CORROSION PREVENTION BY ELECTROCHEMICAL METHODS



CORROSION PREVENTION BY ELECTROCHEMICAL METHODS

Introduction

Corrosion can be prevented by application of electrochemistry principles. This basically falls into two distinct areas, sacrificial anodes and cathodic protection by impressed currents.

Sacrificial Anodes.

In this preventative technique, corrosion is allowed to occur on a piece of metal that is extraneous to the structure, for example, a zinc attached to a steel boat hull. The zinc corrodes in place of the steel hull. The principles behind this process were discussed previously and will not be repeated except to show the relevant Evans diagram.

[pic]

In this case the anode#3 was protected from corrosion by anode reaction #2. One initial principle is that the sacrificial material must have a potential lower than the material it is trying to protect.

Simple examples of the application of this protection technique include:-

Galvanized bolts, automobile steel and mail boxes, zincs placed outboard engines and steel boat hulls, aluminum blocks on oil rigs, etc.

Typical coatings which work on this principle are:-

zinc on steel, aluminum on steel, cadmium on steel.

It should be remembered that cadmium is only slightly below steel in the galvanic series. As such it does not have much "Throwing power" which is the ability to protect over large distances.

The consumption rate of the anodes was measured at Key West. The table below lists some these rates.:-

Material Rate(lb/amp.yr)

Zn 24

Mg 17.5

Al-Zn-Sn 20-7

Al-Zn-In 8

Note that the rate of consumption depends on the material and the current flowing.

To design for protection the approximate current per square foot required for protection should be known. Tables exist for this data. For example:-

Environment Current Density for Protection

mA/m2(mA/ft2)

Immersed in Seawater Well Coated Poor Coating Uncoated

Stationary 1-2 (0.1-0.2) 2-20(0.2-2) 20-30(2-3)

Low Vel 1-3 f/s(0.3-1m/s) 2-5 5-20 50-100

Med Vel 3-7 f/s(1-2 m/s) 5-7 10-30 150-300

High Vel Turb flow 250-1000 250-1000 250-1000

Buried Underground.

Soil resistivity Ω.m 0.5-5 5-15 15-40

1-2 0.5-1 0.1-0.05

Hot sulfuric acid tank 500,000 (50,000)

Fresh water flowing pipes 50-100 (5-10)

Water heaters slow flow 10-30 (1-3)

Pilings in tidal seawater 60-80 (6-8)

Reinforcing steel 1-5 (0.1-0.5)

From this type of data the amps.yr data can be calculated to determine the size, separation and replacement time for sacrificial anodes.

Testing indicated that the corrosion rate of buried galvanized pipe varied from 0.6 to 19.5oz/in2 depending on the soil type. In buried conditions the type of soil must be known so that accurate predictions can be made.

Cathodic Protection by Impressed Current.

The objective here is to ensure the component requiring protection is maintained in its cathodic region by the application of a voltage or cathodic current. The system is shown schematically below:-

[pic]

An anode is involved. In some cases the anode can be a consumable anode and manufactured from a cheap material such as scrap metal. In other cases, the anode should not be consumed if possible. Such a case is for cathodic protection of steel in reinforced concrete. Anodes cannot easily be replaced. The table above provides the required currents for protection. Typical anodes with consumption rates are shown below:-

Environment Anode Material Curr Den A/m2 Loss(lb/amp.yr)

Seawater Pb-6%Sb-1%Ag 160-220 0.03-0.2

Pb-6%Sn-2%Ag 160-220 0.03-0.06

Pt on Ti,Nb or Ta 540-3200 0.008-0.016

Graphite 10-40 0.5-1.0

Fe-14.5Si-4.5%Cr 10-40 0.5-1.0

Lead 0.1-0.25

Scrap steel 20

Aluminum 10-12

The steel and aluminum are consumable anodes and so must be replaced at intervals. The platinum anode is usually a coating on another metal in the form of a mesh. An example will be shown in class. This mesh can be placed below the surface of concrete above the reinforcing steel. Usually experts are called in to design cathodic protection systems as a phenomena called stray currents can occur.

[pic]

This happens when a short circuit path is available between the anode and the cathode so that is carries current. An example would be the close proximity of another metal conductor to both the anode and cathode. The short circuiting component then corrodes instead of the anode.

Anodic protection.

An impressed current technique can be applied if the material passivates in the particular environment. in this case the structure is made more anodic by drawing electrons out of it until it enters the passive region.

There are advantages to this such as the cost of running the system is cheaper. However, the disadvantages are high such as more complicated control system, and a non safe system if the power fails or becomes uncontrolled. If the environment changes then the system may not passivate the same way.

As a result, anodic protection is not very popular.

Inhibitors.

Inhibitors are used to reduce and block corrosion. They work by several different mechanisms, some of which will be presented here.

Adsorption inhibitors.

Adsorption inhibitors protect by adsorption on to the metal or metal oxide film exposed to electrolyte. Organic inhibitors are aliphatic and aromatic amines (N compounds), thiourea( S compounds) and aldehydes (O compounds). All these have a charged state, for example aliphatic amines have ammonium cations present, R3NH+. The S and O compounds have a negative charge on them. Thiourea bonds strongly to a metal by sharing its electrons with the metal surface. This blocks solvating water molecules and also stops hydrogen gas molecule formation.

N and O compounds are less adsorbed on the metal surface than the S type compounds. They tend to select active anodic sites. The larger the molecule the greater the inhibition as they displace solvating water molecules.

Poisons.

These type of inhibitors block either of the hydrogen ion reduction or formation of hydroxyl ions cathodic reduction reactions. The hydrogen ion reduction reaction is inhibited by the group V metals or metalloids such as P, As or Sb. As2O3 is added at about 0.25M. The combination of hydrogen atoms to hydrogen molecules is blocked in a reaction of the form:-

AsO+ + 2Hads + e- -> As + H2O

Alternatively:-

As2O3 + 6Hads -> 2As + 3H2O

Scavengers

Scavengers act to remove the oxygen preferentially before it can be used in the cathodic reactions. Two popular examples are hydrazine and the sulfite ion.

N2H4 + 5/2 O2 -> 2NO2- + 2H+ + H2O

SO32- + 1/2 O2 -> SO42-

Filming Inhibitors.

The addition of specific ions with high redox reaction potentials will produce local reactions to form protective films. Two ions of this type are the chromate and nitrite ions.

They have redox reactions:-

NO2- + 8H+ + 6e -> NH4+ +2H2O Eo = +0.9V

2CrO42- + 10H+ + 6e -> Cr2O3 + 5H2O Eo = +1.31V

Both these reactions induce iron to dissolve in the ferric state with 3+ rather than in the ferrous state as 2+. The ferric oxides are stable on the surface and block further corrosion.

Fe3+ + 3H2O -> Fe2O3 + 6H+

Vapor phase.

These tend to be nitrites, carbonate and benzoate filming inhibitors attached to parachutes of an organic cation. An example is dicyclohexyl ammonium nitrite. The inhibitor evaporates onto the metal surface.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download