming, or the local areas proximity to a marine environment, results in salt building up in the concrete cover overlaying the steel reinforcing bar. It is this concrete cover that protects the steel from environmental exposure and uniform corrosion. The chloride ion from salt gradually permeates down to the level of the steel and breaks down the passivation. Once the passivation is destroyed then uniform corrosion of the steel then occurs. The corrosion products require a volume of space considerably greater than the original steel, from 4 to 10 times the volume. This produces tensile stresses in the concrete cover separating the rebar form the external environment. Once the stresses reach the strength of the concrete, it “spalls” and the concrete separates from the structure leaving the reinforcing steel exposed, which then continues to corrode. A good example of the process is shown below.

[pic]

The possible solutions to this include cathodic protection of the steel, adding inhibitors to the concrete, change the composition of the reinforcing steel, coatings on the reinforcing steel, and non metallic reinforcement materials. This problem is worldwide and

very costly.

In the figure below, a steel wheel nut on a boat trailer has corroded uniformly.

[pic]

On the left hand side of the nut a large piece of rust is still attached. The rust contains many cracks and is about to fall from the surface. The exansion of corrosion products can be seen here. The steel bearing is on the left hand side and rust containing cracks can be seen as well. The area of concern with an article like a boat trailer is that this rust will build up in the leaf springs rather like a wedge of material and separate them over time.

Galvanic Corrosion.

Galvanic corrosion results from two different metals being in contact in the environment. Examples would be brass plumbing fittings on a cast iron pipe. In this case several reactions are possible, but in general the corrosion rate of the most anodic or active metal is increased and the corrosion rate of the more cathodic metal is decreased. This is shown in the following diagrams. The first figure shows the corrosion rate for a single metal corroding in an environment. A good example would be for zinc in hydrochloric acid. The anode reaction favored is:-

Zn -> Zn2+ + 2e-

Cathode:-

2H+ +2e- -> H2

[pic]

Corrosion rate determination for a two Redox reaction system

Using Faradays Law, substitution of the value of icorr will calculate the corrosion rate in mils per year. The next figures shows how to calculate the oveall corrosion rate as well as the individual reactions rates for each half cell reaction when a third Redox reaction is added at a potential between the first two Redox reactions. The rule that must be applied is that the TOTAL OXIDATION RATE MUST EQUAL THE TOTAL REDUCTION RATE. In figures below, the dashed lines represent the TOTAL rates.

[pic]

Corrosion rate determination for a three Redox reaction system. The corrosion rate for electrode 2 has increased from icorr to icorr 1+2 as it the only anodic reaction.

Two cases are shown, the first in the figure above, when the corrosion potential for three electrodes, Eoc(3), is above the two electrode potential Eoc(2), and in the figure below, when the three electrode corrosion potential is below the two electrode potential.

In the figure above, the open circuit potential for the three Redox system, Eoc (3) is more negative than the individual third electrode Reox potential, Er(3). As such the third Redox reaction can only contribute to the cathodic reaction rate. The third Redox reaction is therefore protected from corrosion. The total reduction rate is provided by the addition of the cathodic rates from Redox reactions 1 and 3, which is shown by the dashed line. The second Redox dissolution rate increased significantly from icorrr(2) to icorr(3) by the introduction of the third Redox cathodic reaction increasing the total cathode reaction which must be matched by the anode reaction from Redox reaction 1.

In the figure below, a similar process can be followed for determination of corrosion rates. In this case the open circuit potential from the three Redox reactions, Eoc(3) is more positive than the potential for two Redox reactions. In this case both the second and third anodic Redox half cell reactions are proceeding and both will be corroding, but the third electrode is at a lower rate than if the second electrode was not present.

[pic]

The introduction of a less noble metal will decrease the corrosion rate of the more noble metal.

Both these figures show that introducing a more anodic metal will decrease the corrosion rate for a more noble metal. This is the process behind galvanic corrosion. It can also be used for protection by galvanizing.

Factors Affecting Galvanic Corrosion.

1. Area Effect.

When current flows between the anode and cathode, the CURRENT will be the same in the anode and cathode independent of the surface area of each electrode. It is the CURRENT rather than the CURRENT DENSITY which is equal for the anodic and cathodic reactions. Therefore, if the current flowing between the anode and the cathode is one amp and the surface areas are one cm2, then the current density in each electrode is one A/cm2. However, if the area of the anode is only 0.1 cm2, then the current density in the anode with the same one amp flowing is 10 A/cm2. From Faradays Law, the corrosion rate depends on the CURRENT DENSITY in the anode. In this case decreasing the surface area of the anode increases the corrosion rate by a factor of 10.

