GUÍA DE FACTORIZACIÓN - Matemática



|NOMBRE: |CURSO: 1° Medio |FECHA: |

|SECTOR: Algebra |OA: Factorización de expresiones algebraicas no fraccionarias |

FACTORIZACIÓN

CASO 1: Cuando todos los términos de un polinomio tienen un factor común

Ejemplos : a) 3 a + 5 ab - 4 ac = a(3 + 5 b – 4 c) b) a2 + 2 a = a(a + 2)

c) 10 a2 – 5 a + 15 a3 = 5 a ( 2 a – 1 + 3 a2) d) x4 + x3 - x2 = x2(x2 + x – 1)

Ejercicios: 1) 3x2-15 2) 8x3 - 8x2 - 16x 3) 3mn3 + 3mn -6m 4) 3x3-9xy+3x2y2-3x2y

5) 3a2b + 6ab – 5a3b2 + 8a2bx + 4ab2m 6) 34ax2 + 51a2y – 68a y2 7) 4x2 – 8x + 2

8) x – x2 + x3 – x4 9) a2 –2a3 + 3a4 – 4a5 + 6a6 10) a20 – a16 + a12 – a8 + a4 – a2

CASO 2: Factor común por agrupamiento de términos

Ejemplos: a) ax + bx + ay + by = (ax + bx) + ( ay + by) = x(a + b) + y(a + b) = (a +b) (x + y)

b) 3m2 – 6mn + 4m – 8n = (3m2 – 6mn) + (4m – 8n) = 3m(m – 2n) + 4(m – 2n)

= (m – 2n) (3m +4)

c) 2x2 – 3xy – 4x + 6y = (2x2 – 3xy) – (4x – 6y) = x(2x– 3y) – 2(2x – 3y) = (2x – 3y) (x- 2)

Ejercicios: 1) 3ax – 3x + 4y – 4ay 2) a2 + ab + ax + bx 3) am – bm + an – bn

4) ax – 2bx – 2ay + 4by 5) x2 – a2 + x – a2x 6) 4a3 – 1 – a2 + 4a 7) x + x2 – xy2 – y2

8) 3a2 –7b2x + 3ax –7ab2 9)2am – 2an +2a – m + n – 1 10)3ax – 2by – 2bx –6a +3ay + 4b

CASO 3 Trinomio cuadrado perfecto.

Ejemplos:

a) m2 + 2m + 1 = (m + 1) (m + 1) = (m + 1)2 b) 4x2 – 20xy + 25y2 =(2x – 5y)(2x- 5y) = (2x – 5y)2

c) 1 – 16x2 + 64a2x4 = (1 – 8ax2)(1- 8ax2) = (1- 8ax2)2 d) x2 + bx + b2 =(x + b )(x + b) = (x + b )2

4 2 2 2

Ejercicios: 1) 9 – 6x + x2 2) a2 – 10a + 25 3) 16 + 40x2 + 25x4 4) 4x2 – 12xy + 9y2

5) 9b2 – 30a2b + 25a4 6) 9a2+6a+1 7) 25m2-70mn +49n2 8) 400x10 + 40x5 + 1

CASO 4: Diferencia de cuadrados perfectos

Ejemplos: a) 1 – a2 = (1 + a) (1 – a) b) 16x2 – 25y4 = (4x + 5y2) (4x – 5y2)

c) 4a2 – 9 = (2a + 3)(2a – 3) d) 25 – 36x4 = (5 +6x2) (5 – 6x2) e) 16 – n2 = (4 +n)(4 –n)

Ejercicios: 1) 25y6-9 2) 9z2-1 3) 121h2 - 144k2 4) [pic]

6) 100 – x2y6 7) 4x2 – 81y4 8) 25x2y4 – 121 9) 100m2n4 – 169y6 10) a2 – 25

COMBINACIONES DE LOS CASOS 3 Y 4

Ejemplos:

a) a2 + 2ab + b2 – 1 = (a2 + 2ab + b2) – 1 = (a + b)2 – 1 = (a+b +1) (a +b – 1)

b) a2 – 2am + m2 – 4b2 = (a2 – 2am + m2) – 4b2 =(a – m)2 – 4b2 = (a – m + 2b)(a –m – 2b)

Ejercicios: 1) a2 + 2ab + b2 – x2 2) a2 – 2a + 1- b2 3) a2 + 2ax + x2 – 4 4) n2 + 6n + 9 -c2

5) 9 –10n + 25 – n2 6) m2 – x2 – 2xy – y2 7) 9a2 – x2 + 2x – 1 8) 1 – a2 + 2ax – x2

CASO 5 : Trinomio de la forma x2 + bx + c

Ejemplos: a) x2 + 5x + 6 = (x + 3)(x + 2) b) x2 + 5x – 14 = (x + 7)(x – 2)

c) y2 –8y + 15 = (y – 5) (y – 3) d) x2– 2x –15=(x – 5) (x + 3) e)x2 – 7x+ 12=(x –3)(x – 4)

f) x4 – 5x2 – 50 = (x2 – 10) (x2 + 5) g) x6 + 11x3 – 44 =(x3 + 11) (x3 – 4)

Ejercicios: 1) x2 – 5x – 14 2) x2 – 13x + 40 3) y2 – 9y + 20 4) n2 – 6n – 40

5) x2 – 7x – 30 6) n2 – 14n + 5 7) x2 + 4x - 21 8) x2 + 7x – 60 9) x2 + x – 240

10) x4 + 5x2 + 4

CASO 6 : Trinomio de la forma ax2 + bx +c

Ejemplos : a) 6x2 – 7x – 3 = (3x + 1)(2x – 3) b) 20x2 + 7x – 6 = (4x +3)(5x – 2)

c) 18a2 – 13a – 5 = (18a + 5)(a – 1) d) 7m2 – 23m + 6 = (7m - 2)(m – 3)

Ejercicios: 1) 2x2 + 3x – 2 2) 12x2 – x – 6 3) 3x2 – 5x – 2 4) 8x2 – 14x – 15

5) 2x2 + 29x + 90 6) 7x2 – 44x – 35 7) 9x2 + 10x + 1 8) 4x2 + x – 33

9) 4x2 + 15x + 9 10) 21x2 + 11x – 2 11) 9x2 + 37x + 4 12) 16m + 15m2 – 15

FACTORIZACION DE SUMA O DIFERENCIA DE CUBOS PERFECTOS

Ejemplos:

1) a3 + b3 = ( a + b) ( a2 – ab + b2) 2) a3 – b3 = (a – b) (a2 + ab + b2)

3) x3 - 8 = ( x – 2) (x2 + 2x + 4) 4) 27x3 + b6 = (3x + b2)(9x2 – 3xb2 + b4)

5) 8x3 – 125 =(2x – 5)(4x2 + 10x + 25) 6) 27m6 + 64n9 =(3m2 + 4n3)(9m4 –12m2n3 + 16n6)

Para la evaluación del dia 08/07 solo son los casos 1, 4 y 5.

Respuestas de estos casos:

|N° |Caso 1 |Caso 4 |Caso 5 |

|1 |3(x2 – 5) |(5y3+3) (5y3 - 3) |(x + 2)(x – 7) |

|2 |8x(x2 – x – 2) |(3z +1)(3z – 1) |(x – 8)(x – 5) |

|3 |3m(n3 +n – 2) |(11h +12k)(11h – 12k) |(y – 5)(y – 4) |

|4 |3x(x2 – 3y + xy2 – xy) |(1/16x + 1/5 y6) (1/16x - 1/5 y6) |(n – 10)(n +4) |

|5 |ab(3 a + 6 – 5 a2b + 8ax +4bm) | |(x – 10)(x + 3) |

|6 |17a(2x2 +3ay – 4y2) |(10 – xy3)(10 +xy3) |(n – 7)(n+ 2) |

|7 |2(2x2 – 4x + 1) |(2x + 9y2)(2x – 9y2) |(x + 7)(x – 3) |

|8 |x(1 – x + x2 – x3) |(5xy2 + 11)(5xy2 – 11) |(x + 12)(x – 5) |

|9 |a2(1 – 2a + 3a2 – 4a3 + 6a4) |(10mn2 +13y3)(10mn2 – 13y3) |(x + 16)(x – 15) |

|10 |a2(a18 – a14 +a10 – a6 +a2 – 1) |(a +5)(a – 5) |(x2 +4)(x2 + 1) |

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download