As a general rule to minimize galvanic corrosion, the anode area should be large and the cathode area should be small. This leads to a result that on first appearance would seem incorrect. For protection from galvanic corrosion, the CATHODE of the system should be painted if a coating is applied. This arises from the area effect, in that if the paint is damaged by a scratch for example, then a small cathode to large anode area ratio is formed which results in minimizing corrosion rates. If the anode is painted, then damage to the paint results in a large cathode to small anode ratio which results in large corrosion rates in the anode and rapid penetration into the metal.

The anode to cathode area effect is an important characteristic. It is important in several other forms of corrosion including pitting corrosion, crevice corrosion, stress corrosion cracking and corrosion fatigue. Remember the important effects of the anode to cathode area ratios.

2. Physical Distance Effect.

Another important factor for galvanic corrosion is the distance effect. Galvanic corrosion rates are the largest at the interface between the anode and cathode and decrease with distance away from the contact region. As the anodes and cathodes are both good conductors - remember carbon can cause galvanic corrosion by acting as a cathode - electron transport is very good. What is more difficult is the ionic transport in the electrolyte. As the distance between the anodic reaction site and the cathode reaction site increases the transport of the ions becomes more difficult and the corrosion rate decreases. Essentially the resistance between the anode and cathode increases with distance.

This is an important factor in determination of the form of corrosion. If a suspicion of galvanic corrosion exists then it should follow the rule of the corrosion rate being higher adjacent to the galvanic contact region. If the corrosion rate is greater away from this area then another type of corrosion may be involved. For example if corrosion appears at a constriction some distance from a galvanic contact, then erosion corrosion was the cause not galvanic contact.

3. Distance Apart in the Galvanic Series.

A listing of the corrosion resistance in seawater for many metallic systems was produced and it is called the galvanic series. It is an empirical listing of the corrosion resistance of metals. Its advantage over the Redox series is that it refers to alloys in a real environment. Metal at the top of the system are highly cathodic while metals at the bottom highly anodic.

For selection purposes metals close together on the list are desirable as there is little driving force for corrosion to be accelerated.

Clearly, it is undesirable to connect metals widely spaced on the galvanic series.

4.Temperature Effects.

With increasing temperature above 180oF, zinc will form a protective layer and become cathodic to iron. The zinc becomes nonprotective and aggressive to the iron.

It is best to conduct a test program to determine the relative corrosion rates for the metals under the conditions they will be exposed to in order to determine any unusual effects which may take place due to unpredicted reactions.

Prevention of Galvanic Corrosion.

1. Electrically Insulate the Metals.

Electrical insulation of the dissimilar metals will avoid galvanic corrosion. One method demonstrated in the class is to use non metallic spacers.

2. Materials Selection.

Try to avoid selecting dissimilar metals. If that cannot be avoided refer to some of the following protection techniques.

3. Design.

Several features can be designed in to minimize the effects of

galvanic corrosion:-

a) Design for the cheapest replacement.

Allow corrosion to occur in a component that can be replaced without loss of production capability. This may mean some redundant systems such as multiple valves and pipes in one area. However, this would allow one pipe system to be used as a bypass while the corroded pipe from the first system is replaced without loss of production. After the second pipe exhibits corrosion then use the first pipe system and replace the second pipe. This is corrosion control rather than prevention. However, there is no plant downtime and the corroded component is a piece of pipe rather than an expensive and difficult to replace valve.

b) In sealed systems use the area effect.

In a sealed system where the supply of dissolved oxygen for the cathodic reaction is limited and easily expended, if a large anode to small cathode area is designed then only a very small degree of corrosion over the large anode will occur before the oxygen consumed. Then no more corrosion will occur. If a brass fitting is placed on a water tank fro a closed system where the steel surface area of the tank is much larger the brass area, then the steel will corrode slightly until all the oxygen is used up and then it will cease.

4 Coatings.

Paint the cathode to prevent the cathodic reaction.

5. Sacrificial Protection

The addition of a sacrificial element will avoid corrosion .

6. Impressed Current Protection.

If electrons are supplied to the anode then it will not corrode despite the galvanic contact with a more nobler metal.

7. Inhibitors.

Cars use inhibitors in antifreeze as there is often galvanic contact in the water cooling system between the aluminum alloy cylinder head and the cast iron engine block and water pump.

Testing Technology.

-----------------------

Eoc(2)

icorr(2)

Er(3)

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download